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Abstract

Deep learning techniques have been proven to provide excellent performance for a variety of high
energy physics applications, such as particle identification, event reconstruction and trigger operations.
Recently, we developed an end-to-end deep learning approach to identify various particles using low-
level detector information from high energy collisions. These models will be incorporated in the CMS
software framework (CMSSW) to enable their use for particle reconstruction or for trigger operation
in real time. Incorporating these computational tools in the experimental framework presents new
challenges. This paper reports an implementation of the end-to-end deep learning inference with the
CMS software framework. The inference has been implemented on GPU for faster computation using
ONNX. We have benchmarked the ONNX inference with GPU and CPU using NERSC’s Perlmutter
cluster by building a docker image of the CMS software framework.
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Abstract. Deep learning techniques have been proven to provide excellent per-
formance for a variety of high-energy physics applications, such as particle
identification, event reconstruction and trigger operations. Recently, we devel-
oped an end-to-end deep learning approach to identify various particles using
low-level detector information from high-energy collisions. These models will
be incorporated in the CMS software framework (CMSSW) to enable their use
for particle reconstruction or for trigger operation in real time. Incorporating
these computational tools in the experimental framework presents new chal-
lenges. This paper reports an implementation of the end-to-end deep learning
inference with the CMS software framework. The inference has been imple-
mented on GPU for faster computation using ONNX. We have benchmarked
the ONNX inference with GPU and CPU using NERSC’s Perlmutter cluster by
building a docker image of the CMS software framework.

1 Introduction

The CMS [1] and ATLAS [2] experiments at the large hadron collider (LHC) have been
designed to explore physics at the TeV energy scale during its operation span of about 30
years. Both experiments made a most significant discovery of the Higgs boson [3, 4] from
the data collected at 8 TeV in 2012 worth integrated luminosity of 23 fb−1. In addition to the
detailed studies of the Higgs boson properties, finding anomalies in the precision standard
model (SM) to search for new physics with direct and indirect measurements are some of
the important goals for the CMS experiment. The existence of the new particles as predicted
by beyond standard model (BSM) theories are expected to have an extremely small produc-
tion cross-section, necessitating the need to collect more collision data. The high-luminosity
(HL-LHC) [5] is planned to level the instantaneous luminosity at 5 × 1034cm−2s−1, with an
integrated luminosity of about 3000 fb−1, ten times more than the LHC. The corresponding
mean number of collisions (pileup) per bunch crossing will be 140 posing tremendous chal-
lenges for filtering, collecting, processing, reconstructing, and analyzing data due to huge
event size, data volume, and complexity.

Advanced machine learning approaches will be employed to overcome significant hurdles
provided by rising levels of pile-up and the scarcity of sought-after signals to achieve the key
physics goals at HL-LHC. To address this issue, CMS researchers are employing cutting-edge
machine learning techniques for data processing and detector reconstruction, with the goal of
∗e-mail: ruchi.chudasama@cern.ch



optimizing and speeding up these models during training and inference. Most of the particle
identification algorithms at the CMS and ATLAS experiments rely on inputs provided by the
particle-flow (PF) [6] algorithm used to convert detector-level information to physics objects
due to its capability to significantly reduce the size and complexity of particle physics data
while offering a physically intuitive and simple-to-use representation for physics analyses.
Despite the very high reconstruction efficiency of PF algorithms, some physics objects may
fail to be reconstructed, are reconstructed imperfectly, or exist as fakes and limit the search
for BSM scenarios. Therefore it is advantageous to consider reconstruction that allows a
direct application of machine learning algorithms to low-level data in the detector.

The end-to-end deep learning approach combines a low-level detector representation and
deep learning algorithms. This approach has achieved current state-of-the-art performance in
identifying electrons, photons, jets, and boosted objects [7–10] using various deep-learning
architecture such as convolutional neural network and graph neural network. One of the
main objectives of the CMS experiment’s research and development towards HL-LHC is to
incorporate such cutting-edge machine learning algorithms for particle identification into the
CMS software framework (CMSSW) [11] data processing pipeline. Training the deep neural
networks and subsequently obtaining the inference on trained models on massive amounts of
data, such as those produced at LHC, is exceedingly time-consuming and demands significant
computational resources. Graphical Processing Units have proven to be capable of providing
fast, parallelized, and energy-efficient processing of data even on complex deep-learning ar-
chitectures, making them ideal for a wide range of real-time applications as well as for user
analysis-specific tasks.

