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1 Introduction

Studies of hadrons containing strange quarks in high energy elementary and nuclear collisions
give insight into the production processes of both partons and hadrons. The production of
strangeness is of particular interest in proton-proton and nucleus-nucleus collisions because
there are no strange valence quarks in the incoming colliding particles, and thus all strangeness
observed in the final state must have been produced in the collision (or later, through decays
of heavier quarks). Furthermore, the enhancement of strangeness production was one of the
first proposed signatures for the creation of a deconfined quark-gluon plasma in heavy nucleus-
nucleus collisions [1, 2], based on the hypothesis that strange quarks are light enough that they
can be produced in thermal processes if a QGP phase is present. For a review of experimental
results on QCD physics in pp and heavy-ion collisions by the ALICE Collaboration, see ref. [3].

However, recent experimental measurements demonstrate a smooth turn-on of strangeness
enhancement as a function of final-state-particle multiplicity from pp collisions, to p-Pb colli-
sions, to Pb-Pb collisions [4]. This observation calls into question the uniqueness of strangeness
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enhancement as a signature of the creation of a thermalised QGP. Furthermore, the strangeness
enhancement is observed to vary with multiplicity even within the smallest hadronic systems,
namely pp collisions. This challenges the long-standing concept of “jet universality,” the idea
that while the underlying parton interactions depend on the colliding system and energy, the
fragmentation and hadronisation of the resulting colour fields are independent of the system
and should be universal from e+e− to hadronic collisions [5]. The multiplicity dependence of
strange hadron yields has gathered tremendous attention in the pp phenomenology community
as it demonstrates that a pp collision cannot be modelled as a sum of semi-independent
parton-parton collisions, but that significant final-state interactions must be included.

Currently, there are several different explanations for the strangeness enhancement
in small and large collision systems. In models based on Lund strings [6, 7], such as
Pythia 8 [8], particle production occurs through string breaking mainly in multiparton
interactions (MPI) which contribute to the bulk of soft (low-momentum) particle production,
and in hard scatterings and their subsequent fragmentation. In recent versions of Pythia 8,
additional string interactions can change the string topology via colour reconnection [9]
in dense regions prior to hadronisation. The main new topologies are ropes [10], in which
overlapping strings can interact coherently leading to higher string tensions and enhanced
strangeness production [11], and junction formation [12] that enhance the production of
baryons. Herwig 7 [13, 14], which also generates parton showers via string breaking but
employs a cluster-based hadronisation mechanism, recently introduced a reconnection scheme
for baryon ropes which leads to the enhancement of strange and multi-strange baryons
with increasing multiplicity [11]. In core-corona [15] models such as Epos-lhc [16], the
system is subdivided into dilute corona regions, which are dominated by string-breaking
processes, and dense QGP regions, which evolve hydrodynamically and then undergo cluster
hadronisation. As the rates of strangeness production in these two regions are different,
strangeness enhancement arises from the increase of the core region relative to the corona
size with multiplicity [17]. In models based purely on a statistical thermal model, strangeness
enhancement is alternatively viewed as the canonical suppression of strangeness in small
collision systems, which is then lifted as the system size increases [18].

In low-multiplicity collisions, these three classes of models predict similar behaviour for
the correlation between Ξ−(Ξ+) baryons and strange hadrons, since strange and anti-strange
quarks are produced in pairs and remain correlated through the evolution of the collision. In
the final state, the resultant strange hadrons are expected to be strongly correlated in angular
space, since the system is too small for high-density effects to significantly alter the parton
or hadron momentum distributions. However, in high-multiplicity collisions, qualitatively
different behaviour is expected from each model. In the string-breaking picture, strange quarks
and the resulting strange hadrons remain mostly correlated, and only minor modifications
relative to the low-multiplicity case are expected due to the effects of colour reconnection,
junctions, and ropes. In Herwig 7, the newly-implemented baryonic rope mechanism may
lead to a multiplicity-dependence of the correlations, particularly for strange baryons like
the Λ(Λ) and Ξ−(Ξ+). On the contrary, in the core-corona and thermal models, a significant
decorrelation of the strange and anti-strange quarks is expected, since a high-density region
builds up in which partons may become deconfined or thermalised. In these two pictures,
strangeness is only conserved globally instead of locally.
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The goal of this work is to directly test the underlying assumptions of these qualitatively
very different scenarios by investigating the angular correlations between the multi-strange
Ξ−(Ξ+) baryon and other hadron species (π, K, p, Λ, Ξ). By measuring the relative
distributions of “associated” hadrons of different electric charge (Q), strangeness (S), and
baryon number (B) with respect to a “trigger” Ξ− baryon (quark content dss, with S = −2,
B = 1, Q = −1) or Ξ+ baryon (dss, with S = 2, B = −1, Q = 1), the distribution of
the balancing quantum numbers in momentum space can be determined. Furthermore, by
studying the multiplicity dependence of these correlations, the goal is to be able to determine
experimentally if multiple production mechanisms are present and if there is an evolution
from local to global strangeness conservation with system size.

In the following, measurements of the per-trigger yield of associated identified hadrons
with respect to trigger Ξ− baryons will be shown. The associated yield per trigger particle
is defined as

Y (∆y, ∆φ) = 1
Ntrig

d2Npairs
d∆y d∆φ

, (1.1)

where ∆y = yassoc − ytrig is the difference in rapidity and ∆φ = φassoc − φtrig is the relative
azimuthal angle between the trigger and associated particles, Npairs is the number of trigger-
associated particle pairs, and Ntrig is the number of trigger particles. In all cases, the charge
conjugate pairs, i.e. the corresponding correlations with Ξ+ baryons, are also included in the
correlation functions. For the remainder of the paper, the notation “Ξ” will represent both
the negatively-charged Ξ− and the positively-charged Ξ+, unless otherwise specified.

Strangeness production is investigated through the correlations between the multi-strange
Ξ baryons and hadrons which contain only a single strange quark, kaons (K+ = us, K− =
su) and Λ baryons (Λ = uds, Λ = uds). These are compared with the correlations between Ξ
baryons and hadrons which do not carry any strangeness, pions (π+ = ud, π− = du) and
protons (p = uud, p = uud). Furthermore, baryon production will be probed by comparing
baryon-baryon correlations (such as Ξp and ΞΛ) with baryon-meson correlations (Ξπ and
ΞK). Finally, the first measurement of ΞΞ correlations will be shown.

In order to isolate the quantum-number-dependent part of the correlation function
and remove correlations due to (mini)jet fragmentation, flow, or the underlying event,
the difference between the opposite-quantum-number (“opposite-sign”) and same-quantum-
number (“same-sign”) correlations is also calculated (hereafter denoted as “OS-SS;” for the
Ξ-baryon correlations “OB-SB” represents the opposite-baryon-number minus same-baryon-
number differences). Specifically, the difference between Ξ−π+ and Ξ−π− correlations provides
information on the distribution of electric charge, while strangeness correlations are measured
by subtracting the distribution of pairs with the same strangeness (e.g. Ξ−K−) from those
with opposite strangeness (Ξ−K+). The balancing of baryon number is explored with the
difference between Ξ−p and Ξ−p correlations, and similarly in the strangeness sector with Ξ−Λ
and Ξ−Λ. Note that this difference between opposite-sign and same-sign per-trigger yields is
closely related to the balance function [19, 20], differing only by a normalisation factor.

The paper is organised as follows: section 2 describes the relevant subsystems of the
ALICE detector (2.1), the data collection and event selection (2.2), and the track reconstruc-
tion and particle identification (2.3–2.4). Section 3 details the analysis method, experimental
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corrections (3.1–3.3), and systematic uncertainties (3.4). The experimental measurements
and Monte Carlo model comparisons are presented and discussed in section 4, and final
conclusions are drawn in section 5.

2 Experimental setup, data selection

2.1 The ALICE detector

ALICE is the detector designed to study heavy-ion collisions at the Large Hadron Collider
(LHC), and is optimised for precise tracking and identification of particles over a wide
momentum range, particularly in the high-multiplicity environment of heavy-ion collisions.
A full description of the ALICE detector and its performance can be found in refs. [21, 22].
The detector subsystems utilised in this analysis were the Inner Tracking System (ITS), the
Time Projection Chamber (TPC), the Time-Of-Flight detector (TOF), and the V0, which
all provide full azimuthal coverage (0 < φ < 2π) around the beam line.

