
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012097

IOP Publishing
doi:10.1088/1742-6596/2438/1/012097

1

Leveraging HPC resources with distributed

RDataFrame

V. E. Padulano1,2, I. D. Kabadzhov1,3, E. T. Saavedra1 and E.
Guiraud1

1 ROOT team, EP-SFT, CERN
2 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València
3 Faculty of Engineering, Albert Ludwig University of Freiburg

E-mail: vincenzo.eduardo.padulano@cern.ch, ivan.donchev.kabadzhov@cern.ch,

enric.tejedor.saavedra@cern.ch, enrico.guiraud@cern.ch

Abstract. The declarative approach to data analysis provides high-level abstractions for
users to operate on their datasets in a much more ergonomic fashion compared to imperative
interfaces. ROOT offers such a tool with RDataFrame, which has been tested in production
environments and used in real-world analyses with optimal results. Its programming model acts
by creating a computation graph with the operations issued by the user and executing it lazily
only when the final results are queried. It has always been oriented towards parallelisation,
with native support for multi-thread execution on a single machine. Recently, RDataFrame has
been extended with a Python layer that is capable of steering and executing the RDataFrame
computation graph over a set of distributed resources. In addition, such a layer requires minimal
code changes for an RDataFrame application to run distributedly. The new tool effectively allows
running a C++ event loop based on RDataFrame while leveraging common industry tools like
Dask to schedule the usage of resources. This work presents results and insights gathered
through the distributed RDataFrame tool running a physics analysis connecting multiple nodes
with a Dask scheduler that requests resources from a Slurm cluster.

1. Introduction
The Large Hadron Collider (LHC) at CERN has generated an unprecedented amount of data
over the course of its first two active periods (also called “runs”). The next active period, Run
3, is about to begin and it will be immediately followed by a major hardware upgrade (named
HL-LHC[1]) that will in turn start generating data in 2027. With each run, the collider is
fine-tuned and more events are generated. HL-LHC is foreseen to generate roughly thirty times
more data than the LHC has produced so far. Given the available future budget estimations
and expected technological evolution [2], collaborations in the HEP community would benefit
from improvements on the software.

The information of the physics events happening in the accelerator is usually kept in large
storage facilities and follows a specific skimming pipeline, so that the groups of researchers
can access datasets in a well-defined format. This common format is implemented within the
ROOT [3] software framework. It is a columnar layout that allows writing to disk any kind of
structure, from scalar values to arbitrarily complex objects. ROOT has become the de facto
standard for data I/O, processing and visualisation in this field.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012097

IOP Publishing
doi:10.1088/1742-6596/2438/1/012097

2

The high amount of data collected by the LHC experiments has made distributed computing
a staple in HEP data processing workflows for a long time, with the WLCG [4] being the prime
example of efforts in that direction. With the challenges ahead, it will be crucial to make the
most out of current and future infrastructure. In this regard, distributed computing will need
to be further explored with new approaches that allow making best use of available computing
resources while providing an ergonomic interface for final users [5].

In this context, ROOT RDataFrame [6] provides a high-level programming model to define
analyses in terms of a computation graph that can be parallelised to run both on a multi-core
machine and a set of distributed resources. This second option enables for example submitting
RDataFrame applications through multiple tasks in a distributed execution engine [7].

In this work, an RDataFrame application is distributed over a cluster of HPC resources at
CERN. The specifics of connecting the interactive execution engine to the batch system that
manages cluster resources are described. A physics analysis benchmark is parallelised on more
than one thousand cores, in order to evaluate the performance and scalability of the tool.

2. Methodology
The user workflow in a distributed RDataFrame application is not different from its local
counterpart and usually follows three steps:

(i) The application begins by constructing a distributed RDataFrame from a dataset (e.g. the
path to the dataset file(s)) and some object that represents the connection to a computing
cluster. The type of the latter changes depending on the distributed backend, when using
Dask this is called “client”.

(ii) The dataset can be then transformed, e.g. by applying filters for unimportant events or
creating new columns needed for further operations. When the relevant information is
present in the data frame, it can be queried to retrieve important statistics and results of
the analysis (the most common kind of result produced by HEP analyses is a histogram of
one or more column values). All these calls to the RDataFrame API are lazy, both locally
and in distributed mode.

