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Abstract.

High-frequency financial market data is conceptually distinct from high energy physics
(HEP) data. Market data is a time series generated by market participants, while HEP data
is a set of independent events generated by collisions between particles. However, there are
similarities within the data structure and required tools for data analysis, and both fields share
a similar set of problems facing the increasing size of data generated. This paper describes some
of the core concepts of financial markets, discusses the data similarities and differences with
HEP, and provides an implementation to use ROOT, an open-source data analysis framework
in HEP, with financial market data. This implementation makes it possible to take advantage
of the rich set of features available in ROOT and extends research in finance.

1. Introduction

Similar to research in high-energy physics (HEP), the size of datasets used in finance research
has increased over time. For example, the New York Stock Exchange (NYSE) produces 2TB
of data per day, consisting of 75 billion market events [1]. This is significantly smaller but still
comparable with the LHC, which produces 250TB of compressed data per day [2].

However, while in HEP there is a clear dominant framework for data analysis, namely ROOT
(an open-source data analysis framework) [3], this is not the case in finance. Datasets are
often stored in CSV (Comma-Separate Value) files, and processed using different programming
languages like Python, R, and MATLAB. This generates an obstacle when scaling existing
research beyond the limitations of personal computers. Larger datasets, like high-frequency
market data mentioned above, are often stored and analysed using custom solutions. While
massively increasing the capabilities of such custom systems, it also slows down research. That
is, a custom solution requires more time to develop, and more support and explanation to
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Level Price Volume

1 $54.50 3

3 $54.00 5
Ask $53.50 6

1 $53.00 12

Spread

1 $49.00 14

2 $48.00 9
Bid 3 $47.50 38

4 $47.00 15

Table 1: A limit order book (LOB) example, showing the top 4 levels of the LOB.

reproduce. In addition, it makes reproducing existing work troublesome due to possible bugs or
differences in implementation [4].

This paper describes the similarities and differences of data between HEP and finance and
introduces an extension to ROOT, which can store and analyse high-frequency market data,
with the goal of increasing reproducibility and facilitating the research on larger datasets. In
addition, the collaboration between physics and finance research allows for the exchange of
existing techniques in their respective fields, and yields cross-fertilisation and new insights for
novel research. One of the results of this collaboration is shown in this paper; the extension of
ROOT to process time-series data.

This study is structured as follows. Section 2 describes some of the core structures of a
financial market, and what kind of data this generates. Section 3 discusses the similarities and
overlapping problems between finance and HEP data. Section 4 describes the new extension
built on top of the ROOT framework and shows some example use cases on how to analyse
high-frequency data using ROOT. Section 5 further discusses some of the differences between
finance and HEP data that can interfere with future research.

2. Financial markets and the limit order book
Nowadays, financial markets’ trading platforms are predominantly electronic. These platforms
showcase, among others, the limit order book (LOB): a computerised system of all available
demand - the bid side - and supply - the ask side - for securities and financial instruments at a
specific time. All market participants can submit orders to this platform with specifications, e.g.
whether they wish to buy or sell, the associated price, and the quantity they want to buy or sell
[5]. The following two main types of orders can be submitted to the LOB: market orders and
limit orders. Market orders are immediately executed against the best bid or ask price. They
consume volume from the LOB and are placed by traders who immediately accept the market
price [6]. Limit orders rest in the LOB and are executed at a defined limit or at a better price.
They provide volume to the LOB and are placed by traders who can wait for their order to be
executed [6]. Generally, limit orders are much more numerous than market orders [7]. Although
market and limit orders are the main type of orders, variations exist. For example, limit orders
can be (partially) hidden (i.e. hidden or iceberg orders), and market orders can include special
conditions such as whether to execute the volume completely or not at all (fill-or-kill) [8].
Table 1 presents an example of the LOB. The LOB consists of the bid and ask side. The bid
(ask) side contains all buy (sell) limit orders and is organised in descending (ascending) price
order. The first, or best, level on either side is the highest price someone is willing to buy for
(the bid side) and the lowest price someone is willing to sell for (the ask side). The difference
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between the best bid and best ask level is called the bid-ask spread. A narrower bid-ask spread
indicates that traders are closer to agreeing on a price. A trade occurs when traders agree on a
price, and volume is removed from the LOB.