The ITS, located closest to the beam pipe, consists of six cylindrical layers of silicon detec-
tors, which contribute to the high resolution tracking of charged particles and vertex reconstruc-
tion. The two innermost Silicon Pixel Detector (SPD) layers are at radial distances of 3.9 cm
and 7.6 cm, the two Silicon Drift Detector (SDD) layers are at 15.0 cm and 23.9 cm, and the
outermost two Silicon Strip Detector (SSD) layers are at 38.0 cm and 43.0 cm from the beam
line. By providing track points close to the beam axis, the ITS makes it possible to reconstruct
primary and displaced secondary decay vertices with high precision. The TPC is the principal
tracking detector of ALICE. It is a 5 m-long gaseous cylindrical detector with an active volume
of 90 m3, and its inner and outer radii are 85 cm and 250 cm, respectively. The TPC provides
high-precision tracking and momentum determination for charged particles that traverse the
active detector volume with transverse momentum 0.15 < pT < 100 GeV/c. Through measure-
ments of the specific energy loss, dE/dx, the TPC is also used for particle species identification.
In kinematic regions where dE/dx information does not give good species separation, comple-
mentary time-of-flight measurements with better than 90 ps timing resolution from the TOF
detector are used for particle identification (PID). The ITS, TPC, and TOF are used for
tracking and PID in the midrapidity region, while the V0 comprises two scintillator arrays on
either side of the interaction point which cover the forward pseudorapidity ranges 2.8 < η < 5.1
(V0A) and −3.7 < η < −1.7 (V0C). In this analysis, the V0 contributed to the event trigger
and was used to classify events based on their activity, estimated through the sum of the
energy deposited in the V0A and V0C (denoted as V0M) [23]. While the correlation between
the final-state-particle multiplicities measured at forward rapidity and midrapidity is relatively
broad in pp collisions, a high event activity measured in the forward V0M is correlated with a
high multiplicity at midrapidity, and vice versa. The V0M amplitude distribution was divided
into percentiles, with 0% denoting the highest multiplicity events and 100% the lowest.

2.2 Event selection

The pp collision data analysed here were collected with the ALICE detector from 2016 to
2018 during Run 2 at the LHC. Minimum bias pp collision events were selected using a
hardware trigger that required energy deposition in both the V0A and V0C. Events flagged
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as originating from pileup or beam-gas interactions based on the timing information from
the V0 were rejected. The primary collision vertex was reconstructed using full ITS+TPC
tracks (see section 2.3) which provide high vertex position resolution. In each event, a second
estimate of the primary vertex position was obtained from short track segments (tracklets)
measured in the SPD, which provide higher efficiency but lower position resolution. To
ensure a high quality primary vertex, the estimates from the TPC+ITS vertex and the SPD
vertex were compared and required to be within 0.5 cm of each other along the direction of
the beam line (the z-axis). Furthermore, the primary collision vertices were required to lie
within 10 cm in the z-direction of the nominal interaction point at the centre of the ALICE
detector so that the track acceptance was uniform for all events. In total, approximately
1.36 billion events passed the event selection.

2.3 π, K, and p selection and identification

Charged-particle tracks were reconstructed from clusters of energy depositions in the ITS and
TPC using a Kalman filter algorithm. Particles at midrapidity, with a pseudorapidity within
|η| < 0.8, were considered in this analysis. Pions and kaons were selected in the transverse
momentum range 0.2 < pT < 3 GeV/c and protons within 0.4 < pT < 3 GeV/c. In order to
ensure high-quality tracking, the tracks were required to be reconstructed from at least 70
clusters in the TPC (from a possible maximum of 159 for the longest tracks), with at least 80%
of the possible findable clusters, and the χ2 per cluster had to be less than 4. The tracks were
required to include at least one cluster from the SPD. In the tracking procedure, refitting to
both the ITS and TPC space points was required (see ref. [22] for more details on the tracking
algorithm). The analysis focuses on primary particles, defined in ALICE as those with mean
proper lifetimes τ larger than 1 cm/c which are either produced directly in the collision or from
decays of particles with τ < 1 cm/c [24]. To reduce contamination from secondary particles
(those not produced in the original pp collision), the distance of closest approach (DCA) to
the primary vertex was required to be within 2 cm in the longitudinal direction and 7σ in
the transverse plane, corresponding to DCAxy < 0.0105 + 0.035p−1.1

T cm (for pT in GeV/c).
Particles were identified from their specific energy loss in the TPC and flight time

to the TOF detector. For low-momentum tracks (pπ,e < 0.4 GeV/c, pK < 0.6 GeV/c,
pp < 0.9 GeV/c) only the TPC information was used for PID since the discriminating power
of the TPC is high and many of the tracks do not reach the TOF detector. For each track
in the TPC, the measured dE/dx was compared to the expected signal for each particle
type (i = π, K, p, e) and quantified in terms of the number of standard deviations (nσi

TPC)
away from a Bethe-Bloch parametrisation of the detector response. At higher momentum,
if a TPC track was matched to a signal in the TOF, then the velocity measured from the
TOF detector was combined with the particle’s momentum to obtain its mass, m. The
measured m2 was compared with the expectations for each particle species and quantified by
nσi

TOF. For these tracks with a TOF signal, the PID information was determined by using the
combined TPC and TOF information to improve the purity, nσi =

√
(nσi

TPC)2 + (nσi
TOF)2.

For tracks without a matching TOF signal, only the TPC information was used, nσi = nσi
TPC.

Each track was then associated with the particle species with the smallest |nσi|. Residual
contamination from wrongly-identified tracks was corrected statistically using a procedure
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described in section 3.2. Selected tracks were required to be within |nσi| < 4 for at least
one of the particle species hypotheses, and not used in the reconstruction of any Ξ baryon
candidates. Note that, due to the abundance of pions compared to electrons, a pion veto was
applied such that a track satisfying the nσi < 4 criterion for both electrons and pions was
always classified as a pion, even if nσe < nσπ. The pion sample also included a negligibly
small (< 1%) fraction of misidentified muons, which were subtracted off the yields at a later
step according to the µ/π ratio obtained in Pythia 8 Monte Carlo simulations.

With these selection criteria applied, the reconstruction efficiency of pions was around
επ ∼ 71% for the lowest momentum interval (0.2 < p < 0.3 GeV/c), rising to a maximum
of επ ∼ 86% at intermediate momentum (p ∼ 2 GeV/c) and declining to επ ∼ 81% above
p = 5 GeV/c. The kaon efficiency was strongly momentum-dependent in the momentum
range considered in this analysis, rising monotonically from a minimum of εK ∼ 0.14 in
the lowest momentum interval (0.2 < p < 0.3 GeV/c) to a maximum of εK ∼ 0.82 above
p = 2.5 GeV/c. The tracking efficiency for protons was approximately εp ∼ 80% in the lowest
momentum interval (0.4 < p < 0.5 GeV/c), rising to around εp ∼ 86% around p ∼ 1 GeV/c,
and was about εp ∼ 82% at high momentum (p > 3 GeV/c). Due to annihilations with
the detector material, the efficiency for antiprotons was slightly lower, with a minimum
around εp ∼ 72% at low momentum and a maximum of εp ∼ 82%. All the efficiencies
displayed small variations of the order of 2% reflecting the changing detector performance
in the different run periods over time.

2.4 Λ and Ξ reconstruction

Primary Λ(Λ) baryons were reconstructed in the kinematic range 0.6 < pT < 12 GeV/c,
|η| < 0.72, through their decays to (anti)protons and charged pions, Λ → π− + p and
Λ → π+ + p (branching ratio 63.9% [25]), which leave a characteristic V 0 signature in the
detector. The Λ signal peak in the proton-pion invariant mass (mpπ) distribution was fitted
with a double-Gaussian functional form, and the extracted mean and standard deviations
of the two Gaussians were parametrised as a function of pT. The signal region was defined
as |mpπ − µΛ| < 3σΛ,wide, where µΛ was the centre of the peak and σΛ,wide was the width of
the wider Gaussian (except in the lowest pT bins where the wider Gaussian was insignificant
and thus the width of the narrow Gaussian was used). Topological selection criteria on the
V 0 decay, including the radial distance from the centre of the detector to the secondary
vertex, DCA between the proton and pion tracks, and cosine of the pointing angle of the
Λ(Λ) momentum back to the primary vertex were applied. Furthermore, misidentified K0

S
were rejected by requiring that mππ lies more than 10 MeV/c2 from the K0

S mass. The
individual decay products, the proton and pion daughters, were required to fall within the
kinematic range 0.15 < pT < 20 GeV/c and |η| < 0.8. Additional selections were applied
on the DCA of the daughters to the primary vertex, and on their specific energy loss in the
TPC (|nσTPC| < 4 for the relevant particle species). Finally, since the TPC readout time is
on the order of 100 µs, particles from out-of-bunch pileup events may be combined to create
fake V 0s. Consequently, at least one daughter track was required to satisfy the ITS refit or
have a matched cluster in the TOF detector, to reject Λ candidates from out-of-bunch pileup.