(iii) The execution of the analysis is triggered the first time the user requests any of the results
(e.g. when they plot a histogram for the first time). In distributed mode, this triggers calls
to the underlying distributed scheduler that send tasks to the nodes of the cluster. When
the distributed computations are finished, the final merged result is sent back to the user.
Merging all partial results coming from the different tasks is done transparently by the tool,
as opposed to being a responsibility of the user like in the past.

At the time of writing, this tool supports two distributed execution engines, namely Spark [8]
and Dask [9], and its design allows to accommodate even more engines in the future. For the
purposes of the tests run in this work, the Dask backend was used to connect to a job queuing
system acting as resource manager of a cluster at CERN. In general, distributed Dask library
allows to coordinate multiple bare-metal machines either manually, by starting the scheduler
service on one node and the worker services on all other nodes, or automatically, by means of
spawning the mentioned services through, for example, an SSH connection between the nodes.
For the specific use case of HEP distributed computing, resources are most often managed by
batch systems; for this situation, the dask-jobqueue library [10] offers a series of plugins to
interface the scheduling capabilities of Dask with job queuing systems. In particular, this work
has made use of the SLURMCluster class to spawn a Dask cluster on a set of nodes reserved
through Slurm [11]. This is shown in Listing 1. For any given test run, the analysis is repeated
three times (see line 25 of the listing).



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012097

IOP Publishing
doi:10.1088/1742-6596/2438/1/012097

3

1 from dask_jobqueue import SLURMCluster

2 # This declares the connection to the Slurm cluster ,

3 # No jobs are launched yet

4 cluster = SLURMCluster(memory=f’{4* NCORES}g’,

5 processes=NCORES ,

6 cores=NCORES ,

7 queue=’photon ’)

8

9 # Use the scale method to send as many jobs as needed

10 cluster.scale(NJOBS)

11

12 from dask.distributed import Client

13 # Create Dask client from cluster to establish connection between

14 # the cluster and the python application

15 client = Client(cluster)

16

17 # Wait for the workers before starting the analysis

18 client.wait_for_workers(NJOBS)

19

20 # Provide Dask client to RDF constructor

21 import ROOT

22 RDataFrame = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame

23 if __name__ == ’__main__ ’:

24 df = RDataFrame(’treename ’, ’file.root’,

25 daskclient = client , npartitions = NPARTITIONS)

26 for i in range(NRUNS):

27 run_analysis(df)

Listing 1. Example of distributed RDataFrame analysis using Dask to connect to a Slurm
cluster. Specific information like number of cores or nodes used in the benchmark is omitted
since it changes depending on the test run.

3. Experiments
The benchmark described in Section 2 is run through the Dask interface connecting to an HPC
cluster at CERN. Each node has a 2x AMD EPYC 7302 16-Core Processor (total of 32 physical
cores, no hyper-threading), 512GB DDR4 3200Mhz memory, and Infiniband 100Gbps network.
The test is performed with a varying amount of nodes of the cluster, from one to thirty-two
(from 32 to 1024 cores). The number of tasks sent to the distributed scheduler is fixed to 4096,
that corresponds to 4 tasks per core in the benchmark run with the highest core count. Each
task will be assigned its own chunk of the original dataset, so that two different tasks always
process different parts of the dataset. The original dataset used in this analysis is made of one
file that contains physics events recorded by the CMS experiment at CERN in 2012, currently
published as open data [12]. For our purposes, in order to simulate a large-scale workload, the
original dataset was replicated four thousand times to reach more than 246 billion events and
almost 9 TB of data.

At runtime, the connection to the Dask cluster is initialised as shown in Listing 1. Before
starting the analysis, the application waits for all the jobs to start so the requested cluster
resources are ready for processing. The time between the actual trigger of the computations and
the moment the client application receives back the final results from the distributed resources
is often called “time to plot”. This is what is being measured and reported in what follows.
While running the analysis, the workers read data from local storage. Code for the benchmarks
is available in a public repository [13].

