
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

1

RDataFrame enhancements for HEP analyses

E Guiraud1, J Blomer1, S Hageboeck2, A Naumann1, V E Padulano1,
E Tejedor1, S Wunsch1

1ROOT team, EP-SFT, CERN
2IT-SC-RD, CERN

E-mail: enrico.guiraud@cern.ch

Abstract. In recent years, RDataFrame, ROOT’s high-level interface for data analysis and
processing, has seen widespread adoption on the part of HEP physicists. Much of this success
is due to RDataFrame’s ergonomic programming model that enables the implementation of
common analysis tasks more easily than previous APIs, without compromising on application
performance. Nonetheless, RDataFrame’s interfaces have been further improved by the recent
addition of several major HEP-oriented features: in this contribution we will introduce for
instance a dedicated syntax to define systematic variations, per-data-sample call-backs useful
to define quantities that vary on a per-sample basis, simplifications of collection operations and
the injection of just-in-time-compiled Python functions in the optimized C++ event loop.

1. Introduction
RDataFrame ([1], [2]) is an efficient and ergonomic interface for HEP analysis tasks, in C++ and
Python. Thanks to its API inspired by declarative programming principles (users state what
results they want to obtain from a dataset, the system decides how computations are scheduled),
the same high-level programming model covers a large variety of use cases: from the production
of few histograms to thousands, from quick data exploration performed on a laptop to realistic
analysis applications on many-core machines ([3]), to distributed execution on a cluster ([4]).
Listing 1 presents a simple example usage.

Since its introduction in ROOT ([5]) in version 6.14, RDataFrame has seen widespread usage,
and with that usage came valuable user feedback. Physicists are applying RDataFrame to more
and more complex use cases, they employ it as the foundation for more specialized frameworks
(e.g. [6], [7]) as well as dataset-to-dataset transformation tools, and require seamless integration
of RDataFrame data processing with Python machine learning frameworks and other tools from
the Python data science ecosystem. In time, RDataFrame also became a user-friendly point of
entry to modern ROOT features (see Fig. 1). This was not a role that was initially foreseen for
this interface, and it provides additional requirements that are influencing its evolution.

This work discusses several novel RDataFrame features introduced in ROOT v6.26 that
address the most common user requirements emerging from recent feedback. Most notably, a
dedicated syntax to express systematic variations is introduced in Sec. 4: it enables physicists
to express systematics in an ergonomic fashion, without the burden of the related book-keeping,
while fitting naturally with the rest of the programming model.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

2

Figure 1. RDataFrame acts as a natural high-level entry point for many ROOT features,
including recent developments such as RNTuple ([8]) and SOFIE (a fast machine learning
inference engine, [9]).

ROOT.EnableImplicitMT() # enable multi-threading in ROOT

df = ROOT.RDataFrame(treeName="Events", filesList)

df = df.Filter("pts[abs(eta) < 1].size() > 0")

.Define("myVec", myFunctor(), ["pts"])

h = df.Histo1D("myVec")

write events that pass the Filter to a new tree (including column "myVec")

df.Snapshot("newtree", "newfile.root")

Listing 1: These few lines of Python code produce a skimmed dataset with an additional derived
quantity and a control plot in a single multi-thread event loop.

2. Definition of per-sample values
HEP analyses must often treat data pertaining to different data taking periods slightly
differently. Similarly, Monte Carlo samples might require different event weights than actual
data. At the same time, in order to reduce the size of the dataset, the metadata useful to
distinguish different samples is typically not part of the dataset itself, e.g. it might be stored in
a small, separate dataset distributed together with the main one.

One way to address these scenarios with RDataFrame is to build different computation graphs
for different samples: these graphs will look exceedingly similar, except for the nodes that need
to deal with these differences in treatment of different sample types. DefinePerSample solves
this problem more elegantly, enabling users to process different samples slightly differently in
the same computation graph. Just like a Define, this transformation creates a new logical
column holding the result of a user-defined callable invocation, with two important differences:
firstly, the input to the callable are not other dataset columns, but rather metadata information
regarding the sample being processed (e.g. the name of the tree, the file, the range of entries
being processed in the form of a RSampleInfo object); secondly, the callable is not invoked at
every event, but only once at the beginning of the processing of a new sample (e.g. when a single-
thread event loop switches files or when a new multi-thread task starts executing). This second
property makes DefinePerSample a useful tool also for injecting callbacks that can execute
less frequently than at every entry and that need information on the data being processed: for
example this is an appropriate hook for the injection of a progress bar display callback. Listing
2 shows an example invocation of DefinePerSample.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

3

df.DefinePerSample("weight", [](unsigned slot, const RDF::RSampleInfo &s) {

return s.Contains("MC") ? 0.5 : 1.; })

.Histo1D("value","weight");

Listing 2: This C++ code snippet defines different weights for Monte Carlo and data samples.