– 6 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
2

Ξ−(Ξ+) baryons, which serve as the trigger particles in all the correlation functions
described below, were reconstructed through their decays to Λ(Λ) baryons and charged
pions, Ξ− → π− + Λ and Ξ+ → π+ + Λ (branching ratio 99.9% [25]). The Λ(Λ) then
decays to pπ−(pπ+), giving this decay its characteristic “cascade” topology in the detector.
The Ξ candidates were identified by their invariant mass (mΛπ) in the kinematic range
0.8 < pT < 12 GeV/c and |η| < 0.72. The same double-Gaussian fitting procedure which
was used for the Λ baryons was applied here to define the Ξ signal region, |mΛπ−µΞ| < 3σΞ,wide.
The combinatorial background from random Λπ pairs was reduced by applying selections
on the topological properties of the cascade decay. In particular, criteria were imposed on
the following properties of the reconstructed Ξ candidate: the DCA to the primary vertex,
the radial distance between the secondary decay vertex and the centre of the detector, and
the cosine of the pointing angle of the Ξ momentum to the primary vertex. Looser selection
criteria were applied to the properties of the reconstructed secondary Λ daughter than the
primary Λ baryons above, with selections on the invariant mass, the DCA between the proton
and pion daughters, and the radial distance from the tertiary vertex to the centre of the
detector. All the stable daughters of the cascade decay (one proton and two pions) were
required to have a pseudorapidity within |η| < 0.8 and a transverse momentum within
0.15 < pT < 20 GeV/c. Selection criteria were imposed on the specific energy loss of the
daughters (|nσTPC| < 4 for the relevant particle species) as well as their DCA to the primary
vertex. Finally, at least one daughter track was required to have a matched cluster in the
TOF or to satisfy the ITS refit in order to reject Ξ candidates which may have come from
out-of-bunch pileup events.

A detailed Monte-Carlo-based study was carried out to optimise the purity of the selected
Λ and Ξ candidates without significantly reducing the detection efficiency. For all of the
topological and kinematic properties listed above, the signal-to-background ratio as a function
of the selection variable was fit with a pT-dependent functional form to determine the optimal
selection criteria. For the Λ baryons, with the exception of the V 0 radius, a pT-dependent
selection did not lead to a significant improvement, and thus standard pT-independent
criteria [26] were used. However, for the Ξ baryons, this procedure led to an improved set of
selection criteria. The specific selections imposed on the Λ and Ξ candidates are listed in
appendix A. After applying all selection criteria, the efficiency of Λ reconstruction ranged
from εΛ ∼ 0.06 for low pT particles near the edges of the pseudorapidity acceptance to ∼ 0.4
at pT = 4 GeV/c at midrapidity. The efficiency of Ξ reconstruction ranged from εΞ ∼ 0.007
at low pT near the edges of the η acceptance to ∼ 0.4 around pT = 5 GeV/c around η ∼ 0.

3 Analysis methodology

This analysis measured the per-trigger yields of pions, kaons, protons, Λ, and Ξ baryons
associated with a Ξ baryon trigger, as defined in eq. (1.1).

3.1 Efficiency and acceptance correction

The signal correlation function was formed by constructing the angular distribution of
trigger-associated pairs within the events (Npairs), and dividing by the total number of
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trigger particles (Ntrig):

S(∆y, ∆φ) = 1
Ntrig

d2N sig
pairs

d∆y d∆φ
. (3.1)

To account for the tracking and reconstruction efficiencies of the detector, each trigger
and associated particle was weighted by the inverse of the single-particle efficiency, 1/ε.
In ΞΞ correlations, where the trigger and associated particles are identical, an additional
ptrig

T > passoc
T requirement was imposed to avoid double counting of pairs.

Furthermore, because of the limited and non-uniform acceptance of the detector, the
S(∆y, ∆φ) distribution is convolved with the experimental two-particle acceptance. To
measure and correct for this detector effect, an event mixing technique was used. Each trigger
particle was correlated with associated particles from different events to obtain

B(∆y, ∆φ) = α
d2Nmixed

pairs
d∆y d∆φ

. (3.2)

Here, α is a normalisation constant chosen such that the value at B(0, 0) equals unity, defined
such that the pair acceptance probability for reconstructed particles traveling in the same
direction is 100%. The value of α was calculated from a fit to the projection B(∆y) to
improve statistical precision.

In order to accurately model the detector acceptance, the mixed events should match
the characteristics of the signal events as closely as possible. To ensure similarity between
signal and mixed events, the mixed events were matched such that the difference in the
number of tracks, ∆Ntracks, and the difference in z-vertex position, ∆zvtx, were minimised,
requiring that ∆Ntracks ≤ 5 and ∆zvtx < 1 cm. Each signal event (containing a Ξ trigger)
was correlated with up to 60 different events. It was not required that the events used
for mixing contained Ξ triggers.

Finally, dividing the same-event correlation function S(∆y, ∆φ) by the mixed-event
distribution B(∆y, ∆φ) resulted in the efficiency- and acceptance-corrected per-trigger yield,

Y (∆y, ∆φ) = S(∆y, ∆φ)
B(∆y, ∆φ) . (3.3)

3.2 Misidentification correction

While the kinematic and topological selection criteria described in section 2.4 significantly
reduced the number of random pπ and Λπ pairs which were misidentified as coming from
Λ and Ξ decays, there still remained a small combinatorial background under the signal
peaks in the mpπ and mΛπ distributions. The contribution to the correlation function coming
from these combinatorial pairs was removed through the sideband subtraction procedure.
The sideband regions were defined as 4σΞ,wide < |mΛπ − µΞ| < 7σΞ,wide for Ξ baryons and
3σΛ,wide < |mpπ − µΛ| < 6σΛ,wide for Λ baryons. Since the combinatorial background is
basically linear as a function of invariant mass, the summed correlation functions with respect
to associated pπ and Λπ pairs in the left and right sideband regions can be directly subtracted
from the correlation functions in the signal region to obtain the corrected associated yields.
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For Λ baryons at low pT, however, the background is non-linear, and in that kinematic region
the combinatorial background was interpolated before subtraction.

The associated pions, kaons, and protons were identified as described in section 2.3,
with tracks assigned to the particle species with the smallest corresponding nσi. However,
some amount of misidentification of the associated particles was inevitable and led to
contamination in the resulting correlation function. Instead of applying strict nσ selections
which would have led to a worsening of the statistical uncertainties, a method was developed
which made use of linear algebra techniques to remove contamination due to misidentified
particles. The procedure described below made it possible to relate the measured Ctrack

to the misidentification-corrected Cparticle, where Ctrack (Cparticle) is a column vector with
either the same-event or mixed-event correlations for all track (particle) types, normalised
to the number of tracks (particles).

First, the misidentification matrix A was constructed, consisting of the coefficients aij

which are the fractions of the tracks identified as type i which correspond to true particles
of species j (when i = j, aij is the probability that a track is correctly identified). Tracks
were divided into eight classes corresponding to those identified as pions, kaons, protons, and
electrons, each reconstructed with a TOF signal or without. Therefore A is an 8 × 4 matrix.

The misidentification fractions, aMC
ij , were obtained from a Monte Carlo simulation using

events generated with the Pythia 8 generator and propagated through a Geant3 [27] model
of the ALICE detector. When measuring the misidentification fractions, the events were
weighted in order to effectively match the multiplicity distribution of events containing a
Ξ baryon, to ensure that multiplicity-dependent effects, such as the probability for a track
to be matched to a signal in the TOF, were correctly modelled.

