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Abstract. In the domain of high-energy physics (HEP), general-purpose query languages have
found little adoption in analysis. This is surprising regarding SQL-based systems, as HEP data
analysis matches SQL’s processing model well: the data is fully structured and makes use of
predominantly standard operators. To better understand the situation, we select six general-
purpose query engines, from both the SQL and NoSQL domain, and analyze their performance,
scalability, and usability in HEP analysis, employing standard HEP tools as baseline. We also
identify a set of core language features needed to support HEP data analysis. Our results reveal
an interesting and complex picture: several query languages provide a rich and natural query
development experience, while others fall short. In terms of performance, our results reveal that
many of the database systems are one or two orders of magnitude slower than the standard HEP
analysis tools, while others manage to scale and perform well. These conclusions suggest that
while the existing data processing systems are viable candidates for HEP analysis, there is still
work to be done to improve their performance and ability to succinctly express HEP queries.

1. Introduction
In spite of the well-known advantages of modern-day data processing systems (data
independence, declarative languages, etc.), such systems have seen little adoption in the HEP
community for analysis use-cases. Instead, the HEP community mostly relies on a domain-
specific system called ROOT [1, 2] and, more recently, its novel RDataFrames API [3]. While
ROOT has indeed seen widespread adoption, its design ties together the storage format and
the file system, the in-memory runtime format, the execution strategy, the target platform, and
even the visualization. Such dependencies inhibit the development of parts of the system without
affecting seemingly unrelated components, and make it difficult to transparently optimize queries
at runtime — similarly to query plan optimizations carried out in databases, which are enabled
by declarative languages.

Highly processed datasets, as predominantly used in HEP analyses, are always fully-
structured and represent events as rows. Each event contains both scalar attributes and
attributes that store relatively large sequences of values. The latter attribute type denormalizes
the data into non-first normal form (NF2). Such a data representation was one of the reasons
why SQL-based query engines initially found little adoption in the HEP community for analysis
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use-cases —in addition to the lack of support for User-Defined Functions (UDF) [4]—, as early
engines did not provide support for nested data types. The database community has since made
major strides, and many relational database systems provide mature support for processing
nested attributes and defining custom user logic. Moreover, several NoSQL solutions are now
available, which provide flexible data models as well as powerful and intuitive querying languages.

To test whether these new systems are viable solutions for HEP data processing, in terms
of both performance, scalability, and querying languages, we evaluate six general-purpose
querying engines using RDataFrames as the baseline. For the study, we employ the Analysis
Description Languages (ADL) benchmark [5]. We choose two cloud-based Query-as-a-Serivce
(QaaS) systems: BigQuery [6] and Amazon Athena [7], and four self-hosted systems: Presto [8],
Postgres [9], RumbleDB [10], and AsterixDB [11]. The former two are representatives of
conventional database systems, while the latter two represent document-oriented systems. Note
that Athena is a fork of Presto, but the two systems have significant differences. BigQuery,
Athena, Presto, and Postgres each implement an SQL dialect stemming from the SQL standard.
RumbleDB implements the JSONiq query language [12]. AsterixDB implements SQL++ [13],
an SQL-inspired query language designed to support queries on semi-structured data.

We structure our paper as follows: We briefly discuss the benchmark and its queries in
Section 2. We discuss some of the important query patterns as well as their applicability in
the various systems we choose in Section 3. We study the performance and scalability of the
chosen systems in Section 4, present related work in Section 5, and finally provide our concluding
remarks and future work in Section 6.

For the full and detailed analysis and evaluation results, the reader can consult the extended
version of this abstract [14].

2. Dataset and queries
The ADL benchmark consists of eight high-level query descriptions, representative of HEP data
analysis. The benchmark is designed in order to understand the suitability of systems for HEP
analyses, and guide the development of the next generation of HEP tools. The ADL dataset
consists of roughly 54 million events obtained from the Compact Muon Solenoid (CMS) 2012
experiment [15]. A full description of the queries and the dataset is available at [5, 14]. Our
query implementations are all open source [5, 16]. The dataset is originally in ROOT format
and is approximately 17 GiB in size. We use the benchmark at version v0.1. As no system,
apart from RDataFrames, can natively read the ROOT format, we convert the data to Parquet,
as it offers a similar compression ratio and accurate data representation to ROOT. We use the
Parquet version for those systems that cannot read ROOT.

