
Available on CMS information server CMS CR -2023/145

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
31 August 2023 (v2, 21 September 2023)

Towards a container-based architecture for CMS
data acquisition

Vassileios Amoiridis, Ulf Behrens, Andrea Bocci, James Branson, Philipp Brummer, Eric Cano, Sergio Cittolin,
Joao Da Silva Almeida Da Quintanilha, Georgiana-Lavinia Darlea, Christian Deldicque, Marc Dobson, Antonin

Dvorak, Dominique Gigi, Frank Glege, Guillelmo Gomez-Ceballos, Patrycja Gorniak, Neven Gutic, Jeroen
Hegeman, Guillermo Izquierdo Moreno, Thomas Owen James, Wassef Karimeh, Miltiadis Kartalas, Rafal

Dominik Krawczyk, Wei Li, Kenneth Long, Frans Meijers, Emilio Meschi, Srecko Morovic, Luciano Orsini,
Christoph Paus, Andrea Petrucci, Marco Pieri, Dinyar Sebastian Rabady, Attila Racz, Theodoros Rizopoulos,

Hannes Sakulin, Christoph Schwick, Dainius Simelevicius, Polyneikis Tzanis, Cristina Vazquez Velez, Petr Zejdl,
Yousen Zhang, Dominika Zogatova

Abstract

The CMS data acquisition (DAQ) is implemented as a service-oriented architecture where DAQ ap-
plications, as well as general applications such as monitoring and error reporting, are run as self-
contained services. The task of deployment and operation of services is achieved by using several
heterogeneous facilities, custom configuration data and scripts in several languages. In this work, we
restructure the existing system into a homogeneous, scalable cloud architecture adopting a uniform
paradigm, where all applications are orchestrated in a uniform environment with standardized facili-
ties. In this new paradigm DAQ applications are organized as groups of containers and the required
software is packaged into container images. Automation of all aspects of coordinating and managing
containers is provided by the Kubernetes environment, where a set of physical and virtual machines is
unified in a single pool of compute resources. We demonstrate that a container-based cloud architec-
ture provides an across-the-board solution that can be applied for DAQ in CMS. We show strengths
and advantages of running DAQ applications in a container infrastructure as compared to a traditional
application model.

Presented at CHEP2023 26th International Conference on Computing in High Energy Physics and Nuclear
Physics

Towards a container-based architecture for CMS data ac-
quisition

Vassileios Amoiridis1, Ulf Behrens2, Andrea Bocci1, James Branson3, Philipp Brummer1,
Eric Cano1, Sergio Cittolin3, Joao Da Silva Almeida Da Quintanilha1, Georgiana-Lavinia
Darlea4, Christian Deldicque1, Marc Dobson1, Antonin Dvorak1, Dominique Gigi1, Frank
Glege1, Guillelmo Gomez-Ceballos4, Patrycja Gorniak1, Neven Gutić1, Jeroen Hegeman1,
Guillermo Izquierdo Moreno1, Thomas Owen James1, Wassef Karimeh1, Miltiadis Kartalas1,
Rafał Dominik Krawczyk2, Wei Li2, Kenneth Long4, Frans Meijers1, Emilio Meschi1, Srećko
Morović3, Luciano Orsini1, Christoph Paus4, Andrea Petrucci3, Marco Pieri3, Dinyar Sebas-
tian Rabady1, Attila Racz1, Theodoros Rizopoulos1, Hannes Sakulin1, Christoph Schwick1,
Dainius Šimelevičius1,5,∗, Polyneikis Tzanis1, Cristina Vazquez Velez1, Petr Žejdl1, Yousen
Zhang2, and Dominika Zogatova1

1CERN, Geneva, Switzerland
2Rice University, Houston, Texas, USA
3UCSD, San Diego, California, USA
4MIT, Cambridge, Massachusetts, USA
5Vilnius University, Vilnius, Lithuania

Abstract.
The CMS data acquisition (DAQ) is implemented as a service-oriented architec-
ture where DAQ applications, as well as general applications such as monitoring
and error reporting, are run as self-contained services. The task of deployment
and operation of services is achieved by using several heterogeneous facilities,
custom configuration data and scripts in several languages. In this work, we
restructure the existing system into a homogeneous, scalable cloud architec-
ture adopting a uniform paradigm, where all applications are orchestrated in a
uniform environment with standardized facilities. In this new paradigm DAQ
applications are organized as groups of containers and the required software is
packaged into container images. Automation of all aspects of coordinating and
managing containers is provided by the Kubernetes environment, where a set of
physical and virtual machines is unified in a single pool of compute resources.
We demonstrate that a container-based cloud architecture provides an across-
the-board solution that can be applied for DAQ in CMS. We show strengths
and advantages of running DAQ applications in a container infrastructure as
compared to a traditional application model.