To obtain the misidentification fractions in data, adata
ij , it was assumed that the Geant3

detector description was correct to first order, and the following iterative minimisation
procedure was performed to account for the particle ratios being different between Pythia 8
and the experimental data. If the fraction of particles of species j in the Monte Carlo is
xMC

j , and in data it is xdata
j , the misidentification fraction in data simply scales by xdata

j /xMC
j ,

apart from a normalisation factor. Accounting for the normalisation, the misidentification
fraction for tracks of type i corresponding to particles of species j in data can be written as

adata
ij =

aMC
ij xdata

j /xMC
j∑

k aMC
ik xdata

k /xMC
k

. (3.4)

If yi was the fraction of tracks of type i, one can form the matrix equation

ATy = x, (3.5)

where y is a column vector with all yi and x is a column vector with all xj . This identity is
valid both in Monte Carlo and in data, and eq. (3.4) forms the link between the two. Hence,
eqs. (3.4) and (3.5) can be combined into a single matrix equation. Since AMC and xMC are
known, by setting y ≡ ydata, this combined system can be solved iteratively to obtain Adata

and xdata, the misidentification fractions and particle ratios in data. This procedure was
performed separately in each individual momentum interval, and only for tracks in events
containing a Ξ baryon since the correlation with a Ξ trigger will also affect the total yield.

– 9 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
2

The same- and mixed-event correlations were constructed in each momentum interval for
each track type. Once the misidentification matrix Adata had been measured, it was applied
to the correlation functions to unfold them for misidentification. To obtain the correlations
for each particle species, one needs to solve the system

ACparticle = Ctrack. (3.6)

Since A is an 8 × 4 matrix, this system is overdetermined and a least-squares solution is
required to maximise the statistical significance. This has the solution

Cparticle = (ATWA)−1ATWCtrack, (3.7)

where the weight matrix W = diag(Ntrack) and the vector Ntrack contain the number of
tracks of each type. These were not corrected for efficiency, since W is used to optimise
the statistical precision and cancels exactly in eq. (3.7).

Finally, to obtain the unnormalised correlation functions S(∆y, ∆φ) and B(∆y, ∆φ)
used in eq. (3.3), Cparticle was multiplied by

Nparticle = E(p)ATNtrack
, (3.8)

where E(p) is a diagonal matrix with all particle efficiencies, εi. The results from the
different momentum intervals were merged before dividing the same-event and mixed-event
correlation functions.

3.3 Feeddown corrections

The selected p(p) and Λ(Λ) baryons include not only particles produced from the primary
collision vertex, but also secondary hadrons which come from the weak decays of heavier
baryons. In particular, non-negligible fractions of the identified (anti)protons come from
Λ(Λ) decays, and of the reconstructed Λ(Λ) baryons come from Ξ−(Ξ+) and Ξ0(Ξ0) decays.
In order to report the correlations of Ξ− and Ξ+ hadrons with primary (anti)protons and
Λ(Λ) baryons, the contribution from these secondary particles was removed using the same
procedure as in ref. [26].

Pythia 8 Monte Carlo simulations were used to construct feeddown matrices, containing
the (efficiency-corrected) average number of detected daughter particles in the target pT
interval per generated mother particle, as a function of the pT and η of the mother. For
the feeddown correction, these coefficients were then used as weights when constructing
the correlation functions.

The contribution of the feeddown from Ξ0(Ξ0) baryons, which decay to Λπ0(Λπ0) and
cannot be easily reconstructed in the ALICE detector, was estimated using the Pythia 8
and Epos-lhc Monte Carlo generators. It was observed in both generators that the Ξ0(Ξ0)
and Ξ−(Ξ+) production rates were similar, as well as the shapes of the Ξ−Ξ0 and Ξ−Ξ−

same-baryon-number correlations (and their charge conjugates, Ξ+Ξ0 and Ξ+Ξ+). However,
Pythia 8 showed a difference between the opposite-baryon-number correlation functions,
where the correlation of the associated Ξ0(Ξ0) on the near-side is weaker by 70% than
for the Ξ−(Ξ+). Therefore, for the purposes of the feeddown correction, the suppression
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of opposite-baryon-number Ξ−Ξ0 (and Ξ+Ξ0) correlations was assumed to be half of this
difference, i.e. 35%, with respect to Ξ−Ξ+ (and Ξ+Ξ−), and the two extremes (no suppression
or 70% suppression) covered within the systematic uncertainties. In practice, the feeddown
contribution from Ξ baryons to Λ was measured as

N feeddown
Ξ =

 (fΞ− + fΞ0)NSB
Ξ same baryon number,

(fΞ− + (1 − r)fΞ0)NOB
Ξ + rfΞ0NSB

Ξ opposite baryon number,
(3.9)

where NSB
Ξ and NOB

Ξ are the measured numbers of same- and opposite-baryon number ΞΞ
pairs, fΞ− and fΞ0 are the probabilities for the Λ daughter particle of a charged and neutral
Ξ, respectively, to appear within the Λ sample, and r is the reduction factor for Ξ0(Ξ0).

The final correlation function was then convolved by the autocorrelation function between
mother and daughter, i.e. the expected smearing from the decay, which was simulated in
Monte Carlo but weighted with the differences in the pT spectra between Monte Carlo and
data. Since this could only be done (at least without introducing any biases) to the final
correlation function, the contribution from feeddown was not subtracted from the correlation
function until the very end.

Monte Carlo studies demonstrated that contributions to the correlation function from
other sources, such as K0

s decays into pions and knock-out protons from the detector material,
are small or negligible, and their minor effects were taken into account in the efficiency
corrections.

3.4 Systematic uncertainties

In order to assess the experimental systematic uncertainty on the correlation functions
(using the procedure described in section 3.4.5), the event selection, particle reconstruction
and identification, and efficiency and feeddown determination were varied. The analysis
methodology was verified with a Monte Carlo closure test.

3.4.1 Event selection

The zvtx range of the selected events was reduced from |zvtx| < 10 cm to |zvtx| < 8 cm, which
reduced the statistical precision of the measurement but made the detector acceptance more
uniform by avoiding edge effects at large η.

3.4.2 Particle reconstruction, selection, and identification

The systematic uncertainty on the reconstruction of the primary pions, kaons, and protons,
described in section 2.3, was estimated by loosening the selection criteria on the minimum
number of TPC clusters per track (to 60), maximum χ2 per cluster (from 4 to 5), and
maximum DCA of the track to the primary vertex in the longitudinal direction (to 3 cm).
The PID selection criteria were also tightened to |nσi| < 2 (for i = π, K, p, e). The analysis
was repeated using a fixed momentum value, p = 0.6 GeV/c for all particle types, as a starting
point for using TOF information for PID.

The pT-dependent selection criteria applied to the properties of the reconstructed Λ(Λ)
and Ξ candidates, described in section 2.4 and listed explicitly in appendix A, were also
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loosened and tightened. Specifically, the criteria varied in the reconstruction of the Λ(Λ)
candidates were: the DCA of the pion and proton daughters to the primary vertex, the DCA
of the daughters to each other, the radial location of the secondary vertex in the detector,
and the cosine of the pointing angle of the V 0 momentum back to the primary vertex. In
the cascade reconstruction, the following selection criteria were varied: the DCAs of the
three daughter tracks to the primary vertex, the invariant mass of the Λ(Λ) daughter, the
DCA of the V 0 daughters, the radial distances of the V 0 and cascade vertices, the DCA of
the cascade to the primary vertex, and the cosine of the pointing angle. A tighter pileup
selection was used for the Ξ reconstruction, requiring two daughter tracks (instead of one)
with either a successful ITS refit or a TOF hit.

3.4.3 Acceptance, efficiency, and feeddown corrections

The procedures for calculating the efficiency and feeddown correction factors were also varied,
by removing the event multiplicity weighting, and obtaining the coefficients as a function
of pT (instead of pT and η). Since the ALICE detector model in Geant3 is not perfect,
an additional uncertainty on the tracking efficiencies due to the material budget has been
estimated as 0.7% for pions, 0.5% for kaons, and 1.5% for protons [11]. The suppression
factor of the opposite-baryon-number Ξ−Ξ0 (and Ξ+Ξ0) correlations with respect to Ξ−Ξ+

(and Ξ+Ξ−), used in the estimation of the feeddown from Ξ0 to Λ, was changed to r = 0 and
r = 0.7, in accordance with the Pythia 8 indications (see section 3.3).

In the sideband subtraction procedure, which corrects for the combinatorial pπ and Λπ

pairs misidentified as Λ and Ξ baryons, the sideband definitions were changed to 4 − 7σ

for Ξ and 5 − 8σ for Λ.
Finally, the uncertainty on the fit value of the event mixing normalisation, α (see

eq. (3.2)), was assigned as a systematic uncertainty.

