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Abstract

Extracting longitudinal modes of weak bosons in LHC processes is essential to understand
the electroweak-symmetry-breaking mechanism. To that end, we propose a general method,
based on wide neural networks, to properly model longitudinal-boson signals and hence en-
able the event-by-event tagging of longitudinal bosons. It combines experimentally accessible
kinematic information and genuine theoretical inputs provided by amplitudes in perturbation
theory. As an application we consider the production of a Z boson in association with a jet
at the LHC, both at leading order and in the presence of parton-shower effects. The devised
neural networks are able to extract reliably the longitudinal contribution to the unpolarised
process. The proposed method is very general and can be systematically extended to other
processes and problems.
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1 Introduction

Accessing the polarisation of electroweak (EW) bosons at high-energy colliders is crucial to gain
insights in the electroweak-symmetry-breaking mechanism (EWSB), whose nature is currently
explained by the Higgs mechanism [1–3]. By means of the EWSB, the W and Z bosons are
given a mass and a longitudinal-polarisation state. Therefore, any deviation in the production
of longitudinal bosons in scattering processes would suggest the presence of new-physics effects,
implying a different realisation of the EWSB compared to the Standard Model (SM) one.

The investigation of polarised-boson signals in LHC processes is becoming an important
part of the analysis programme of the ATLAS and CMS collaborations with Run-2 data, as
shown in recent measurements of di-boson production and vector-boson scattering (VBS) [4–7].
The increase in statistics of Run-3 and the High-Luminosity phase will drastically improve the
precision of current analyses and give access to polarised signals in complex multi-boson processes
[8–10].

The analysis paradigm for the measurement of polarisations of EW bosons with Run-1 data
at 7/8TeV was the evaluation of angular coefficients of the boson decay rate, which are related to
the polarisation fractions. The extraction of angular coefficients in LHC processes was proposed
in seminal phenomenological works [11–13] and applied in experimental analyses of W+j [14, 15]
and Z+j [16, 17] events, as well as of top-quark decays [18–20]. Owing to its simplicity, this
strategy has been further investigated and extended in more recent phenomenological studies
[21–28]. However, its application is limited [11–13, 25, 26, 29] to inclusive decays (i.e. without
selections on single decay products of bosons) and to two-body decays [i.e. without radiative
corrections to the decay (e.g. EW corrections)].

More recently, a different approach was proposed [29] to interpret LHC Run-2 data in terms
of polarisations of EW bosons, relying on the direct simulation of intermediate polarised bosons
in Monte Carlo codes. This method has been automated and applied to several processes at
leading order [29–32] and extended to higher-order EW and QCD corrections [33–39]. The
existing results in the literature in this direction concern vector-boson scattering (VBS) [29–32],
inclusive di-boson [33–36, 38–40], Higgs-boson decays [41–43] and W+j production [37]. The
great advantage of this approach is that, upon subtraction of backgrounds, LHC signal events
can be fitted with polarised templates in order to extract polarisation fractions in a differential
way from the LHC data, accounting properly for interference effects and spin correlations. This
has become the new analysis paradigm with Run-2 data, as demonstrated by the pioneering
measurements performed by ATLAS and CMS in di-boson inclusive production [4, 6, 7] and
VBS [5].

A number of recent studies have been carried out targeting the polarisation extraction in the
presence of hadronic decays of the weak bosons [44–48, 40], both with the polarised-template
method and with machine-learning techniques. The usage of machine learning was also proposed
to extract polarisation fractions in VBS, starting from the kinematic structure of the events
[49–53, 45].

Independently of the specific approach that may be used for the interpretation, the polari-
sation state of an unstable particle, like EW bosons, is not directly accessible in the detectors.
Therefore, the information about it can only be reconstructed (in a probabilistic way) from the
stable decay products. In other words, the polarisation of EW bosons is a pseudo-observable. On
the other hand, from a theoretical perspective, the whole information regarding the fundamen-
tal quantum field theory and therefore the polarisation properties is encoded in the amplitude.
Therefore, accessing the amplitude of scattering processes at experiments would give the maxi-
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mal information possible, i.e. the maximal predictive power. However, in a realistic experimental
environment only the momenta of the visible final states can be reconstructed. This means that
the momenta of the initial states as well as their parton type, both needed for the exact eval-
uation of the amplitude, is a priori unknown. As explained in the rest of the article, machine
learning (ML) can actually be used to approximate well the amplitudes based only on the partial
information available experimentally.