3. Column redefinition
RDataFrame was initially designed as a high-level interface to select events and perform data
reductions, but it soon became obvious that the programming model was flexible enough
to extend to other use cases, in particular dataset-to-dataset transformations such as skims
or dataset augmentations (e.g. addition of a derived column). In this context users might
need to apply corrections to some column values before writing out a modified dataset, but
RDataFrame made it unnecessarily cumbersome by completely disallowing column values from
being overwritten: a Define always creates a new column, with a different name.

The recently introduced Redefine method makes it possible to modify the value and/or type
of a column before further processing: this makes it easy to replace a single column in a large
dataset, perform quick tests for the response of a selection to the variation of variables, or apply
corrections to certain quantities, e.g. in specialized RDataFrame-based frameworks, before the
dataframe object is further passed down to users. Debug printouts can also be easily injected by
redefining the column as itself, with an identity function that performs a printout as a side-effect.
Listing 3 provides a usage example.

df.Redefine("x", [](double x) { return float(x); }, {"x"})

.Snapshot("tree", "newfile.root")

Listing 3: An example invocation of Redefine in C++ that reduces the precision of column “x”
and writes out a modified dataset.

4. Systematic variations
RDataFrame’s goal is to accompany HEP physicists from the stage of quick data exploration to
a full-blown, large-scale analysis performing complex computations and requiring a large amount
of computing resources. RDataFrame should make it possible to organically grow analysis code
step by step, introducing nuances and complexities incrementally, without large code refactorings
or changes of paradigm.

It is common for HEP analyses to eventually include the study of systematic variations.
Handling systematic variations in RDataFrame used to require a certain increase in the analysis
code complexity, mainly due to the tedious manual book-keeping required to keep track of the
different results belonging to different systematics.

From the standpoint of a HEP physicist, the study of systematic variations involves many
different, often conceptually complex cases. From the standpoint of the pure numerical
computation, however, what typically happens is that the application must produce multiple
results instead of a single one, each computed in a “universe” in which certain inputs take
modified values. Our challenge is therefore to a) offer a user-friendly user API that nevertheless
allows users to express most or all use cases for systematic variations present in HEP, and b)
transparently propagate the variations through the RDataFrame computation graph (including
event/object selections and the computation of derived quantities) in order to produce the varied
results. In doing so, it is highly desirable to avoid replicating the whole computation graph,
with its computations and the related I/O operations, for each separate “universe”.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

4

Starting from ROOT v6.26, RDataFrame provides a flexible syntax to define systematic
variations that aims to satisfy these requirements. Listing 4 showcases the feature, which involves
two new function calls: Vary lets users register varied values for one or more existing columns
(e.g. up/down variations for “pt” in the example), while VariationsFor transforms the single
“nominal” result into a dictionary-like object that contains results for each of the variations.
Note that all other RDataFrame code remains the same as for the nominal case, and the presence
of systematic variations is transparently propagated through Filter, Define and other calls.

auto nominal_hx =

df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", {"down", "up"})

.Filter("pt > k")

.Define("x", someFunc, {"pt"})

.Histo1D<float>("x");

// request the generation of varied results from the nominal

RResultMap<TH1D> hx = ROOT::RDF::VariationsFor(nominal_hx)

hx["nominal"].Draw()

hx["pt:down"].Draw("SAME")

hx["pt:up"].Draw("SAME")

Listing 4: An example usage of Vary and VariationsFor, in C++.

Some aspects of this interface will be improved with the help of a first round of user feedback;
in particular, we expect to be able to further simplify the definition of simultaneous variations
so that the explicit construction of nested arrays can be avoided in the most common cases.

4.1. Performance measurements
A dedicated syntax to express systematic variations not only simplifies user code, but by giving
RDataFrame semantic information about user intention it allows certain optimizations in the
construction of its computation graph. This results in less overhead during the event loop, as
we can see from Fig. 2. The benchmark did not involve any disk I/O (entries were generated
on the fly by RDataFrame, and consisted of a single floating point number) and it consisted
in filling one or more histograms for the nominal case and multiple variations. We compare
the performance of this task without using Vary (which requires defining varied columns with
Define and booking the corresponding histograms in a for loop) and with Vary. The new syntax
offers a significant performance boost for the heavier use cases (B. and C. in the figure) and it
results in a small penalty when only one histogram with an up/down variation is filled.