3.4.4 Systematic effects of the analysis procedure

The full analysis procedure was verified utilising a Monte Carlo closure test, both at the
level of the single-particle spectra and the correlation functions. The analysis, including all
correction procedures, was performed on reconstructed Monte Carlo particles from Pythia 8
which had been propagated through a Geant3 model of the ALICE detector, and the results
were compared to Ξ-hadron correlation functions obtained from the generator-level Monte
Carlo particles. The disagreement between reconstructed- and generated-level results should
quantify the systematic uncertainty related to the analysis method itself, and in particular to
the misidentification correction procedure (section 3.2), and was assigned as a systematic
source. Due to the limited statistics of the ΞΞ correlations in the reconstruction-level Monte
Carlo, the uncertainties from the ΞΛ closure test are used instead.

Since the closure test is a comparison of Monte Carlo to itself, it is not sensitive to
systematic effects which may arise from differences between Monte Carlo and data. Therefore,
to further test the particle reconstruction and identification methods, and in particular the
misidentification and feeddown corrections, the pT spectra of pions, kaons, protons, Λ, and Ξ
baryons are compared to the spectra published in ref. [28], in which they were measured using
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different techniques. The small observed differences were included as additional uncertainties
in this analysis.

3.4.5 Uncertainties on the correlation function

To quantify the effect of each systematic variation, the ratio of the correlation function
obtained after the variation with respect to the nominal one was calculated. The statistical
uncertainties on the ratios were calculated under the assumption that the variation and the
default results were maximally correlated. The ratio for each variation was fit with a simple
function to reduce the impact of point-to-point statistical fluctuations in the systematic
uncertainty estimation. It was observed that the ratio was always consistent with a constant
shift along the ∆y axis, and thus fit with a flat line to obtain the relative uncertainty.
Some systematic variations, however, showed a modulation in the ratio as a function of
∆φ. Consequently, the ratios of the ∆φ projections were fit with a periodic function of the
form a + b cos(∆φ). For the differences between opposite- and same-sign correlations, the
fit functions were applied directly to the difference between the systematic variation and
the default, instead of to the ratio, to obtain the absolute uncertainty. The values of the
fit functions defined the estimated relative uncertainty at each point in ∆y or ∆φ. The
systematic variation was deemed significant if the values of the fit parameters were larger than
the uncertainty on the fit parameters. This was equivalent to a Barlow check with a Barlow
criterion of one [29]. Systematic uncertainties were calculated directly on the integrated
yields and near-side widths shown in sections 4.3 and 4.4.

For the OS and SS (and OB and SB) Ξπ, ΞK, and Ξp correlation functions, the systematic
uncertainties from the individual sources are generally less than 1%. The largest uncertainties,
which reach the few-percent level, are generally related to the PID selection criteria (∼ 1.5%
for kaons and protons), the multiplicity weighting (∼ 1% for kaons), the Monte Carlo closure
and the tracking efficiency (up to 2.5% for protons). The uncertainties on the OB and SB ΞΛ
and ΞΞ correlations are slightly larger, on the level of a few percent, and the most significant
sources are the topological selection criteria variations (up to 9% for Ξ baryons), pileup
rejection criteria (up to 5.2% for Λ baryons and 7.5% for Ξ), and sideband definitions (up
to ∼ 30% for Ξ baryons). The uncertainties are also calculated directly for the OS-SS and
OB-SB differences, where the only uncertainties which exceed the percent level are from the Λ
and Ξ topological selections (up to 2% for ΞΛ), the pileup rejection (up to ∼ 5% for ΞΛ), the
Ξ0 contribution (up to 3.2% for ΞΛ), the Monte Carlo closure (15% for Ξπ), and the spectra
closure (up to 2% for ΞΛ). The individual uncertainties are added in quadrature to obtain the
total uncertainties, which are generally in the range of a few percent for minimum bias events.

4 Results and discussion

4.1 Multiplicity-integrated correlation functions

The per-trigger yields of pions and kaons associated with Ξ baryons are shown in figure 1. In
figures 2 and 3 the Ξπ and ΞK correlations are projected on ∆φ (for |∆y| < 1) and ∆y on
the near-side (|∆φ| < π/2) and away-side (π/2 < ∆φ < 3π/2). Furthermore, the differences
between the opposite-sign and same-sign correlations, related to the balance function as
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Figure 1. Ξπ (top row) and ΞK (bottom row) per-trigger yields in (∆y, ∆φ) for particle pair
combinations with the opposite (left column) and same (right column) electric charge, measured in pp
collisions at

√
s = 13 TeV.
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Figure 2. Ξ−π+ and Ξ−π− (and charge conjugate) correlation functions projected onto ∆φ (|∆y| < 1,
left), the near-side on ∆y (|∆φ| < π/2, middle), and the away-side on ∆y (π/2 < ∆φ < 3π/2, right).
Opposite-sign (Ξ−π+ + Ξ+

π−) correlations are shown in grey squares, the same-sign (Ξ−π− + Ξ+
π+)

correlations are black circles; the OS-SS difference is displayed in the bottom panels. Statistical
and systematic uncertainties are represented by bars and boxes, respectively. The ALICE data are
compared with the following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled
(green), Pythia 8 with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink).

described above, are shown. Figure 4 reports the associated yields in (∆y, ∆φ) of protons, Λ,
and Ξ baryons, and the projections onto the ∆φ and ∆y axes can be found in figures 5–7.
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Figure 3. Ξ−K+ and Ξ−K− (and charge conjugate) correlation functions projected onto ∆φ (|∆y| < 1,
left), the near-side on ∆y (|∆φ| < π/2, middle), and the away-side on ∆y (π/2 < ∆φ < 3π/2, right).
Opposite-sign (Ξ−K+ + Ξ+K−) correlations are shown in grey squares, the same-sign (Ξ−K− + Ξ+K+)
correlations are black circles; the OS-SS difference is displayed in the bottom panels. Statistical
and systematic uncertainties are represented by bars and boxes, respectively. The ALICE data are
compared with the following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled
(green), Pythia 8 with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink).

The (unsubtracted) per-trigger yields, Y (∆y, ∆φ), contain correlations not only related
to the production of the quantum numbers of the Ξ baryon but also other aspects of the
events which produce correlations in momentum space. These are especially evident in the
Ξπ correlations (figures 1 and 2), since pions make up the majority of the particles produced
in pp collisions, and particularly in Ξ−π− correlations where the hadrons do not share any
quark-antiquark pairs. A significant flat pedestal, known as the underlying event, is apparent
in these correlations and represents pion production uncorrelated with the Ξ baryon. However,
there are also peaks on the near-side and away-side, localised around (∆y, ∆φ) = (0, 0) and
∆φ = π. These peaks can be attributed to Ξ and π production within the same and back-
to-back (mini)jets, respectively. The differences between the Ξ−π+ and Ξ−π− correlations,
most easily visible in figure 2, can be attributed to the presence of a dd pair in the former
combination and a dd pair in the latter, as well as to the effects of electric charge balancing in
the Ξ−π+ correlation function. Note that the same argument holds for the charge conjugate
pairs, Ξ+

π− and Ξ+
π+, which are included in the reported correlation functions.

In contrast with the pions, the ΞK correlations (figures 1 and 3) show rather different
behaviour. There is little or no near-side peak observed in the same-charge Ξ−K− correlations,
which share no quark-antiquark pairs, demonstrating the difficulty of producing three strange
quarks in separate processes within the same (mini)jet. Meanwhile, a significant away-side
peak is observed, indicative of the overall production rate of kaons in (mini)jet fragmentation.
The opposite-sign Ξ−K+ correlations, on the other hand, show a strong near-side peak,
which can be attributed to the correlation of the ss pair created in a single process. The
near-side peak in Ξ−K+ correlations is wider than the corresponding Ξ−π+ peak, which may
be attributed to early-stage diffusion of strange quarks prior to hadronisation.
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Figure 4. Ξp (top row), ΞΛ (middle row), and ΞΞ (bottom row) per-trigger yields in (∆y, ∆φ) for
particle pair combinations with the opposite (left column) and same (right column) baryon number,
measured in pp collisions at

√
s = 13 TeV.

