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Abstract. In the European Center of Excellence in Exascale Computing ” Research on Al- and
Simulation-Based Engineering at Exascale” (CoE RAISE), researchers develop novel, scalable Al
technologies towards Exascale. This work exercises High Performance Computing resources to
perform large-scale hyperparameter optimization using distributed training on multiple compute
nodes. This is part of RAISE’s work on data-driven use cases which leverages Al- and HPC
cross-methods developed within the project. In response to the demand for parallelizable
and resource efficient hyperparameter optimization methods, advanced hyperparameter search
algorithms are benchmarked and compared. The evaluated algorithms, including Random
Search, Hyperband and ASHA, are tested and compared in terms of both accuracy and accuracy
per compute resources spent. As an example use case, a graph neural network model known
as MLPF, developed for Machine Learned Particle-Flow reconstruction, acts as the base model
for optimization. Results show that hyperparameter optimization significantly increased the
performance of MLPF and that this would not have been possible without access to large-scale
High Performance Computing resources. It is also shown that, in the case of MLPF, the ASHA
algorithm in combination with Bayesian optimization gives the largest performance increase per
compute resources spent out of the investigated algorithms.

1. Introduction

One of the primary goals in the European Center of Excellence in Exascale Computing “Research
on Al- and Simulation-Based Engineering at Exascale” (CoE RAISE) [1] is the development and
expansion of Artificial Intelligence (AI) and High-Performance Computing (HPC) methods along
representative use cases from research and industry. While Work Package 3 (WP3) “Compute-
Driven Use-Cases at Exascale” covers use cases that are compute-driven, WP4 “Data-Driven
Use-Cases at Exascale” has a strong focus on data-driven technologies, i.e., analyzing data-rich
descriptions of physical phenomena. Example use cases vary widely and range from fundamental
physics and remote sensing to 3D printing and acoustics.

The work of WP4 is highly integrated with WP2 “Al- and HPC-Cross Methods at Exascale”.
Experts in WP2 provide support on HPC and Al methods to use cases in WP4. This support
manifests itself in porting code to new HPC architectures and machines, in performance analyses
and engineering of codes, and in the development of AT solutions for the individual use cases.

In the work presented here, HPC resources are leveraged to perform large-scale
hyperparameter optimization (HPO) using distributed training on multiple nodes as part of
WP4. As an example use case from the field of High Energy Physics (HEP), the Al-based



particle-flow reconstruction algorithm called Machine-Learned Particle-Flow (MLPF) [2] acts as
the base model for which HPO is performed. MLPF is developed in the Compact-Muon-Solenoid
(CMS) Collaboration [3] at CERN and combines information from tracks and calorimeter clusters
to reconstruct particle candidates.

Further developments of AT in RAISE have the potential to greatly impact the field of High
Energy Physics by efficiently processing the large amounts of data that will be produced by
particle detectors in the coming decades. Moreover, HPO is model agnostic and could be widely
applied in other sciences using Al, e.g., in the fields of seismic imaging, remote sensing, defect-
free additive manufacturing and sound engineering that are part of Work Package 4.

HPO, sometimes referred to as hyperparameter tuning or hypertuning, is the process of
tuning the hyperparameters of the model to optimize its performance. Hyperparameters are
the parameters that are not learned during the model training but must be defined by the user.
Some examples are model-architecture-related parameters such as the number of layers in the
model and the number of nodes in each layer, or optimization-related parameters such as the
batch size and the learning rate.

Hypertuning deep learning-based Al models is often compute resource intensive, partly due to
the high cost of training a single hyperparameter configuration to completion and partly because
of the infinite set of possible hyperparameter combinations to evaluate. There is therefore a need
for large-scale, parallelizable and resource efficient hyperparameter search algorithms.

This work makes use of a distributed computing tool called Ray [4], and more specifically the
part of Ray called Tune [5]. Tune is an open-source tool for multi-node distributed hypertuning
which integrates well with modern machine learning frameworks like e.g., TensorFlow [6] and
PyTorch [7]. It also supports integration with many other hypertuning tools such as Scikit-
Optimize [8], HyperOpt [9], Optuna [10], SigOpt [11], and more.

In the following, section 2 describes the example use case for which HPO is performed, section
3 describes how HPO can be used in a wide variety of applications and highlight synergies within
CoE RAISE, and finally, section 4 presents the conclusions.

2. Example use case: Event reconstruction and classification at the CERN
HL-LHC

With the upcoming upgrade of the Large Hadron Collider (LHC) to the High Luminosity
LHC (HL-LHC), the HEP community will face a significant increase in data production. This
motivates efforts to optimize the speed and efficiency with which data is collected, processed,
and analyzed, and is one of the major challenges that must be solved by the time the HL-LHC
starts operation at the end of 2027.

One of the many different approaches that are being investigated to tackle this challenge is
to replace traditional HEP algorithms with faster, parallelizable Al-driven approaches. These
approaches promise to deliver similar or even better physics performance and can relatively easily
be accelerated by hardware such as Graphics Processing Units (GPUs) or Field Programmable
Gate Arrays (FPGAs).

One such traditional algorithm that could potentially be replaced by an Al-based version is
the so-called Particle-Flow (PF) reconstruction algorithm [12]. It processes signals from different
sub-detectors and combines them to construct higher-level physics objects. These objects are
used for downstream workflows and are important for physics analyses involving hadronic jets
and missing transverse energy. An effort to construct a machine-learned PF algorithm is the
so-called MLPF algorithm, which is based on a deep neural network implemented using a Graph
Neural Network (GNN) formalism. A detailed description of its first iteration can be found in
[2] while a more recent version is described in [13]. The code to build, train, and evaluate the
model is publicly available online [14].