ROOT represents the fields of structures and arrays as individual columns both physically and
logically. In contrast, in the Parquet version, we choose to represent the structures and arrays
logically together, while storing them column-wise physically. This provides a more natural view
of the data to the practitioner, making querying more intuitive, with no compromise regarding
storage format and performance.

3. Query patterns
We briefly discuss some of the main patterns that occur frequently in the ADL queries. For
brevity reasons, we omit many of the details and the code examples shown in the full work [14].

3.1. Accessing and creating nested structures
Accessing and creating nested structures is a critical part of HEP queries. It allows practitioners
to combine atomic attributes (e.g., pT , η, ϕ, etc.) into logical structures (e.g., an object
representing a muon) that make querying easier. Listing 1 shows the main ways of creating
structs in the studied systems. RDataFrames does not provide native support for structures,
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df.Define("Jet_p3", make_p3, {

"Jet_pt", "Jet_eta", "Jet_phi"})

(a) RDataFrames

STRUCT<x INT64, y FLOAT64>(

a.x + b.x, 42.0))

(b) BigQuery.

CAST(ROW(a.x + b.x, 42.0)

AS ROW(x BIGINT, y DOUBLE))

(c) Presto / Athena

CAST(ROW((a).x + (b).x, 42.0)

AS userDefinedPair)

(d) Postgres

{ "x": $a.x + $b.x, "y": 42.0 }

(e) JSONiq

SELECT {"x": a.x + b.x, "y": 42.0};

(f) SQL++

Listing 1: Accessing and creating nested structs.

but does allow for arbitrary C++ defined types. The user must define and use their own UDF
(e.g. make p3 in Listing 1a) which returns a ROOT::RVec type. BigQuery allows for the direct use
of the STRUCT keyword. The types and the names of the fields can be optionally omitted, thus
creating an ‘anonymous’ struct. Presto, Athena, and Postgres use a combination of CAST and
ROW. Among these three systems, Athena cannot access the fields of anonymous rows. JSONiq
and SQL++ allow the user to create structs via the square brackets {...} operator, where the
practitioner specifies the name and values of the fields. The types of the fields are inferred based
on the values. In all cases, struct fields are accessed via the . operator.

3.2. Accessing and creating nested arrays
Operating on arrays of structs is a core requirement of a query system working on HEP analyses.
Listing 2 shows parts of the implementation of ADL Query 4 across the systems studied. The
query finds the events having at least two jets with pT > 40 GeV.

RDataFrames provides a sizable library of vectorized operations that work directly on arrays
of structs (e.g. the comparison operator >). BigQuery, Presto, Athena and Postgres all employ
a combination of CROSS JOIN and UNNEST. As its name suggests, UNNEST breaks up the array
into its individual elements. CROSS JOIN takes each individual element produced by UNNEST

and generates a new row from it, replicating all other fields of the initial row and adding
a new column containing the aforementioned element. SQL++ also features a more concise
mechanism which only requires UNNEST. JSONiq offers a more intuitive way of accessing and
filtering elements. First, a stream of events is generated via the for $event in $events

instruction. Then, the jets entry is extracted from each event. jets is then flattened into a
list of jet structs via the [] operator. Finally all jets with an unsuitable pT value are filtered
out via [$$.pt > 40]. JSONiq uses the powerful FLWOR expression set, composed of the
for, let, where, order by, return clauses. The semantics of FLWOR are similar to SQL’s
SELECT-FROM-WHERE, where one seemingly iterates through the entire dataset and applies various
filtering operations. FLWOR provides, what initially appears to be an imperative programming
model, that is in fact declarative under the hood. This can feel intuitive to practitioners
experienced with the imperative programming paradigm. In Listing 2f we show a potential
implementation for SQL++ which employs the ARRAY LENGTH function together with a subquery
that is directly embedded in the function call itself.