The effects of baryon number production, conservation, and dispersion can be observed
in the Ξ−p correlations (figures 4 and 5). As has been demonstrated in previous analyses [30],
the production of multiple baryons (or multiple antibaryons) within the same (mini)jet
is highly disfavoured, leading to a depletion of the correlation function on the near-side.
No such dip is seen in the baryon-antibaryon correlations. Similarly, the near-side dip in
same-baryon-number correlations and near-side peak in opposite-baryon-number correlations
can be seen in the ΞΛ (figures 4 and 6) and ΞΞ (figures 4 and 7) correlations. The near-side
peak is also observed to be broader in Ξ−baryon correlations than Ξ−meson, which may
indicate the early decoupling and diffusion of baryon number, as was observed for strangeness
above. When going from Ξ−p to Ξ−Λ to Ξ−Ξ+ correlations, a sequential enhancement in the
amount of correlated particle production (i.e. the magnitude of the near-side peak relative
to the level of the underlying event) is observed. This is likely related to the production
of zero, one, or two ss pairs, respectively.
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Figure 5. Ξ−p and Ξ−p (and charge conjugate) correlation functions projected onto ∆φ (|∆y| < 1,
left), the near-side on ∆y (|∆φ| < π/2, middle), and the away-side on ∆y (π/2 < ∆φ < 3π/2, right).
Opposite-baryon-number (Ξ−p+Ξ+p) correlations are shown in grey squares, the same-baryon-number
(Ξ−p + Ξ+p) correlations are black circles; the OB-SB difference is displayed in the bottom panels.
Statistical and systematic uncertainties are represented by bars and boxes, respectively. The ALICE
data are compared with the following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions
enabled (green), Pythia 8 with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink).
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Figure 6. Ξ−Λ and Ξ−Λ (and charge conjugate) correlation functions projected onto ∆φ (|∆y| < 1,
left), the near-side on ∆y (|∆φ| < π/2, middle), and the away-side on ∆y (π/2 < ∆φ < 3π/2, right).
Opposite-baryon-number (Ξ−Λ+Ξ+Λ) correlations are shown in grey squares, the same-baryon-number
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Statistical and systematic uncertainties are represented by bars and boxes, respectively. The ALICE
data are compared with the following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions
enabled (green), Pythia 8 with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink).
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Figure 7. Ξ−Ξ+ and Ξ−Ξ− (and charge conjugate) correlation functions projected onto ∆φ (|∆y| < 1,
left), the near-side on ∆y (|∆φ| < π/2, middle), and the away-side on ∆y (π/2 < ∆φ < 3π/2, right).
Opposite-baryon-number (Ξ−Ξ+ + Ξ+Ξ−) correlations are shown in grey squares, the same-baryon-
number (Ξ−Ξ− +Ξ+Ξ+) correlations are black circles; the OB-SB difference is displayed in the bottom
panels. Statistical and systematic uncertainties are represented by bars and boxes, respectively. The
ALICE data are compared with the following models: Pythia 8 Monash tune (blue), Pythia 8
with junctions enabled (green), Pythia 8 with junctions and ropes (yellow), Epos-lhc (red), and
Herwig 7 (pink).

4.2 Comparison to Monte Carlo models

The ∆y and ∆φ projections in figures 2–3 and 5–7 are compared to calculations from Monte
Carlo event generators. Three configurations of Pythia 8 are shown: (1) the default Monash
tune, (2) when junctions are turned on, and (3) when both ropes and junctions are enabled.
Predictions from (4) Herwig 7 and (5) Epos-lhc are also included.

The Pythia 8 Monash tune [31] includes the colour reconnection mechanism [9], in
which individual MPI systems may be colour-connected. Pythia 8 does not include the
formation of a QGP-like medium, but colour reconnection allows it to capture some of the
multiplicity-dependent and flow-like signals observed in data, like the enhancement of the p/π

ratio at intermediate pT [32]. In the default tune of Pythia 8, baryons are produced through
diquark string breaking, which generally leads to an underestimation of the baryon yields.
The junction mechanism [12] introduces another process for producing baryons that may also
lead to significantly different correlation structures. As shown in the illustration in figure 8,
the diquark breaking mechanism implies that the production of a Ξ− baryon normally leads
to the production of a Ξ+, while junctions allow more possibilities for the strangeness and
baryon number to be balanced with singly-strange baryons (Λ) and strange mesons (K). The
introduction of colour ropes [10, 33] allows strings to fuse together in high-density regions,
thus increasing the string tension, leading to the enhanced production of strange mesons
(and baryons, via junctions). For the Ξ−(Ξ+) baryons studied here, ropes are expected to
enhance the overall strange quark production rates but have similar correlation patterns as
strings since the hadronisation mechanism still proceeds via diquark breaking.
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Figure 8. A schematic representation of the production of a Ξ− baryon via the mechanisms of
diquark string breaking (left) and baryon junction formation (right). Figure taken from ref. [34].

Herwig 7 includes its own colour reconnection model, as well as a mechanism for non-
perturbative gluon splittings which is necessary to describe strangeness enhancement through
the production of ss pairs. The core-corona model, Epos-lhc [16], also includes parton
showers from string-breaking processes in the corona, but the core is a dense, thermalised,
many-particle system in the grand-canonical limit. In particular, quantum numbers are only
conserved globally, not locally, in the core. The multiplicity dependence of various observables
is described in Epos-lhc by the transition from low-multiplicity corona-dominated collisions
to high-multiplicity systems with a large core component.

Magnitude of the underlying event. The overall magnitude of the underlying event
in the Ξπ correlations (figure 2) is described well by the default Pythia 8 Monash tune,
likely because this model has been tuned to underlying event measurements at the LHC [31].
Pythia 8 Monash also shows decent agreement with the level of the underlying event for
the other associated hadron species, which is expected because this tune can describe the
single-particle spectra [35]. The rope and junction tunes of Pythia 8 also show reasonable
agreement with the level of the underlying event, with the exception of the Ξp correlations,
where the models significantly overpredict the number of protons per trigger Ξ baryon. On
the other hand, while Epos-lhc has also been tuned to match the inclusive spectra of
identified hadrons [35], it surprisingly does not capture the magnitude of the underlying
event in Ξ−hadron correlations. It is hypothesised that in Epos-lhc, Ξ production occurs
mainly in events with higher-than-average multiplicity, and the multiplicity dependence of
the single-particle spectra may not be fully captured by the model. Herwig 7 also appears
not to accurately describe the level of the underlying event, particularly in Ξπ correlations.

Magnitude and shape of the near-side peak in unsubtracted correlations. The
shape of the near- and away-side jet peaks in the Ξπ correlation functions is also described
well by Pythia 8 and Epos-lhc, indicating that the fragmentation of (mini)jets is relatively
well modelled. However, the Monte Carlo descriptions of the near-side peak shapes for the
other particle species are less accurate. In particular, Pythia 8 and Herwig 7 tend to
predict much more significant near-side peaks in ΞK, ΞΛ, and ΞΞ correlations than are
observed in the data, indicating that strangeness is overproduced in (mini)jet fragmentation
in the models. The near-side peaks in these correlations in Pythia 8 and Herwig 7 are also
narrower than those observed in the data, indicating that strange quark diffusion is more
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significant than anticipated by the model. The near-side dip observed in same-baryon-number
correlations (e.g. Ξ−p) is also challenging to reproduce in models, although can be captured
by the junction tune of Pythia 8 (as well as the rope tune, which includes the baryon
junction mechanism). Like Pythia 8, Herwig 7 also tends to predict stronger correlations
on the near-side than what is observed in data. While Epos-lhc can describe the shape
of the near-side peak in Ξπ correlations well, it predicts broader near-side structures for all
other particle pairs, likely because local strangeness conservation is only implemented in
the corona but not the core. Similar evidence for longer-range correlations than predicted
by string-breaking models has also been observed in measurements of the event-by-event
fluctuations in net-proton production in central Pb-Pb collisions, which are in fact consistent
with expectations from global baryon number conservation [36]. Finally, in Epos-lhc and
Herwig 7 an unusual “wing” structure in ∆y is visible in the same-sign correlations (seen
most clearly in the away-side ∆y projection in e.g. figure 3), where a significant number of
particle pairs are produced at larger ∆y, indicating that the momentum distribution and
conservation in the event are not precisely modelled.