The best performing MLPF hyperparameters were found after two stages of hypertuning.



The first stage was performed on the Jiilich Wizard for European Leadership Science (JUWELS)
Booster [15] at the Jiilich Supercomputer Centre in Jiilich, Germany, and required 19,574 core-
hours to complete. Each compute node on the JUWELS Booster has two AMD EPYC Rome
7402 CPUs with 48 cores clocked at 2.8 GHz and four NVIDIA A100-SXM4-40GB GPUs. The
so-called Bayesian Optimization Hyperband (BOHB) [16] algorithm was used to tune parameters
of the optimizer such as the 1r and the learning rate schedule as well as the dropout and other
model-specific internal hyperparameters. The BOHB search space is summarized in table 1.

The second hypertuning stage was performed on CoreSite at the Flatiron Institute in New
York, NY, USA, using twelve compute nodes, each equipped with a 64-core Intel Icelake
Platinum 8358 CPU clocked at 2.6 GHz and four NVIDIA A100-SXM4-40GB GPUs. The
best hyperparameter values found from the first search were fixed and stage two instead tuned
various architecture parameters such as the number of graph layers and the number of graphs
in each layer, as well as the number of nodes and layers used for decoding, and a few other
model-specific parameters. The search space of the second stage is summarized in table 2. In
addition, a different hypertuning algorithm called Asynchronous Successive Halving Algorithm
(ASHA) [17] was used in combination with Bayesian optimization. The ASHA algorithm allows
for an efficient use of compute resources when performing distributed multi-node hypertuning
by early stopping trials that underperform relative to others. The second stage of hypertuning
consumed approximately 56,730 core-hours. This work would not have been possible without
access to HPC resources, as can be illustrated by a back-of-the-envelope calculation to compute
that the two hypertuning stages would have taken roughly 6 months to complete using a single
GPU, compared to about 83 hours using supercomputers.

Table 1: Search space used in the hypertuning Table 2: Search space used for ASHA in

run using the BOHB algorithm. combination with Bayesian optimization.
Hyperparameter  Search space Hyperparameter Search space
1r logir ~ U(107%,3-1072)) bin_size {16, 32, 40, 64, 80}
dropout (0, 0.5) distance_dim {32, 64, 128, 256}
clip_value_low (0, 0.2) ffn dist hidden_dim {32, 64, 128, 256}
dist_mult (0.01, 0.2) ffn dist_num layers {1, 2, 3, 4}

num_graph layers_common {1, 2, 3, 4}
num_graph_layers_energy {1, 2, 3, 4}
num_node_messages {1, 2, 3, 4}
output_dim {32, 64, 128, 256}

In both stages described above, the search algorithms were allowed to draw 200 samples from
the hyperparameter search space. The best hyperparameters found according to validation loss
after both stages of hypertuning are reported in table 3 and various metrics as a function of the
training epoch are shown in figure 1.

To see if HPO improved the model performance, the loss and classification accuracy of the
model before and after hypertuning is plotted and compared as a function of the training epoch
in figure 2. Comparing these curves shows that the mean validation loss decreased by almost a
factor of two (approximately 44%) and that the accuracy increased by more than the uncertainty.
It is also clear from comparison of figures 2a and 2b as well as of figures 2c and 2d that the training
became more stable as a result of hypertuning since the curves exhibit much less volatility after
hypertuning, especially in the second half of the training.

3. Distributed training and hypertuning: synergies across sciences in RAISE
HPO algorithms are model-agnostic in their nature and could be applied in any field of science
making use of AI. Hence, the benchmarking of HPO algorithms is of interest for all use cases



Table 3: Best hyperparameters found.

Hyperparameter Value

1r 0.001129
dropout 0.016312
clip_value_low 0.001998
distmult 0.120898
bin_size 64
distance_dim 64

ffn dist_hidden_dim 128

ffn dist_num_layers 3
num_graph_layers_common 3
num_graph_layers_energy 2

num node_messages 3
output_dim 64
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in CoE RAISE WP4. In light of this, the hypertuning of MLPF was used as an example
workflow to benchmark HPO algorithms in Ray Tune by running a variety of them using four
compute nodes. The number of samples drawn were varied and results were analyzed in terms
of samples drawn, compute hours spent, best achieved validation loss and best improvement per
compute resources spent. The results are presented in figures 3 and 4. Figure 3 shows that both
Hyperband and ASHA significantly outperforms random search in terms of core-hours spent per
sample. Comparing the runs using ASHA, the combination with Bayesian optimization adds
some overhead compared to the combination with random search making the ASHA + random
search combination perform best from this perspective. Figure 4 gives another point of view,
where the validation loss is plotted against the core-hours spent. From this viewpoint, it is clear
that ASHA + Bayesian optimization gives the highest improvement per spent core-hour.
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Figure 2: Mean and standard deviation of loss and classification accuracy as a function of the
training epoch computed from 10 trainings.
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4. Conclusion

CoE RAISE develops novel, scalable Al methods towards Exascale with use cases from a wide
range of sciences and industry. HPO could benefit any data-driven Al-based algorithm and in
the example use case of MLPF, large-scale distributed hypertuning significantly increased model
performance. This would not have been possible without access to HPC resources since it would
have taken approximately half a year of continuous hypertuning on a single GPU. Other sciences
and use cases in CoE RAISE are also adopting HPC for hypertuning, including the use cases of
WP4, within fields such as remote sensing, seismic imaging, defect-free additive manufacturing
and sound engineering,.
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