1 Introduction

The Compact Muon Solenoid (CMS) [1, 2] is one out of four large particle detectors (experi-
ments) at the Large Hadron Collider (LHC) [3] at CERN in Geneva, Switzerland. As a versa-
tile and advanced particle detector, CMS plays an important role in fundamental physics [4].
∗e-mail: dainius.simelevicius@cern.ch

It allows to capture and analyze the intricate interactions between particles produced in high-
energy collisions within the LHC. The Data Acquisition (DAQ) system is responsible for
assembling, filtering, and storing the large influx of data generated by particle collisions
within the detector [1]. The CMS DAQ system’s main task is to read-out data from the dif-
ferent parts of the detector and assemble them into coherent structures corresponding to one
bunch-crossing of the LHC (event building). These tasks require reliable monitoring and er-
ror reporting to guarantee the quality of the data collected. The system has been built upon a
service-oriented architecture, where applications are encapsulated as self-contained services.
This approach has enabled efficient deployment and operation of various applications, albeit
using a mix of different tools, configurations, and scripting languages. In this context, two
distinct strategies have emerged to manage the life cycle of services. Short-lived services,
such as read-out and event building, are managed by a custom infrastructure [5]. On the other
hand, long-running, auxiliary services are managed using systemd [6]. The main goal of this
work is to transform the existing architecture into a homogeneous, scalable cloud system – a
unified environment where all applications are managed uniformly with standardized facili-
ties. In addition to introducing modern technologies, this work intends to demonstrate that a
container-based cloud architecture can serve as a comprehensive solution for the CMS DAQ.
This is a status report of work in progress since not all the goals have been achieved yet.

2 Motivation

After several years of successful operation of the CMS DAQ system with the initial ap-
proach [7], we identified points of improvement to refine the future system. User experience
and lessons learned provided the base to reassess the software. To embrace opportunities
coming from new technologies, providing an evolutionary framework to cope with the ever
changing environment, a full revision of the current design was desirable.

One major concern with the current system lies in the infrastructure lock-in, resulting
from the system’s reliance on a specific operating system (OS) distribution and libraries. This
constraint limits flexibility and the ability to evolve towards alternative software libraries or
compilers available in other (more recent) operating system distributions.

Additionally, the transition from development to deployment proves to be time-
consuming, marked by distinctly different environments (e.g., different hostnames) for de-
velopment, validation, and production stages. This disparity hampers efficiency of the main-
tenance and development activities, such as bug fixes and new feature introduction. Further-
more, the work required to set up the computing infrastructure for development and validation
turns out to be time- and resource-intensive.

The binding of CMS DAQ auxiliary service applications to either physical or virtual ma-
chines in the existing system, limits optimal resource utilization, because a safety margin on
resources, such as memory and CPU, are required on each individual host.

The process of software update and rollback is often arduous, complicating the system
management. It necessitates substantial system administration efforts, diverting resources
from more strategic tasks.

A lack of portability due to the configuration binding to physical hostnames, makes
changes in computing infrastructure labor-intensive. A minor change in a computing environ-
ment might require a full iteration from software reconfiguration to release and deployment
(this applies to CMS DAQ auxiliary service applications).

The need for custom (private) scripts for software deployment and operation in test envi-
ronments, adds supplementary burden on developers and users due to the differences between
the two environments.

Finally, two distinct approaches are currently employed to operate and control the life cy-
cle of services. A custom-built infrastructure of Run Control Management System (RCMS)
(a web-based, graphical run control system) and Jobcontrol (a service used to start, stop and
monitor processes in a distributed environment), working in tandem is used for short-lived
application services (e.g., event building and read-out) [8], while for long-running, auxil-
iary services such as monitoring and error reporting systemd is used [6]. A single uniform
approach is desirable to reduce the inherent complexity of the system.