3.3. Complex queries and particle combinations
HEP queries are generally more complex and may require the inspection of particles tuples,
which can be of the same type, different type, or both, in those cases where larger particle
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df.Filter("Sum(Jet_pt > 40) > 1")

(a) RDataFrames

... WHERE (SELECT COUNT(*)

FROM UNNEST(events.Jets) AS j

WHERE j.pt > 40) > 1

(b) BigQuery/Postgres with nested sub-query

SELECT event_id, MET.sumet

FROM events

CROSS JOIN UNNEST(events.Jets) AS j

WHERE j.pt > 40

GROUP BY event_id, MET.sumet

HAVING COUNT(*) > 1

(c) Presto/Athena/Postgres with CROSS JOIN

... WHERE CARDINALITY(FILTER(

events.Jets, j -> j.pt > 40)) > 1

(d) Presto/Athena using array functions

for $event in $events

where count(

$event.jets[][$$.pt > 40]) > 1

...

(e) JSONiq

... WHERE ARRAY_LENGTH((

SELECT * FROM e.Jets AS j

WHERE j.pt > 40)) > 1

(f) SQL++.

Listing 2: Querying unnested array elements

tuples are generated. Consequently, SQL queries often have to use a GROUP BY clause which
undoes the CROSS JOIN and UNNEST clauses, a step which feels counter-intuitive and inefficient.

More complex queries also have a negative effect on RDataFrames, where complex logic for
vectorized operations needs to be defined in UDFs written in C++ outside of the RDataFrames’
system logic. While some of the other studied systems, such as Athena or Presto lack in terms
of UDF support, engines like BigQuery, Postgres, AsterixDB, and RumbleDB offer mature UDF
support. For instance, RumbleDB allows the practitioner to define UDFs in source files that
can later be imported by arbitrary query files. A downside, however, of some SQL systems is
that one cannot define tables as valid input or return types in UDFs.

3.4. Summary
We present the results of our usability study in Table 1. Each row specifies a required feature
identified by us for HEP analyses. Requirements are encoded as Ri.j, where i denotes their
importance and j is an index. Requirements R1.j are critical, R2.j are secondary, while R3.j are
tertiary. The full paper [14] gives a more precise definition of each feature. Missing features are
marked with ’-’. We also indicate how well a system does in a specific feature using ’∗’ characters.
Finally, we present several other metrics, such as the number of characters, lines, clauses, etc.
required to implement all the queries in the studied systems. While this quantification cannot be
interpreted as fully objective, we have, to the best of our abilities, striven to produce a complete
image of the usability requirements of HEP analyses and the degrees of suitability of the studied
systems.

We conclude that JSONiq and SQL++ are best suited for HEP analysis, which is not
entirely surprising as they have been designed for the nested, semi-structured JSON data
model. BigQuery and Postgres are suitable candidates, too, as they provide a rather complete
implementation of the SQL standard, with few proprietary extensions that would make porting
between systems challenging. RDataFrames is also a good candidate, which is also not entirely
surprising as it is designed for these kinds of workloads. However, coupling columnar storage with
the RDataFrames programming model requires more effort when writing queries. Athena is not
a viable candidate due to its lack of UDF support. Similarly, Presto is lacking in a large number
of areas, including UDFs, making it an unsuitable candidate for HEP data analysis. Overall,



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012034

IOP Publishing
doi:10.1088/1742-6596/2438/1/012034

5

Table 1: Summary of functionality of general-purpose data processing systems for HEP analyses.
“-”, “*”, “**”, and “***” stand for no, poor, moderate and good feature support respectively.
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(R1.1) unnest arrays ∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗
(R1.2) asym. combinations ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗
(R1.3) sym. combinations ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗
(R1.4) UDFs - ∗∗ ∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗

(R2.1) structured types ∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗
(R2.2)nested sub-query - ∗∗∗ ∗∗∗ - ∗∗∗ ∗∗∗ ∗∗
(R2.3) variables - - - - ∗∗∗ ∗∗ ∗∗∗
(R2.4) group by variable - ∗∗∗ ∗∗∗ - ∗∗∗ ∗∗ n/a
(R2.5) struct params in UDFs ∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗
(R2.6) tables in UDFs - - - - ∗∗∗ ∗∗∗ -

(R3.1) inline struct types - ∗∗∗ - - ∗∗∗ ∗∗∗ -
(R3.2) anonymous structs ∗∗ ∗∗∗ ∗∗ ∗∗∗ - - -
(R3.3) user-defined types - - ∗∗ - - ∗∗∗ ∗∗∗
(R3.4) array functions ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗
(R3.5) array construction - ∗∗ ∗∗ - ∗∗∗ ∗∗∗ ∗∗
(R3.6) unnest whole structs ∗∗∗ ∗∗∗ ∗∗∗ - ∗∗∗ ∗∗∗ -