5. Injecting Python functions into a C++ event loop via Numba
Python is increasingly relevant for the HEP community, and particularly so in the area
of analysis. RDataFrame, like all of ROOT, offers dynamically generated Python bindings
via PyROOT ([10]), while its internal event loop remains in C++: this offers greater
opportunities for performance optimizations and allows multi-thread parallelism that would
be more complicated in Python due to its Global Interpreter Lock (the GIL). At the same time,
the Python ecosystem has developed tools to generate efficient machine code from Python code
to speed up numerical applications; the most interesting such tool for our purposes is Numba
([11]), which is able to compile Python functions (that restrict themselves to use a specific
subset of the language) to optimized machine code. Numba can transform Python functions in
compiled functions accessible as C function pointers that can be made known to ROOT’s C++
interpreter, Cling. The result is that RDataFrame can call these compiled Python functions from

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

5

A B C
0

5

10

15

20

25

30

R
u
n
ti
m
e

without Vary

with Vary

Systematic variations performance, with/without Vary

Figure 2. Runtimes for RDataFrame event loops for three different scenarios: A. 100M events,
1 histogram produced, 2 variations (nominal, up, down histograms filled). B. 10M events, 1
nominal histogram, 100 variations (101 histograms filled). C 100k events, 20 nominal histograms,
100 variations (2k histograms filled).

the C++ event loop without fear of the GIL. With this system it is also possible to use array
columns, that RDataFrame exposes as the RVec type, as Numpy arrays in Python functions,
with no copies in between: the Numpy arrays will be initialized to act as a view on the contents
of the RVec. Listing 5 shows how this looks in practice.

@ROOT.Numba.Declare(["RVecD","RVecD"], "RVecD")

def good_pts(pts, etas):

return pts[np.abs(etas) < 1]

df.Define("good_pts", "Numba::good_pts(pts, etas)")

Listing 5: Through Numba.Declare, the good pts Python function is declared to Cling as a C
function and can be used in RDataFrame as usual.

Most of the boilerplate code above could be generated automatically by RDataFrame,
including the input and output types of the columns involved; therefore, in the future we expect
to be able to simplify the API so that the code above will soon just be:

df.Redefine("pts", lambda pts, etas: pts[np.abs(etas) < 1])

6. Conclusions
RDataFrame keeps improving to simplify the life of HEP physicists, thanks to valuable feedback
from the user community. Future work will introduce further enhancements, some of which are
outlined in this work, as well as performance optimizations of the data handling in the inner
event loop and more Pythonic interfaces for common use cases.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012116

IOP Publishing
doi:10.1088/1742-6596/2438/1/012116

6

References
[1] Guiraud E, Naumann A and Piparo D 2017 TDataFrame: functional chains for ROOT data analyses (v1.0),

Zenodo, https://doi.org/10.5281/zenodo.260230
[2] Piparo D, Canal P, Guiraud E, Pla XV, Ganis G, Amadio G, Naumann A and Tejedor E. 2018 RDataFrame:

Easy Parallel ROOT Analysis at 100 Threads, EPJ Web of Conferences 2019, Vol. 214, p. 06029 EDP
Sciences.

[3] Manca E Precision measurements of W detected at CMS Doctoral dissertation, Universita & INFN Pisa (IT)
[4] Padulano V E, Villanueva J C, Guiraud E and Saavedra E T Distributed data analysis with ROOT

RDataFrame EPJ Web of Conferences 2020 EDP Sciences Vol. 245, p. 03009
[5] Brun R and Rademakers F 1996 ROOT - An Object Oriented Data Analysis Framework, Proceedings

AIHENP’96 Workshop, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
[6] David P Readable and efficient HEP data analysis with bamboo EPJ Web of Conferences 2021 EDP Sciences

Vol. 251, p. 03052
[7] CROWN framework by KIT-CMS, https://github.com/KIT-CMS/CROWN
[8] Blomer J, Canal P, Naumann A and Piparo D Evolution of the ROOT Tree I/O EPJ Web of Conferences

2020 EDP Sciences, Vol. 245, p. 02030
[9] An S and Moneta L. C++ Code Generation for Fast Inference of Deep Learning Models in ROOT/TMVA

EPJ Web of Conferences 2021 EDP Sciences Vol. 251, p. 03040
[10] Galli M, Tejedor E and Wunsch S. A new PyROOT: Modern, interoperable and more pythonic. EPJ Web

of Conferences 2020 EDP Sciences, Vol. 245, p. 06004
[11] Lam S K et al., DOI 10.5281/zenodo.4343230