3 Container-based architecture

Containerization transforms the network from being machine-oriented to being application-
oriented. As such in container-based approach, DAQ applications are composed as cohesive
groups of containers [9–11]. The required software is encapsulated within container images
(e.g., Docker images) [9]. The containerization, a hallmark of modern software deployment,
carries with it a host of benefits [12]. The orchestration of containers, once a cumbersome
task, is streamlined through orchestration systems such as Kubernetes [13, 14], an industry-
proven container orchestration platform [15, 16]. Containerization of software and container
orchestration allow the use of available computational resources as a unified resource pool
while different versions of software, down to the OS distribution specific libraries, can coex-
ist within a single network host. Software changes are prepared at build time, while target
machines are not affected by the ongoing modifications. See figure 1 for a graphical depiction
of traditional compared to containerized approach.

Traditional approach

CMS network cluster

Containerized approach

Kubernetes namespaces Images

CMS network cluster

Distributed application
Packages

Figure 1. In traditional approach, a physical machine has libraries specific to one OS distribution in-
stalled. In containerized approach, OS distribution specific libraries are installed into container images.
Containers with libraries from different OS distributions can be used on the same physical machine.

The containerized approach also provides reliability in software validation across both
test and production environments, which are managed in the same manner. The construction
of container images at build time ensures consistent installation across diverse targets, as con-
tainer images encapsulate all required application dependencies. In turn, tests in production
environment do not cause disruption on the target environment as rollbacks or re-installations
are no longer needed.

In summary, containerization of software compounded by container orchestration ad-
dresses all the points of concern identified in section 2 at least to some extent.

4 Pilot project

4.1 Goals

The transition of the DAQ system from a traditional approach to a container-based architec-
ture is being carried out through a pilot project with the following goals:

• Rework DAQ system elements in a cloud approach based on Kubernetes patterns;

• Adopt a full software life cycle for the new environment, focusing on the development,
delivery, deployment and operation;

• Resolve issues concerning building and maintenance of the Kubernetes cluster and hard-
ware resources;

• Determine implications on the current system administration environment;

• Implement a fully functional DAQ column from back-end electronics, collecting data from
the detector front-ends, to High Level Trigger (HLT), including run control and monitoring.

The scope of the pilot project applies to all dimensions of expertise within the CMS DAQ
system:

• Operation;

• Development;

• Release;

• Deployment;

• System administration;

• Networking;

• Security;

• Integration.

The aforementioned goals can be achieved through the implementation of the following
study modules:

1. Performance and scalability;

2. Hardware access and binding (VME bus, PCI bus, remote direct memory access
(RDMA), FEROL [17], etc.);

3. System fine-tuning (driver interrupts, non-uniform memory access (NUMA) settings,
etc.);

4. User access (Graphical User Interface (GUI), Command Line Interface (CLI), Dash-
boards, API, etc.);

5. Networking (configuration, fine-tuning TCP/IP, RDMA over Converged Ethernet
(RoCE), etc.);

6. Control and monitoring;

7. Configuration;

8. Additional technologies and their integration (Elasticsearch, Opensearch, Oracle,
WinCC Open Architecture (WinCC OA), etc.);

9. Scalable event builder prototype;

10. Startup measurements.

4.2 Current achievements

At the time of writing of this paper, the following work has already been performed.

• A thorough exploration of user access options, which involved GUIs, CLIs, Dashboards,
and the Kubernetes API (study module 4);

• The CMS DAQ is utilizing high bandwidth RDMA devices [18–21], thus, an effort was
dedicated to investigation and prototyping with RDMA-based device access (RoCE) in
Kubernetes. Prototypes were able to successfully communicate through RDMA devices
(study modules 2 and 5);

• Various Kubernetes cluster networking approaches were evaluated. Prototypes with several
Container Network Interface (CNI) plugins such as flannel, Calico, and ipvlan [22] were
built (study module 5);

• Different software configuration techniques within pods, including custom scripting in
Python language as well as Helm [23] scripting were prototyped (study module 7);

• In the realm of monitoring, the deployment and testing of Elasticsearch and Opensearch
within the Kubernetes cluster were carried out to assess their viability for monitoring func-
tionalities (study modules 6 and 8);

• Multiple event building prototypes were designed and implemented to operate within a
Kubernetes cluster (study modules 1, 3, 6 and 9);

• Measurements of startup time (study modules 1 and 10). More details are available in
section 4.3.