Financial markets have different designs and rules - also called the market microstructure -
depending on the type of market. For example, markets have different tick sizes (i.e. minimum
allowable price change), position limits (i.e. maximum stocks/contracts you may own) and a
daily maximum or minimum price fluctuation (e.g. circuit breakers and price limits). In the last
decade, new market participants emerged due to the digitalisation of trading platforms. Apart
from humans entering orders manually, it became possible for computers, or trading algorithms,
to trade automatically in markets. The latter are often classified as high-frequency traders, as
they trade in milliseconds [9]. In addition, regulation changed, as digitalisation also allows, for
example, for different manipulation schemes.

LOBs create two main types of data, each containing messages that the exchange receives:
LOB data and order data. LOB data consists of modifications to the LOB, often stamped at the
millisecond or nanosecond time-resolution. Messages contain information on LOB levels that
change, i.e. when a new price level is added to the LOB, when a price level is removed from
the LOB and when volume on an existing price level changes. These messages can be used to
reconstruct the state of the LOB at any time. LOB data messages show the aggregated effect
of individual orders. In other words, when two traders add volume at the exact same time and
price level, the exchange receives one message with the aggregated volume change in the LOB.
Order data, on the other hand, consists of messages related to individual orders. Using the
aforementioned example, the exchange would receive two messages: one for each trader with
their specifics. Hence, each individual action of a trader results in a message. Aggregating all
these individual orders also allows for the reconstruction of the LOB [10]. Both LOB and order
data have specific trade messages when a trade occurs in the market, and both datasets have
significantly increased over time. To illustrate, one day of message data was similar to 30 years
of daily data at the start of this century [11], but the size of message data increased tenfold ten
years later [12].

3. Similarities and Differences between HEP and Finance Data

Data from high-frequency finance, more precisely message-based market data as described in
section 2, and data from HEP are generated by completely different processes and grounded in
different domains. Market messages are a sequence of events forming a time series, while HEP
consists of individual events, where each event is a collision. On the face of it, they could not
be any different.

However, we draw similarities between the required tools for these two data types. Each entry
(i.e. a collision of particles or a state of the LOB) is variable in size and shape, for example,
the more limit orders are placed by traders, the more levels are in the LOB. Similarly, the more
collisions occur in a beam of particles, the more information is recorded by the sensors. This
inconsistency of the data size of an entry makes simple tabular storage solutions unpractical.
ROQT, however, is not only accommodated to handle this kind of data but also built to maintain
high performance while analysing a subset of the data.

Furthermore, there are other qualities of ROOT concerning market data. As described in
the introduction, existing work in finance is often limited by the underlying data structures and
algorithms of available libraries. ROOT, however, is scalable, can use parallelism implicitly, and
does not require storing all data in memory at once while iterating or processing. It also avoids
any of the existing aforementioned problems and thus paves the way for further research.
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TimeFrame<LOB, Message> timeFrame;
timeFrame . add (messages );
timeFrame.setStatelnitializer ([&](int id)

{
1)

timeFrame.setStateUpdater ([](
int id, TimeNS time, LOB& lob, const Message& message)

return LOB();

{
lob.update (time, message);
1
timeFrame.setForEachSnapshot (T_-Second * 10, [](
TimeNS time, const LOB& lob)
{
// Use the limit order book object for the analysis
1)

timeFrame.run ();

Listing 1: A snippet of the C++4 code showing how to use the extension to reconstruct the
LOB and resample the time series into a fixed interval of 10 seconds, i.e. making snapshots.

4. Implementation

This section describes the implementation of the extension built on top of ROOT. The extension
(1) contains the basic tools to reconstruct the LOB based on a time series of order messages; (2)
makes it possible to resample the market messages, which are spaced irregularly in time, into
a fixed interval time series (also called 'making snapshots’, i.e. taking a snapshot of the state
of the LOB at regular time intervals); and (3) contains a collection system to convert a single
long time series in a set of smaller time series. These three components make it possible to
apply the vast set of tools within ROOT, like RooFit and TMVA [3], to time series data. The
implementation, including two examples, can be found found as a GitHub repository [13].