A first notable discovery is that for lower amount of cores, the benchmark fills up the memory
of the nodes completely and cannot run until completion. This is due to a overhead present in



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012097

IOP Publishing
doi:10.1088/1742-6596/2438/1/012097

4

each task, that needs to just-in-time (JIT) compile the RDataFrame C++ computation graph
that needs to be executed on the assigned portion of the input dataset. Each task thus has a
memory footprint and since there are always 4096 tasks, this becomes too great of a burden
when too few nodes are available. This is the reason why Figure 1 presents the increase in
processing throughput of the benchmark starting at 128 cores. By looking at the same image,
a few more interesting insights can be obtained. For example, two lines can be seen in the plot:
a red one, consistently on top, labeled “hot run”; and a blue one, consistently below the red
one, labeled “cold run”. The blue line represents the first analysis run of each test, that always
reports a higher runtime overall. It has been discovered that this happens because the newly
created Dask workers incur an initialization cost in importing the ROOT module and initialising
the JIT compiler engine. Consecutive analysis runs that happen within the same Dask cluster
do not suffer from this, thus they run faster and they are represented by the red line in the
plot. Irrespective of this difference, both lines show that the distributed RDataFrame tool is
able to properly scale with an increasing amount of cores available, reaching a peak processing
throughput of 52 GB/s.

Figure 1. Processing throughput (GB/s) per core of a hot and a cold run of DistRDF, using
the Dask backend, on an HPC cluster

4. Conclusions
The future challenges in HEP analysis require solutions that are scalable both in terms of
programming model and resource usage. This work has shown how the distributed RDataFrame
extension leverages an established modern analysis interface to steer computations to more than
a thousand cores, obtaining a very good speedup with a peak of more than 50 GB/s. A few key
insights have defined the next steps in further improving the performance of the tool, that will
benefit in the future from a decreased JIT overhead in the distributed tasks.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012097

IOP Publishing
doi:10.1088/1742-6596/2438/1/012097

5

References
[1] Apollinari G, Béjar Alonso I, Brüning O, Fessia P, Lamont M, Rossi L and Tavian L 2017

High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1 Tech.
rep.

[2] Elsen E 2019 Comput Softw Big Sci 16

[3] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389 81–86
ISSN 0168-9002 New Computing Techniques in Physics Research V

[4] Bird I 2011 Annual Review of Nuclear and Particle Science 61 99–118

[5] ROOT Team, Brann K A, Amadio G, An S, Bellenot B, Blomer J, Canal P, Couet O,
Galli M, Guiraud E, Hageboeck S, Linev S, Vila P M, Moneta L, Naumann A, Tadel A M,
Padulano V E, Rademakers F, Shadura O, Tadel M, Saavedra E T, Pla X V, Vassilev V
and Wunsch S 2020 Software challenges for hl-lhc data analysis (Preprint 2004.07675)

[6] Piparo D, Canal P, Guiraud E, Valls Pla X, Ganis G, Amadio G, Naumann A and
Tejedor Saavedra E 2019 EPJ Web Conf. 214 06029

[7] Padulano V E, Cervantes Villanueva J, Guiraud E and Tejedor Saavedra E 2020 EPJ Web
Conf. 245 03009

[8] Zaharia M, Xin R S, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J,
Venkataraman S, Franklin M J, Ghodsi A, Gonzalez J, Shenker S and Stoica I 2016
Commun. ACM 59 56–65 ISSN 0001-0782 URL https://doi.org/10.1145/2934664

[9] Rocklin M 2015 Proceedings of the 14th Python in Science Conference ed Huff K and
Bergstra J pp 130 – 136

[10] Dask Team dask-jobqueue library documentation Accessed on: 2022-02-12 URL http:

//jobqueue.dask.org/en/latest/

[11] Jette M, Dunlap C, Garlick J and Grondona M 2002 URL https://www.osti.gov/biblio/

15002962

[12] Wunsch S 2019 Analysis of the di-muon spectrum using data from the CMS detector taken
in 2012 URL http://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ

[13] Ivan Donchev Kabadzhov 2022 Repository of benchmarks with distributed RDataFrame,
Dask and Slurm URL https://github.com/ikabadzhov/DistRDF_benchmarks/tree/

Slurm_Setup

2004.07675
https://doi.org/10.1145/2934664
http://jobqueue.dask.org/en/latest/
http://jobqueue.dask.org/en/latest/
https://www.osti.gov/biblio/15002962
https://www.osti.gov/biblio/15002962
http://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
https://github.com/ikabadzhov/DistRDF_benchmarks/tree/Slurm_Setup
https://github.com/ikabadzhov/DistRDF_benchmarks/tree/Slurm_Setup