4.3 Measurements

In the DAQ system, minimizing the periods of system downtime is of utmost importance.
Since there are situations where system reconfiguration or restart is necessary, this leads to a
requirement to minimize the startup time, and the current DAQ system is optimized for fast
startup [5] (by startup we mean the full restart of the system). Thus it is imperative for the
new design to also perform well in this regard. In this work we performed measurements of
system startup time. We considered the overall startup time to be the time interval from the
moment right before starting installation of necessary Kubernetes objects using Helm tool
until all the pods are ready to perform their function. Each pod running a single application,
had to connect with every other application in the Kubernetes cluster via RDMA semantics.
This interconnectivity is a typical requirement for an event building application. In addition,
we measured the time needed for intermediate steps during startup in order to determine
which steps are the most time consuming.

The measurements were performed on a Kubernetes cluster with 106 physical nodes
(these machines were used for event building task by CMS DAQ during LHC Run 2). Each
node was running a single pod. Required container images were pulled on each node be-
fore performing measurements. Each measurement was performed five times and the mean
value of the startup times was calculated. After each measurement, all the pods and all

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

T
im

e,
 s

Number of pods

pod scheduled
containers ready

app alive
pod connectable

app ready
app connected

Figure 2. Startup time measurements. Points in the plot signify mean values, while bars signify maxi-
mum and minimum values measured.

other measurement-related Kubernetes objects (e.g., services, configmaps, namespace) were
deleted before performing a new measurement.

The intermediate startup steps measured were the following: "pod scheduled" – all pods
are scheduled to run on required nodes, "containers ready" – all containers are created, ap-
plications are being started, "app alive" – the time needed to start a simplified application
without the requirement for interconnection, "pod connectable" – all DNS names required by
an application are resolved to IP addresses, "app ready" – application with full configuration
is successfully started, "app connected" - all required network connections specific to an ap-
plication to fulfill its function and inter-operate are established. The measurement results are
shown in figure 2.

We can see that the startup time does not grow drastically with the increase in number
of pods used in the experiment. The mean values of the different cumulative components of
startup time with the maximum number of pods (106) were the following: "pod scheduled" -
7.2 s, "containers ready" - 11.2 s, "app alive" - 11.2 s, "pod connectable" - 13 s, "app ready"
- 15.4 s and "app connected" - 17.8 s. For Kubernetes, it takes 7.2 s to schedule pods on all
106 nodes available in the cluster and it takes another 4 s to bring containers to the ready
state. In order to speedup the transition to the "pod connectable" state, we optimized the
DNS names resolution by using a custom script interrogating Kubernetes API. We can see
that after containers are ready it takes 1.8 s in each pod to resolve DNS names required to
access every other pod. After pods are connectable our test application starts on each single
pod in 2.4 s and it takes an additional 2.4 s for all applications to connect to each other in the
cluster.

The estimated number of CMS DAQ event builder nodes in Phase 2 is 200 [24], while our
measurements were performed on 106 nodes, also different hardware will be used in Phase 2.
Therefore additional measurements are needed to get conclusive results. However, 35 s was
considered an acceptable startup time for CMS DAQ during LHC Run 1 [5] and it is possible

that our measured 17.8 s for 106 nodes would translate into a comparable value with 35 s,
with the required number of nodes and the new hardware.

5 Conclusion and future work

Encouraging results were achieved so far. Containerization was shown to be an appealing
technology for DAQ applications as a replacement for a bare metal infrastructure. Con-
tainerization and orchestration solve most of the limitations experienced by running with a
traditional infrastructure. The approach fits well with distributed inter-communicating ap-
plications such as the event builder. No limitations of the approach were discovered during
the investigation of predefined objectives. Future work concerns unresolved study modules,
finalization of a working DAQ column from back-end electronics to HLT, repeating startup
measurements on the actual machines and network infrastructure that will be used by CMS
DAQ in Phase 2, whenever these resources will become available, and finally measuring the
performance of the actual event building in the real Phase 2 system.