4.1. Reconstruction and resampling

Listing 1 shows how to reconstruct the LOB while iterating over the messages. The function
setStateInitializer sets a lambda function that defines how to initiate the LOB upon
processing the first message corresponding to that LOB, and setStateUpdater sets a lambda
function that defines how each following message updates the state of the LOB. The Message
and the LOB object are templated, thus allowing similar functionality in different domains. Next,
the setForEachSnapshot function sets a lambda function that contains the main processing or
analysis, this lambda is called for each LOB and each snapshot. In the example listing 1, a
resampling period (also known as a snapshot length) of 10 seconds is chosen. The type TimeNS
is used to represent a date-time object using nanoseconds since an epoch, with T_Second as
a constant. Finally, the function run is called, which initiates the event loop, and starts the
analysis. This component was recently used in related work to build a novel visualisation of the
LOB over a period of time [14]. The use of ROOT and the proposed extension was instrumental
in storing and reconstructing the large data volume received from the financial exchange. It
made it possible to visualise unseen details in high-resolution market data.

4.2. The collection system

The collection system is designed to transform a single time series into a set of smaller time
series. For example, consider a researcher interested in studying trades occurring in a specific
market. This researcher does not need all LOB data, only subsets containing time windows
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Trigger lambda

L oL e o f e

l::> Action lambda
Figure 1: The conceptual diagram of the collection system. The trigger lambda selects messages

in the time series, here shown from M1 (message 1) to M12. M3, M5, M9 are selected, and set
as the centre of the three newly generated time series, yielding a dataset of size three.

// Initialise timeFrame similar as listing 1.
timeFrame.setTrigger ([&](int id, TimeNS time, const Message& message)

{
// Return true if trigger message

1)

timeFrame.setAction(—T_Minute, T_Minute, [&](
int id, TimeNS time, const Message& triggerMessage ,
const std::list <std:: pair<TimeNS, Message>>& msgs)

// Process extracted time series

)i

timeFrame.run ();

Listing 2: A snippet of the C++ code showing how to use the collection system of the extension
to transform a single time series into a set of time series, in line with the diagram in figure 1.

surrounding trades. Hence, the single long LOB time series can be transformed by the collection
system into a set of smaller time series only containing the trades of interest. If each of these
smaller time series is considered as an entry in the transformed dataset, i.e. a high dimensional
encoding for a time series, then the standard methods from ROOT, which are designed to work
with non-time series data, can be used. This increases the number of statistical tools available
and makes it possible for new research. For example, one of our current working papers uses
the collection system to extend the research from Degryse et al. [15].

The collection system iterates over a time series and selects events that pass a filter
(e.g. a trade), hereafter named the trigger, or the trigger lambda if referring to the C++
implementation. If the trigger selects an event, a small time series is extracted, starting at
a predefined number of time steps before the trigger and ending at a predefined number of time
steps after the trigger. This smaller time series is then considered an entry in the new dataset.
Figure 1 shows a conceptual diagram of this system.

Listing 2 shows how to run the collection system using the extension on ROOT. First,
the timeFrame object should be initialised with setStateInitializer and setStateUpdater,
similarly as in listing 1; this is omitted in this example. Next, the setTrigger function sets a
lambda function, which is called for each entry in the time series, and should return true if that
entry is a trigger (i.e. selected). In addition, the setAction function sets a lambda function,
which is called for each sub-time-series generated. Lastly, the run function is called to run the
event loop.
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5. Discussion

As shown in subsections 4.1 and 4.2, the implementation is modular and reusable, more details
can be accessed from the previously mentioned GitHub repository [13]. In addition, this study
shows the flexibility of ROOT by being adaptable to other fields of study.

However, time series analysis still creates challenges, independent of the data analysis
framework used. The statistical properties of data points are different. In HEP, every entry is
ii.d. (independent and identically distributed), while in time series data, every data point is
dependent on every foregoing data point. This generates challenges when applying the standard
tools (e.g. the statistical methods in RooFit) to finance data.

This challenge surfaces in the collection system presented in this work; it can convert a single
time series into a set of individual smaller time series, thus generating a new dataset where
each entry is a time series. However, the entries in this generated dataset are not i.i.d., since
they are based on the underlying time series, and thus not all statistical methods of ROOT are
applicable. This means that the researcher has to carefully consider the chosen methods and
verify their suitability.

6. Conclusion
The proposed extension built on top of ROOT makes it possible to analyse high-frequency market
data and other time-series data in general. It leverages the performance and optimisation of
ROQT to process large volumes of data, while also decreasing the development time and the
required analysis time. These advancements are required to extend the statistical power of
future research.

The core components of this extension are a general-purpose method to reconstruct an object
(e.g. a limit order book) while iterating over a time series (e.g. a sequence of messages), a
resampling method to convert irregularly spaced time steps into regularly spaced time steps,
and a collection system to convert a single time series into a set of individual data points.
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