#characters 6.7k 7.6k 7.6k 7k 3.8k 3.8k 11k
#lines 343 280 286 274 106 175 236
#clauses 222 223 205 180 56 104 134
avg. #clauses/query 24.6 16 17 19 6.2 8.6 14.9
#unique clauses 24 20 20 27 8 16 15
avg. #unique clauses/query 12.1 8.3 8.6 10 3.3 4.9 7

we believe that the NF2 support added with SQL:1999 as well as more modern languages like
JSONiq and SQL++ have the potential to make general-purpose data processing systems a
viable alternative to the domain-specific systems used today.

4. Evaluation
We evaluate the performance of the studied systems on the ADL benchmark queries at various
scales of the data. We scale the data size using Scale Factors (SF) 2i where i takes values
from the integer interval [−16..7]. For the self-hosted systems, we employ a single AWS EC2
m5ds.24xlarge instance, which has 96 logical cores (and 48 physical ones). For BigQuery, we
show an additional version of the experiments where the data is pre-loaded. Figure 1 shows the
results of this experiment.

Parquet logically splits the data into row groups. In our case, each row group contains around
400k events. At SF=128, the dataset contains around 16k row groups. Since the systems which
read from Parquet parallelize over the row groups, it follows that for small SFs, where there is
only one row group, execution is implicitly single threaded. As the data sizes become bigger,
and more row groups are present, processing can be parallelized. At this point plateaus are
formed in the query running time. Once the SF is large enough, and the number of row groups
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Figure 1: Impact of data size on end-to-end running time of various systems under test.
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exceeds the number of virtual cores, the computation stops being fully parallelizable. This is
the point where running times see a linear increase in the size of the data. For instance, for
QaaS systems, where the hardware resources (and hence level of parallelism) is transparently
handled by the cloud provider, we see that the saturation point is around SF=2 for Athena and
SF=8 for BigQuery, while for the other systems it occurs at SF=0.5. A notable exception to
this pattern is Postgres. In spite of our extensive efforts to parallelize the queries, only Query 1
succeeds at this. The rest end up running on a single core, hence the linear performance of the
query runtime relative to data size across all SFs.

In summary, RDataFrames and BigQuery perform best. Presto and Athena also fare well,
however their performance lags close to one order of magnitude behind the best systems.
AsterixDB, Postgres and RumbleDB visibly underperform as they fail to scale up efficiently.
Their performance is close to two orders of magnitude behind the best systems. Postgres displays
the worst performance due to its inability to parallelize any query apart for query 1.

We present a complete overview of the experiments in an extended version of the paper [14].

5. Related work
Investigations into the possibility of using database systems for HEP analysis have been done
in the past [17]. The HEP community has also investigated the development of novel analysis
tools beyond the ROOT ecosystem, such as the Scikit-HEP project [18] as well as alternative
data formats such as Parquet or Avro [19]. Finally, Ong et al. [13] survey document oriented
query languages, and, from their observations, ultimately derive SQL++, one of the languages
employed in this study. We present a more complete picture of the related work in [14].

6. Conclusion
We have evaluated the performance, scalability, and suitability of several query engines and their
respective query languages in the context of HEP analyses. For our study, we have used the
ADL benchmark, which consists of eight queries that present a high potential of parallelization
and exploit the intrinsic nesting of the event data. Our query implementations are all open
source [5, 16]. We show that the document-oriented query languages SQL++ and JSONiq
provide a rather natural query development experience while several SQL dialects can express
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HEP queries in a good manner. We also show that RDataFrames, BigQuery, Presto, and Athena
perform and scale well, with the former two systems yielding the best results.

Our study shows that there is plenty of future work for the HEP and database community.
Understanding how to make general purpose systems more scalable and efficient on nested
homogeneous data is key. Exposing existing HEP libraries (e.g. such as those in ROOT) to
general purpose systems is also a promising avenue for future research, as well as understanding
how to combine the functionality of query engines with auxiliary features (e.g. graph plotting).
Finally, understanding how to best disseminate the use of such systems to the HEP community
is essential to their widespread use.
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