It is worth pointing out that in this article we exclusively refer to amplitudes and not matrix
elements, which are actually equivalent for our purposes. Our method, though close in spirit,
should not to be confused with the matrix-element method [54, 55] and the optimal-observable
method [56–58].

The article is organised as follows. In Sect. 2 we explain the difficulties in tagging longitudinal
bosons and propose a solution based on wide neural networks and amplitudes. A concrete
application of the proposed method to Z+ j at the LHC is then detailed and discussed in Sect. 3.
In Sect. 4 we draw the conclusions of our work.

2 Tagging longitudinal bosons

2.1 Definition of the problem

A generic (unpolarised) amplitude featuring a resonant gauge boson decaying into a lepton-
neutrino pair can be written as follows (in the unitary gauge),

M = MP
µ

i

k2 −M2
V + iΓV MV

(
−gµν +

kµkν

M2
V

)
MD

ν , (1)

where MP and MD describe the production and decay part of the amplitude, respectively. The
quantities MV and ΓV represent the gauge-boson mass and width, respectively. In particular,
the tensor part of the propagator can be cast into the following form,

−gµν +
kµkν

M2
=

4∑
λ=1

εµλ(k)ε
ν∗
λ (k) , (2)

where the {εµλ(k)} represent polarisation vectors of the massive gauge boson. The sum runs
over four polarisation states, namely the three physical states and a fourth one, whose structure
depends on the EW-gauge choice, and is thus is unphysical1. Throughout the article, we use
the labels L, +, and − for the longitudinal, right-handed, and left-handed states, respectively.
Notice that the polarisation vectors are defined in such a way that they are transverse w.r.t.
the boson four momentum, but do not transform as Lorentz covariants, therefore they must
be defined in a specific Lorentz frame. Also, we would like to emphasise that the definition of
the polarisation of the massive gauge bosons is only meaningful when gauge bosons are on the
mass shell or when the resonant contributions are treated in the narrow-width [59, 60] or pole
approximation [61–66]. The reason for this is to guarantee gauge invariance.

The amplitude in Eq. (1), including both production and decay parts, can therefore be written
as,

M =
∑
λ

Mλ , λ = L,+,− , (3)

1It is important to notice that this unphysical contribution always cancels out against Goldstone-boson con-
tributions at any order in perturbation theory.
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where Mλ is the amplitude with a polarised intermediate gauge boson (with state λ),

Mλ =
[
MP

µ ε
µ
λ(k)

] i

k2 −M2
V + iΓV MV

[
εν

∗
λ (k)MD

ν

]
. (4)

Hence, squaring the unpolarised amplitude leads to

|M|2 =
∑
λ

|Mλ|2 +
∑
λ ̸=λ′

M∗
λMλ′ , λ, λ′ = L,+,− , (5)

where the first sum represents the incoherent sum over polarised squared amplitudes, while
the second one includes all interference terms. For phenomenological purposes it is convenient
[30] to define a transverse (T) contribution as the coherent sum of the left- and right-handed
contributions to the squared amplitude,

|MT|2 = |M+|2 + |M−|2 + 2Re
(
M∗

+M−
)
, (6)

leading to a simpler structure of Eq. (5),

|M|2 = |ML|2 + |MT|2 + 2Re (M∗
LM+) + 2Re (M∗

LM−) . (7)

The term |ML|2 defines the longitudinally polarised squared amplitude which is the focus of
the present work. Note that the interference terms of Eq. (5) [or of Eq. (7)] are in general non
vanishing and can take either positive or negative values.