This paper presents the integration of end-to-end deep learning framework into CMSSW
to discriminate electrons from photons (E/Gamma tagger), quark jets from gluon jets
(Quark/Gluon tagger), top quark from QCD jets (Top tagger), hadronic taus from QCD
jets (Tau tagger). Their inference times are benchmarked on CPU and GPU.

2 Simulated dataset for end-to-end deep learning

The end-to-end deep learning technique is based on high-fidelity Monte Carlo simulated event
samples. The samples are produced for the 2018 proton-proton collisions data-taking periods
at the center of mass energy 13 TeV, without considering any additional particle collision
in the single bunch crossing. The events for E/Gamma tagger studies are generated with
photon particle gun sample at transverse momentum, pT = 50 GeV. The multijet production
of light-flavor and gluon jets via strong interaction, referred to as quantum chromodynamics
(QCD) with hard scattered transverse momentum p̂T between 300 to 470 GeV are generated
with PYTHIA 8 [12] for Quark/Gluon tagger studies. Events from top quark-antiquark
pair production where W boson from the top quark decay are required to decay as a quark are
used for Top tagger. The monte carlo samples were generated with POWHEG v2.0 [13]
at next to leading order in perturbative QCD and uses PYTHIA 8 for Parton showering. The
generation of 125 GeV Higgs boson (H) events via gluon fusion at NLO with H decays to
tau leptons (H → ττ) is also performed with the POWHEG 2.0 generator for Tau tagger
studies.

The LHC provides countercirculating beams of high-energy protons, allowing bunches of
protons in these beams to interact with each other in the CMS detector [1] every 25 ns. When
protons from opposing beams collide, a wide range of physical processes can occur, leading
to the formation of either fundamental or composite particles. These particles, or their decay
products, can then enter the CMS detector, which is designed to determine the particle type,
energy, and momentum. Each bunch crossing where proton collisions occur is referred to as
an "event," which can project hundreds of particles into the CMS detector. The CMS detector



is designed as a series of concentric cylindrical sections with barrel and endcap sections that
enclose a primary interaction point where the LHC proton beams collide with each other. The
central feature of the CMS detector is a superconducting solenoid that provides a magnetic
field of 3.8 T designed to bend the trajectories of charged particles that aid in transverse
momentum, pT measurement. The silicon tracker is composed of two parts, namely, the
silicon pixel detector and the silicon strip detector. The first silicon pixel detector is the
innermost part and is composed of four layers in the barrel region (BPIX) and three disks in
the endcap region (FPIX). The pixel detector provides crucial information for vertexing and
track seeding. The outer part of the tracking system is composed of silicon strip detectors.
This is followed by the electromagnetic calorimeter (ECAL), made of lead-tungstate crystals,
to measure the energy of electromagnetically interacting particles, and then the hadronic
calorimeter (HCAL), made of brass towers, to measure the energy of hadrons. These are
surrounded by the solenoid magnet which is finally encased by the muon chambers to detect
the passage of muons.

The detector response for all samples was simulated for CMSSW release 12_0_2 using
GEANT 4 package, which delivers the state-of-the-art in first-principles detector simula-
tion, along with the most detailed geometry models of the CMS detector. For this study,
we additionally use a custom CMS data format which includes the low-level tracker detector
information, specifically, the reconstructed clusters from the pixel and silicon strip detectors.

3 Integration of end-to-end deep learning with CMS software
framework

CMSSW is an overall collection of software framework written in C++ that is built around
the Event Data Model (EDM). In the (EDM) format, each entry (edm::Event) represents a
single collision event capable of holding multiple attributes on top of which various modules
can be run to perform simulation, digitization, and reconstruction. These modules are di-
vided according to their functionality into CMSSW base classes for analyzing data collections
(edm::EDAnalyzer) or producing new ones (edm::EDProducers), among many other
modules. The end-to-end framework (E2EFW ) is designed to be highly modular and adaptable
in order to accommodate customized workflows for end-to-end ML training and inference.
The E2EFW can be optionally run to produce EDM-format files for further downstream pro-
cessing by other CMSSW modules for a production workflow or to produce ROOT-ntuples
for rapid prototyping.