References

[1] CMS, The Compact Muon Solenoid: technical proposal (CERN, Geneva, 1994), http:
//cds.cern.ch/record/290969

[2] The CMS Collaboration, Development of the CMS detector for the CERN LHC Run 3
(2023), CERN-EP-2023-136, submitted to JINST

[3] T.S. Pettersson, P. Lefèvre (LHC Study Group), The Large Hadron Collider: conceptual
design (1995), http://cds.cern.ch/record/291782

[4] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo,
T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan et al., Physics Letters B 716, 30 (2012)

[5] G. Bauer, U. Behrens, K. Biery, V. Boyer, J. Branson, E. Cano, H. Cheung, M. Ciganek,
S. Cittolin, J. Coarasa et al., Journal of Physics: Conference Series 219, 022003 (2010)

[6] System and service manager, https://systemd.io/, accessed: 2023-08-19
[7] H. Sakulin et al. (CMS), EPJ Web Conf. 214, 01015 (2019)
[8] G. Bauer, V. Boyer, J. Branson, A. Brett, E. Cano, A. Carboni, M. Ciganek, S. Cittolin,

V. O’dell, S. Erhan et al., Journal of Physics: Conference Series 119, 022010 (2008)
[9] L. Rice, Container security: fundamental technology concepts that protect container-

ized applications, 1st edn. (O’Reilly Media, Sebastopol, CA, 2020)
[10] Use containers to build, share and run your applications, https://www.docker.com/

resources/what-container/, accessed: 2023-08-19
[11] Open container initiative, https://opencontainers.org/, accessed: 2023-08-19
[12] D. Walsh, Podman in Action (Manning Publications, 2023)
[13] Production-grade container orchestration, https://kubernetes.io/, accessed:

2023-08-19
[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, ACM Queue 14, 70 (2016)
[15] B. Johansson, M. Rågberger, T. Nolte, A.V. Papadopoulos, Kubernetes Orchestration of

High Availability Distributed Control Systems, in 2022 IEEE International Conference
on Industrial Technology (ICIT) (2022), pp. 1–8

[16] A. Chazapis, C. Pinto, Y. Gkoufas, C. Kozanitis, A. Bilas, A Unified Storage Layer for
Supporting Distributed Workflows in Kubernetes, in Proceedings of the Workshop on
Challenges and Opportunities of Efficient and Performant Storage Systems (Association
for Computing Machinery, New York, NY, USA, 2021), CHEOPS ’21

[17] G. Bauer, T. Bawej, U. Behrens, J. Branson, O. Chaze, S. Cittolin, J.A. Coarasa, G.L.
Darlea, C. Deldicque, M. Dobson et al., Journal of Instrumentation 8, C12039 (2013)

[18] T. Shanley, J. Winkles, InfiniBand Network Architecture, Mindshare PC System Archi-
tecture (Addison-Wesley, 2003)

[19] M. Beck, M. Kagan, Performance evaluation of the RDMA over ethernet (RoCE) stan-
dard in enterprise data centers infrastructure, in Proceedings of the 3rd Workshop on
Data Center-Converged and Virtual Ethernet Switching (2011), pp. 9–15

[20] T. Bawej, U. Behrens, J. Branson, O. Chaze, S. Cittolin, G.L. Darlea, C. Deldicque,
M. Dobson, A. Dupont, S. Erhan et al., IEEE Transactions on Nuclear Science 62, 1099
(2015)

[21] T.A. Bawej, U. Behrens, J. Branson, O. Chaze, S. Cittolin, G.L. Darlea, C. Deldicque,
M. Dobson, A. Dupont, S. Erhan et al., Boosting Event Building Performance using
Infiniband FDR for CMS Upgrade (2014), https://cds.cern.ch/record/1712209

[22] The container network interface, https://www.cni.dev/, accessed: 2023-08-19
[23] Helm. The package manager for Kubernetes, https://helm.sh/, accessed: 2023-08-

19
[24] CMS Collaboration, The Phase-2 Upgrade of the CMS Data Acquisition and High Level

Trigger (2021), https://cds.cern.ch/record/2759072