Opposite-sign minus same-sign correlations. Herwig 7, and to a lesser extent Pythia 8
(except the Monash tune) and Epos-lhc, are able to describe the OS-SS Ξπ correlations,
which again demonstrates that charge balancing and (mini)jet fragmentation are well modelled.
Pythia 8 and Herwig 7 are also able to describe most aspects of the ΞK correlations
(figure 3); in particular the configuration with ropes shows good agreement with the OS-
SS correlations, indicating that the electric charge and strangeness balancing is accurately
modelled. For all other particle species pairs between strange baryons and mesons, Epos-lhc
tends to produce a flat balance function in disagreement with the data, because in the core
component strangeness is only conserved globally and local conservation of quantum numbers
is not implemented. To describe the Ξp OB-SB correlations, the baryon junction mechanism is
necessary, and the junction and rope tunes of Pythia 8 describe the experimentally-measured
Ξp balance well. However, for the other baryon-baryon pairs, ΞΛ and ΞΞ, all the Pythia 8
tunes vastly overpredict the strength of the OB-SB correlation.

4.3 Balance function integrated yields

The OS-SS and OB-SB yields were integrated over ∆φ and ∆y to probe the overall balancing
of charges, both over the full correlation function (−π/2 < ∆φ < 3π/2, |∆y| < 1) and
over the near- (−π/2 < ∆φ < π/2) and away-sides (π/2 < ∆φ < 3π/2). The results are
compared to predictions from Pythia 8, Epos-lhc, and Herwig 7 in figure 9. The large
systematic uncertainty on the OS-SS pion yield is due to small relative uncertainties on the
large number of pions produced per event, leading to larger absolute uncertainties compared
with the other associated particle species.

Furthermore, the balancing of the quantum numbers associated to the Ξ baryon can
be estimated through the following sums:

• electric charge: net-Q = net-π + net-K + net-Ξ − net-p,

• strangeness: net-S = net-K + net-Λ + 2×net-Ξ,

• baryon number: net-B = net-p + net-Λ + net-Ξ.
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Figure 9. The OS-SS and OB-SB per-trigger yields for Ξπ, ΞK, Ξp, ΞΛ, and ΞΞ correlations are
shown when integrated over all phase space (top), on the near-side (|∆φ| < π/2, bottom left), and
on the away-side (π/2 < ∆φ < 3π/2, bottom right). Statistical and systematic uncertainties are
represented by bars and boxes, respectively. The ALICE data are compared with the following models:
Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled (green), Pythia 8 with junctions
and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink). The statistical uncertainties on the model
predictions are smaller than the marker sizes.

where the net-π yield is obtained from the OS-SS (Ξ−π+ − Ξ−π−) integral, and similarly for
the other associated particle species. Note that the net-p goes into the net-Q calculation
with a relative minus sign, since the quantity measured in figure 5 is the opposite-baryon-
number minus same-baryon-number difference (Ξ−p − Ξ−p), which is the reverse of the
opposite-charge minus same-charge difference (Ξ−p − Ξ−p). Recall that all correlations with
respect to the Ξ− baryon, and their corresponding integrals, include the charge conjugate
pairs (correlations with trigger Ξ+ baryons).

If all the charges balancing the trigger Ξ− baryon (Q = −1, S = −2, B = +1) were
captured in the phase space of this measurement, then the resulting associated net quantum
numbers would be net-Q = +1, net-S = +2, net-B = −1. In table 1 the balancing charges
are expressed as percentages of these expected values (e.g. the associated net strangeness has
been divided by 2, and the associated net baryon number is written as a positive number).

None of the values reported in table 1 reach 100%, indicating that approximately 40% of
the balancing charges (estimated from the net-Q calculation) are not captured within the
kinematic phase space of the measurement, mainly due to the restricted pT range (and less
so due to the y and η constraints). Additionally, significant fractions of the strangeness are
contained within the un-measured K0 and K0 mesons, while some of the baryon number
balance is hidden in the neutrons and Σ±, Ξ0, and Ξ0 baryons.
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Electric charge Q Strangeness S Baryon number B

Data (56.5±0.9±0.8)% (28.1±0.4±0.4)% (27.1±0.7±0.6)%
Pythia 8 Monash 47% 34% 33%
Pythia 8 junctions 54% 31% 28%
Pythia 8 junctions & ropes 49% 28% 26%
Epos-lhc 44% 24% 24%
Herwig 7 56% 28% 28%

Table 1. The balancing of the quantum numbers opposite a trigger Ξ baryon are calculated from
the integral of the Ξ-hadron OS-SS and OB-SB correlation functions. The experimentally-measured
electric charge, strangeness, and baryon number balance are displayed as percentages of the expected
values (net-Q = +1, net-S = +2, net-B = −1), and compared with the following models: Pythia 8
Monash tune, Pythia 8 with junctions enabled, Pythia 8 with junctions and ropes, Epos-lhc, and
Herwig 7. The uncertainties on the experimental data are statistical and systematic, respectively.

As is expected for a model which produces Ξ baryons through diquark breaking, Pythia 8
predicts that most of the balancing (anti)baryon number is carried by the Λ baryons (see
figure 8) and very little is balanced by the protons. With the introduction of the junction
mechanism (also included in the rope configuration) in Pythia 8, the model predictions
move closer to the experimental results. The string breaking and cluster hadronisation
mechanisms in Herwig 7 are also able to capture the OS-SS yields reasonably well. It
is particularly interesting to note that, while Epos-lhc does not capture the strangeness
balance on the near-side or away-side individually (seen most prominently in the net-kaon
yield), it does agree with the data over the full ∆φ range. This is consistent with expectations
since Epos-lhc respects global, but not local, strangeness conservation in the core.

4.4 Multiplicity dependence

The per-trigger yields, OS-SS differences, and integrated yields were also studied as a function
of the event multiplicity. The multiplicity dependence of Ξ−hadron correlations may provide
better discriminatory power than the multiplicity-inclusive results between the various pictures
of the strangeness production mechanisms: in a statistical thermal model, there is expected
to be a lifting of canonical strangeness suppression with increasing multiplicity, which would
lead to weaker ΞΛ and ΞΞ correlations. A similar outcome could be observed in a core-corona
model where the core fraction is anticipated to increase with increasing multiplicity. In a
string-breaking model such as Pythia 8, on the other hand, the production mechanism for
strangeness production is expected to be independent of multiplicity (a consequence of jet
universality). However, with the addition of the junction and rope mechanisms, which both
arise in high-string-density regions and thus play a larger role in high-multiplicity collisions,
there may be a change in the dominant mechanism for producing baryons, particularly
strange baryons, as a function of multiplicity.

Figures 10 and 11 show the opposite-sign and same-sign Ξ-hadron correlation functions
projected onto ∆φ and ∆y, respectively, for low (40–100%) and high (0–5%) multiplicity
events compared to the multiplicity-integrated (minimum bias) result. The relevant systematic
uncertainties described in section 3.4 were re-evaluated in each multiplicity bin (note that the
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Figure 10. The Ξπ (top left), ΞK (top centre), Ξp (bottom left), ΞΛ (bottom centre), and ΞΞ
(bottom right) correlation functions are shown for minimum bias (black), high-multiplicity (0 − 5%,
red), and low-multiplicity (40 − 100%, blue) events, projected onto ∆φ (|∆y| < 1). In the top panels,
opposite-sign correlations are shown in light markers, the same-sign correlations are shown with darker
markers. In the bottom panels, the OS-SS or OB-SB difference is shown in each multiplicity interval.
Statistical and systematic uncertainties are represented by bars and boxes, respectively.

systematic uncertainties are highly correlated with multiplicity, for each particle species). By
definition, the level of the underlying event increases with multiplicity. Furthermore, it appears
that the near-side peak becomes slightly narrower for all the particle species with increasing
event activity. The near-side dip observed for baryon-baryon (and antibaryon-antibaryon)
correlations does not demonstrate a noticeable dependence on multiplicity.

More information can be gained by considering the charge-dependent (OS-SS, OB-SB)
correlations, also shown in figures 10 and 11. The integrated OS-SS and OB-SB near-side
yields, as well as the near-side ∆y root-mean-square (RMS) widths, are compared to Monte
Carlo models as a function of multiplicity for each particle species in figures 12–14. A
small multiplicity-dependence is observed for all particle species, with the charge-dependent
near-side peak being taller and narrower in high-multiplicity events and shorter and broader
in low-multiplicity events, compared to minimum bias. This charge focusing with increasing
multiplicity is consistent with the presence of radial flow [23, 37].
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Figure 11. The Ξπ (top left), ΞK (top centre), Ξp (bottom left), ΞΛ (bottom centre), and ΞΞ (bottom
right) correlation functions are shown for minimum bias (black), high-multiplicity (0 − 5%, red), and
low-multiplicity (40−100%, blue) events, projected onto ∆y on the near side (|∆φ| < π/2). In the top
panels, opposite-sign correlations are shown in light markers, the same-sign correlations are shown with
darker markers. In the bottom panels, the OS-SS or OB-SB difference is shown in each multiplicity
interval. Statistical and systematic uncertainties are represented by bars and boxes, respectively.