3.1 End-to-end framework pipeline

E2EFW consists of three main package categories: DataFormats, FrameProducers, and
Taggers. The DataFormats package consists of all the objects and classes required to
execute the E2EFW modules and save the output back to EDM-format files. It contains con-
venience classes for dealing with inputs and defining associations with other relevant collec-
tions. The association maps for linking object-level detector inputs to their related recon-
structed physics objects are specifically defined here.

The FrameProducer package is primarily responsible for extracting detector data either
as whole event data or as object-level data—and auxiliary functions aiding in this regard.
The data producers are provided with hit information from various CMS subdetectors in
order to cast the whole event data to desired images or graphs. The object-level data pro-
ducers enable the generation of multi-subdetector data, such as to produce images or graphs
for reconstructed electrons, photons, and jets as used in this paper. There are also a vari-
ety of modules that integrate with the output of detector data producers to create localized



Figure 1. The end-to-end framework (E2EFW ) pipeline used for E/Gamma,Quark/Gluon,Top,Tau
taggers [14].

windows or crops around the coordinates of a desired reconstructed physical object. The
E2EFW has user-configurable options for controlling which subdetectors to include and which
jet clustering technique to employ to determine their centers. A separate module is given for
electrons and photons. As a result, depending on the user’s needs, different combinations
of the producers might be utilized for different tasks. For instance, EGFrameProducer is
used to produce electron/photon showers for EGTagger while JetFrameProducer is used
for Quark/Gluon,Top and Tau tagger.

More detailed analyses of the reconstructed objects will be required for the typical physics
application. To support this purpose, a third package category Taggers is provided. These
can be used to interface with the output of any preceding FrameProducer package, allowing
for modular, highly customized workflows. While most production-level analyses will have
their own dedicated analysis workflow, the Taggers provide a quick and convenient avenue
for rapid prototyping and analysis, which is desirable during the ML algorithm development
but can also be used for running inference in a production-like workflow. The E2EFW pre-
sented in this paper supports a number of template modules.

A typical end-to-end framework pipeline is illustrated in Figure 1. First, the detector-
level data producer is run to extract whole detector images or graphs corresponding to the
ECAL, HCAL, and Track layers and store these back into an EDM-format file in vector
shape suitable for object-level cropping. Then, object-level data producers are run to crop
and process these whole detector vectors into either photon-level or jet-level data around
the coordinates of the reconstructed photons or jets and again push back these vectors into
the EDM-format file. Photon-level objects are used only for E/Gamma tagger while jet-
level objects are used for all other taggers described in this paper. The Tagger package is
configured to use various deep-learning architectures such as Convolutional Neural Network
(CNN) (used in this study), and Vision Transformers for images. We considered simpleNet
CNN architecture to benchmark the inference for all four taggers. The information from
one sub-detector is considered as one channel of the CNN model. The input tensor size
and the number of channels can be configured according to the end-user necessity. The
E2EFW provides an option to consider 13 channels, such as Track pT, d0, dz, four BPIX
layers, ECAL & HCAL, and four strip layers. Table 1 shows various sub-detector channels
and input tensors considered for the various Taggers. The E2EFW can be easily configured to
use other algorithms like Graph Neural Networks (GNNs) with graph inputs, which is beyond
the scope of this paper.



Table 1. Specifications of the convolutional neural network inputs.