Hence, the fully differential unpolarised and longitudinal cross sections schematically read,

dσunp =
1

F
|M|2 dΦ, dσL =

1

F
|ML|2 dΦ , (8)

where the flux factor and phase-space measure are denoted by F and dΦ, respectively. The
differential longitudinal fraction in a generic observable O, that is ought to be extracted experi-
mentally, is therefore defined as,

fL(O) =
dσL
dO

/
dσunp
dO

. (9)

Problem The main challenge is to extract the longitudinal fraction experimentally for arbi-
trary observables, i.e. in a fully differential way. In other words, we would like to answer the
question: how can we infer on an event-by-event basis the probability for an LHC event to be
longitudinally polarised? In what follows, we will address exactly this problem.

As briefly mentioned in Sect. 1, a number of methods have been proposed in past and recent
years to address the issue of longitudinal-event tagging. In the rest of this section, we review
some of them.

For the interpretation of LHC Run-1 data, the angular-coefficient method was typically ap-
plied with polarisation-extraction purposes. It relies on the functional structure of the tree-level
decay rate of EW bosons, that can be written as follows [11, 12],

d3σ

d cos θ∗ dϕ∗ dO
=

dσ

dO
3

16π

[
1 + cos2 θ∗ +A0

1− 3 cos2 θ∗

2
+A4 cos θ

∗ + 2A1 cos θ
∗ sin θ∗ cosϕ∗

+ 2A6 cos θ
∗ sin θ∗ sinϕ∗ +A3 sin θ

∗ cosϕ∗ +A5 sin θ
∗ sinϕ∗

+
1

2
A2 sin

2 θ∗ cos 2ϕ∗ +A7 sin
2 θ∗ sin 2ϕ∗

]
, (10)
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where θ∗ and ϕ∗ are the polar and azimuthal decay angle of a decay lepton in the decayed-
boson rest frame, calculated w.r.t. the boson trajectory in a certain Lorentz frame (the one
where polarisation states are defined). The coefficients {A0, . . . , A7}, which are functions of
the observable O (independent of decay angles), are related to polarisation fractions fL and f±
via linear combinations. Projecting Eq. (10) onto suitable spherical harmonics of rank 2, the
polarisation fractions can be then easily extracted. This strategy is valid for a single boson,
in the absence of radiative corrections to the decay, and in a fully inclusive decay-phase-space
measure, i.e. without any cut on individual decay products. Applying the projections in the
presence of transverse-momentum and/or rapidity cuts on decay products, as done in many
experimental analyses, may give results that are far from describing the polarisation structure
of a process [12, 13, 29, 22, 26]. Extensions of the method to account for multi-boson spin
correlations [23, 24, 27, 67] are also limited due to similar reasons.

The extraction of angular coefficients from decay rates can also be applied differentially
in any LHC observables, providing a way to reweight unpolarised LHC events according to
polarisation fractions and therefore split the events into longitudinal and transverse samples.
This approximate method has been applied for Run-1 V + j events [14–17] but was proven to fail
in certain kinematic regimes, especially due to the wrong assumption that polarisation fractions
are the same in the presence and absence of decay-product selections [30].

The most prominent way to extract polarised signals out of Run-2 LHC data is the so-called
polarised-template method. Building on a theoretically sound definition of polarised signals at
amplitude level [29] that can be systematically extended to higher orders in perturbation theory
[33–39], the method relies on separate templates for each physical polarisation state and for the
interference terms. Upon a previous subtraction of reducible and irreducible backgrounds, the
(unpolarised) signal events are simultaneously fitted with fully independent polarised templates.
This can be applied differentially to any LHC observable. In practice, these fits are restricted to
those observables that are thought to be the most sensitive to discriminate between longitudinal
and transverse modes. This does not guarantee that the polarisation information is fully exploited
from the available data. In addition, the fitting procedure requires quite intensive theoretical
calculations that only recently achieved (N)NLO accuracy [33–39]. To be of any use, such
calculations should be performed in a fiducial phase-space volume which is exactly the one used
in the experimental analysis, a task that can turn out to be far from trivial.