For the strange associated hadrons (K and Λ), the default Pythia 8 Monash tune shows
a sizeable increase of the charge-dependent near-side yield with higher multiplicity; this
apparent violation of jet universality is likely due to the colour reconnection mechanism
(which produces a radial flow-like effect). Interestingly, when the rope or junction topologies
are enabled, this significant multiplicity-dependence of the yields is instead observed for
associated pions, kaons, and protons (and less pronounced for Λ). This observation is
consistent with expectations for junctions, which allows for the baryon number in the Ξ
to be more often balanced by antiprotons instead of anti-Λ baryons. The predictions for
junctions and ropes (which include junctions) are not majorly qualitatively different, which
indicates that these integrated yields may not be the ideal observable for distinguishing
the effects of rope configurations. Herwig 7, with its different string breaking model and
cluster hadronisation mechanism, also shows an increasing OS-SS yield with multiplicity for
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Figure 12. The integrated OS-SS near-side yields (top) and near-side RMS widths in ∆y (bottom) are
shown for Ξπ (left) and ΞK (right) correlations as a function of multiplicity. Statistical and systematic
uncertainties are represented by bars and boxes, respectively. The ALICE data are compared with the
following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled (green), Pythia 8
with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink). The statistical uncertainties
on the model predictions, denoted by vertical bars, are smaller than the marker sizes in most cases.

all the species. However, such multiplicity-dependent behaviour is less pronounced in the
data, within the statistical and systematic uncertainties of the measurements, compared to
both Pythia 8 and Herwig 7. On the other hand, Epos-lhc shows very little multiplicity-
dependence of the yields, which is also not consistent with experimental observations. The
multiplicity-dependence of the near-side widths is predicted to be minor by the Monte Carlo
models, with a slight narrowing in high-multiplicity events for most particle species. While
the models do not quantitatively agree with the experimental data in all cases, in general
the trends are similar. These observations demonstrate that diquark breaking (the dominant
baryon production mechanism within the standard Lund string model), and global strangeness
conservation (as in Epos-lhc) are not enough to describe all of the experimental behaviour,
and additional mechanisms are needed. However, the data are also not indicative of the
turn-on of new dominant production mechanisms with multiplicity.

5 Conclusions

The angular correlations between doubly-strange charged Ξ baryons and identified hadrons
(π, K, p, Λ, and Ξ) have been measured in pp collisions by the ALICE Collaboration and
compared to Monte Carlo models. These correlations, and especially the difference between
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Figure 13. The integrated OB-SB near-side yields (top) and near-side RMS widths in ∆y (bottom) are
shown for Ξp (left) and ΞΛ (right) correlations as a function of multiplicity. Statistical and systematic
uncertainties are represented by bars and boxes, respectively. The ALICE data are compared with the
following models: Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled (green), Pythia 8
with junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink). The statistical uncertainties
on the model predictions, denoted by vertical bars, are smaller than the marker sizes in most cases.

unlike-sign and like-sign correlations (for a general charge such as electric charge, strangeness,
or baryon number), are particularly sensitive to the distribution of quantum numbers in
the event, which gives information on the particle production mechanisms, subsequent
diffusion, and hadronisation. The correlation functions are also compared between high-
and low-multiplicity pp collisions, to search for potential indications of thermal strangeness
production, deconfinement, or global instead of local strangeness conservation.

The Ξπ and ΞK correlations show that the size of the underlying event, which gives
rise to the pedestal below the near- and away-side jet peaks, is relatively well modelled by
Pythia 8, likely because the Monte Carlo has been tuned to the experimentally-measured
spectra. However, the analysis of two-particle correlation functions yields more detailed and
discriminatory power than the single-particle spectra alone. The near-side correlation peak
observed in the opposite-strangeness minus same-strangeness correlations is a signature of
locally-correlated ss production, which is observed in Pythia 8 and Herwig 7 but not
in Epos-lhc, a core-corona model where strangeness is only conserved globally. However,
Pythia 8 and Herwig 7 tend to predict stronger and narrower correlations than those
measured in the experimental data, indicating that the effects of string-breaking are too large
and that the diffusion of charges may be too small in these Monte Carlo models. Finally, a
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Figure 14. The integrated OB-SB near-side yields (top) and near-side RMS widths in ∆y (bottom)
are shown for ΞΞ correlations as a function of multiplicity. Statistical and systematic uncertainties
are represented by bars and boxes, respectively. The ALICE data are compared with the following
models: Pythia 8 Monash tune (blue), Pythia 8 with junctions enabled (green), Pythia 8 with
junctions and ropes (yellow), Epos-lhc (red), and Herwig 7 (pink). The statistical uncertainties on
the model predictions, denoted by vertical bars, are smaller than the marker sizes in most cases.

near-side dip in same-baryon-number correlations demonstrates the difficulty of producing
multiple baryons (or multiple antibaryons) close in phase space; while this feature was not
captured by the default Pythia 8 Monash tune, extended versions of Pythia 8 which
include colour ropes and baryon junctions are able to describe the data more accurately.
The multiplicity dependence of the correlation functions does not indicate any significant
turn-on of new particle production mechanisms in high-multiplicity collisions, however, it is
interesting to note that while Epos-lhc does not describe local conservation of quantum
numbers, it does quantitatively agree with experimental estimates of the charge balancing
globally. These novel results can be used to further refine and tune models of strangeness
and baryon number production in hadronic collisions.
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A Selection criteria on Λ and Ξ candidates

The criteria used to select Λ(Λ) and Ξ−(Ξ+) candidates are shown in tables 2 and 3,
respectively.

V0 selection criteria
Transverse momentum (GeV/c) 0.6 < pT < 12
Pseudorapidity |η|< 0.72
V 0 radius (cm) max(0.2,−1.1+1.2(pT−0.35)0.56) < rV0

T < 83pT−22
DCA V 0 daughters (cm) DCAd−d < 1.0
Cosine of pointing angle cos(PA) > 0.995
K0

s rejection (MeV/c2) |mππ −mK0
S
|> 10

Daughter track selection criteria
General either ITS refit or TOF hit for at least one daughter track,

not included in Ξ reconstruction
Transverse momentum (GeV/c) 0.15 < pT < 20
Pseudorapidity |η|< 0.8
PID selection |nσTPC|< 4
Pion daughter DCA (cm) DCAd−PV > 0.10
Proton daughter DCA (cm) DCAd−PV > 0.03

Table 2. Criteria used for the selection of Λ candidates. For the pT-dependent criteria, pT is in
GeV/c.
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Cascade selection criteria
Transverse momentum (GeV/c) 0.8 < pT < 12
Pseudorapidity |η|< 0.72
Cascade DCA (cm) DCAcasc−PV < min(2.0,0.007+1.34(pT−0.45)0.68)
Cascade radius (cm) 0.57+0.09(pT−0.45)0.81 < rcasc

T < 9+27(pT−0.45)1.7

Cosine of pointing angle cos(PA) > max(0.993,0.9983−3.2×10−3(pT−0.45)−2.25)
V0 selection criteria
Invariant mass (MeV/c2) |mpπ −µΛ|< 2.6+2.5pT

DCA V 0 daughters (cm) DCAd−d < 1.5
V 0 radius (cm) 1.2 < rV0

T < 16+57(pT−0.45)1.1

Daughter track selection criteria
General either ITS refit or TOF hit for at least one daughter track
Transverse momentum (GeV/c) 0.15 < pT < 20
Pseudorapidity |η|< 0.8
PID selection |nσTPC|< 4
V 0 pion daughter DCA (cm) DCAd−PV > max(0.03,−0.11+0.18(pT−0.45)−0.36)
V 0 proton daughter DCA (cm) DCAd−PV > max(0.03,−3.085+3.159(pT−0.45)−0.019)
Bachelor DCA (cm) DCAbach−PV > 0.021+0.034(pT−0.45)−0.73

Table 3. Criteria used for the selection of Ξ candidates. Throughout this table, pT is in GeV/c.
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