Tagger Number Input tensor Channel names
of channels array size

E/Gamma 1 1 × 32 × 32 ECAL
Quark/Gluon 5 5 × 128 × 128 Track pT, d0, dz, ECAL & HCAL
Top 8 8 × 128 × 128 Track pT, d0, dz, BPIX layers, ECAL & HCAL
Tau 8 8 × 128 × 128 Track pT, d0, dz, BPIX layers, ECAL & HCAL

Lastly either one of the four taggers is run to select either photon or reconstructed jet.
The data associated with the selected photon-level or jet-level objects are passed to the
ONNX [15] Runtime for inference. The resulting predictions on these selected photons or
jets are then pushed back into the EDM-format file for further downstream analysis. ONNX
(Open Neural Network Exchange) is an open-source framework designed to facilitate inter-
operability and portability between different deep learning frameworks and tools. Most deep
learning frameworks such as TensorFlow, PyTorch, XGBoost support converting those mod-
els into the ONNX format or loading a model from an ONNX format. ONNX Runtime is
used for inference on ONNX models as it is supported by the CMSSW to run the inference
on GPUs. While we have described photon-level and jet-level workflow, the E2EFW can be
appropriately adapted to process other objects and full events, by a suitable definition of the
process workflow. For instance, if a user wishes to perform event-level analysis and inference
on whole detector inputs, an appropriate Tagger package that applies event-level selection
can be defined that interfaces directly with the output of detector data producer and bypasses
object-level data producers. The E2EFW thus allows a high degree of flexibility for pursuing
an assortment of end-to-end ML studies dictated by the user.

3.2 Containerising end-to-end framework at NERSC using docker

Despite the dedicated computing environment provided by CMS experiment, the installation
of CMS software framework and use on a third-party computing facility is still very tedious,
error-prone, and time-consuming, due to the versioning issues and lack of administrative
privileges. To address this issue, our group has demonstrated the efficient use of container
images and their application while performing analysis on the Perlmutter supercomputing
facility at the National Energy Research Scientific Computing Center (NERSC) [16]. Docker
is one such well-known and versatile unit of software for effectively managing dependencies,
runtime, system tools, system libraries, and settings. Virtualization and isolation of software
packages provide a great deal of flexibility during the development stage, in reliably deploy-
ing and efficiently managing pipelines. We dockerized CMSSW version 12_0_6 and the
required dependencies in a compact docker image that was reliably transferred to the Perl-
mutter cluster. Perlmutter cluster provides the Cern Virtual Machine File System (CVMFS)
required to execute the CMS software framework. The shifter software package at NERSC
allows to run the docker image of CMSSW or any other user-created images.

4 Computing resources

The end-to-end framework inference has been benchmarked at two different computing sites.
Fermilab LHC Physics Center (LPC) provides NVIDIA Tesla P100 GPU that utilizes the
Pascal architecture. The Tesla P100 [17] GPU with high bandwidth memory (HBM) of 12
GB was accessed at Fermilab via a dedicated GPU worker node through a 12 GB/s PCIe con-
nection using CUDA Toolkit driver version 12.1. Data was stored and read from an HGST



1W10002 hard drive located on the GPU machine during inference. Images produced from
the end-to-end framework were provided to the GPU using a single Intel(R) Xeon(R) Silver
4110 8-core CPU. LPC also provides CPU-only resources, the E2EFW inference was bench-
marked on AMD EPYC Processor 1-core CPU. We also used the GPU resources located at the
Perlmutter cluster at the National Energy Research Scientific Computing Center (NERSC).
Perlmutter cluster provides NVIDIA A100 [18] GPU that utilizes Ampere architecture with
high bandwidth memory (HBM) of 40 GB and it was accessed through a dedicated GPU
worker node through a 25 GB/s PCIe connection using CUDA Toolkit driver version 11.7.
Data was stored and read from an Intel Dual-Port NVMe solid-state drive.

5 Performance

The latency and throughput for E2EFW framework for inference were obtained by running
1000 events, generated from the Monte Carlo simulations as described in section 2. The in-
ference was obtained by running a single-threaded job out of which the first 300 events were
dropped from the calculations to stabilize the results. The measurement was repeated ten
times and the average throughput value was estimated. Figure 2 shows the average end-to-
end inference framework event throughput per second for E/Gamma,Quark/Gluon,Top,and
Tau taggers compared for Fermilab LPC GPU and CPU. The ML inference was obtained
on a single GPU and single CPU with a single thread for input/output. The speedup of
11-18% was achieved for E2EFW inference on Fermilab GPU compared to CPU achieved
due to the 8-core CPU and an NVIDIA Tesla P100 GPU available on the LPC GPU node
compared to the 1-core CPU on the LPC CPU. Figure 3 compares the average through-
put per second for NVIDIA Tesla P100 GPU at Fermilab LPC and NVIDIA A100 GPU
at NERSC for E/Gamma, Quark/Gluon, Top, and Tau taggers. The figure presently
does not include the results for E/Gamma tagger for A100 GPU at NERSC Perlmutter. Fig-
ure 3 demonstrates a small increase for Top and Tau Tagger and a 20% improvement for
Quark/Gluon tagger when utilizing A100 GPU against P100. This is because the infer-
ence at Perlmutter is obtained by first executing the CMSSW docker image, which takes
around 5% of the entire inference time, and then opening an input file, which takes more
than 50%. Aside from that, the Tagger package’s ONNX Runtime inference is the only
component currently implemented on the GPU. Future plan is to port other modules of the
framework to the GPU as well. These throughput measurements have 0.5-3% uncertainties.

Figure 4 compares the breakdown of time spent per event (latency) by the end-
to-end inference framework modules, such as Event setup (gray), DetFrames (Pink),
EGFrames /JetFrames (Teal), Tagger time (orange), and input/output (blue) at LPC CPU
in top bar chart and LPC GPU in the bottom bar chart. The timings are compared for
E/Gamma,Quark/Gluon,Top and Tau Tagger, respectively. Figure 4(top left) shows that
around 40% of the time per event was spent in event setup for E/Gamma tagger while 60%
of time was spent in Input/Output module for Quark/Gluon, Top and Tau tagger. The I/O
time can be improved further by writing only the required information in the EDM-format
root files instead of the full input information plus the data producers and object producer
collections produced in the end-to-end framework.

6 Conclusion

This paper presents the integration of end-to-end deep learning framework within CMS soft-
ware framework. The framework provides the support to discriminate electrons from photon
showers, quark jets from gluon jets, top quark from QCD jets, and tau particles from QCD
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Figure 2. End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon,
Top, and Tau taggers compared for Fermilab LPC GPU (blue) and CPU (orange) [14].

0 5 10 15 20 25 30
Event throughput per second

E/Gamma

Quark/Gluon

Top

Tau

 22.7 ev/s

 1.3 ev/s

 1.3 ev/s

 1.9 ev/s

 1.7 ev/s

 1.3 ev/s

 1.9 ev/s

ML inference on single GPU 
 Single CPU thread for I/O 

13 TeVCMSSimulation Preliminary

Cluster
Fermilab LPC
NERSC Perlmutter

Figure 3. End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon,
Top, and Tau taggers compared for NVIDIA Tesla P100 GPU at Fermilab LPC (blue) and
NVIDIA A100 GPU at NERSC Perlmutter (orange) [14].

jets. Along with the particle identification task on photon-level or jet-level, the framework
can be easily adapted to even-level tasks. We utilized the Fermilab LPC and at the NERSC
Perlmutter’s Central Processing Unit and Graphical Processing units to benchmark the in-
ferences for E/Gamma,Quark/Gluon,Top,and Tau taggers. The inference obtained on
NVIDIA Tesla P100 GPU with a single Intel(R) Xeon(R) Silver 4110 8-core CPU shows
11-16% increase in throughput compared to AMD EPYC Processor 1-core CPU. The inte-
gration of the end-to-end deep learning framework within the CMS software framework was
accomplished at the NERSC supercomputing facility by preparing a CMSSW docker image.
Then the inference was benchmarked on NVIDIA Tesla A100 GPU, demonstrating a small
increase for Top and Tau taggers and a 20% improvement for Quark/Gluon tagger against
NVIDIA Tesla P100 GPU.
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Figure 4. Time spent by end-to-end inference framework modules per event such as Event setup (gray),
DetFrames (Pink), EGFrames /JetFrames (Teal), Tagger time (orange), compared for Fermilab LPC
CPU and GPU for E/Gamma tagger (top left), Quark/Gluon tagger (top right), Top tagger (bot-
tom left), and Tau tagger (bottom right) [14].
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