The idea of using ML methods to facilitate the extraction of polarisation fractions has been
already explored in the literature. It has been applied in the case of EW bosons produced in VBS
and inclusive di-boson production, both with leptonic [49–51, 45, 52, 53] and hadronic decays
[45, 46]. The proposed ML approaches typically rely on kinematic observables approximating
decay angles in the case of leptonic decays of W bosons, and on jet-substructure observables
to treat hadronic decays, with the aim of performing an event-by-event classification, possibly
accounting for new-physics effects that may distort the underlying dynamics.

The method we propose to tag longitudinal bosons lies somehow at the intersection amongst
the aforementioned methods, complementing accessible kinematic information of LHC events
with a genuine theoretical input given by amplitudes describing the process dynamics.

As a last remark before detailing our strategy, we stress that the polarisation structure of
a process is model dependent, owing to possibly different dynamics at production and decay
level. The advantage of the solution we present in the following is that the model dependence is
uniquely encoded in the amplitudes.
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2.2 A machine-learning-based solution

Equation (9) implies that at the phase-space–point level, the polarisation fraction is equal to the
ratio of the longitudinally polarised squared amplitude over the unpolarised one,

rL =
|ML|2

|M|2
. (11)

This statement is exact at leading order (LO) in perturbation theory for each partonic channel
occurring in the process. It means that computing rL for a given process requires the knowledge
of the full kinematics as well as of the flavours of the partonic-process external particles.

Considering an unpolarised event sample, this ratio can be computed for each event sep-
arately. One can therefore tag each event as longitudinally polarised or not by sampling on
the value of rL. From the unpolarised event sample, one can therefore obtain a longitudinally
polarised sample. This procedure is completely equivalent to generating a longitudinal sample
from scratch. It follows that the fully differential knowledge of rL allows for the assessment of
longitudinal polarisation on a even-by-event basis. We note that while Eq. (5) does not guar-
antee this ratio to be comprised between 0 and 1, in practice it is and allows a straightforward
sampling without requiring to determine the minimum and maximum of rL beforehand.

As mentioned above, this procedure is exact at LO accuracy. It can actually be extended
to a LO sample with parton-shower (PS) corrections using a similar procedure. Considering an
unpolarised sample at LO+PS accuracy, one can compute rL with the original event (before
showering) and tag the event after showering based on the value of rL. Again, this procedure is
equivalent to generate a longitudinal sample at LO+PS accuracy from scratch2.

Key concept Given the possibility to evaluate rL, one can tag events as longitudinally po-
larised. While doable theoretically, this is unfortunately not possible experimentally as the
evaluation of rL at the event level requires the knowledge of all momenta and flavours of the
initial and final partons, an information which is not available experimentally. Instead, what is
available experimentally is the knowledge of the final-state momenta which constitutes therefore
only a partial information. The central idea is therefore to bypass this lack of information by us-
ing a neural network (NN) to obtain an approximate value of rL called r̃L which in turn depends
only on the experimental information available. In other words, the NN is trained to mimic rL
with an incomplete information. Later, we show that this method is applicable in practice.

It implies, therefore, that one can use r̃L to tag experimental events as longitudinal. The
longitudinal fraction extracted in this way can then be compared against theoretical predictions.
If rL is computed within the SM, an agreement between the theoretical predictions and the
extracted value of the fraction indicates that the data is compatible with SM expectations. On
the other hand, a disagreement would be the sign of a failure of the SM to describe the physics at
hand. The procedure can be applied not only to the SM but also to any UV-complete model as
well as to rather model-independent frameworks like simplified models or effective-field theories.

The method we propose does not require any fitting procedure. It is by definition multi-
dimensional and therefore ensures that all possible information available experimentally is used.
It is also very flexible with respect to the phase-space requirements. In fact, if the training is

2Note that instead of Eq. (11), we have also considered a variation of it, namely: rD,L = |MD,L|2 / |MD|2,
where the subscript D denotes the decay of the gauge bosons. It turned out that this variable is not sufficient to
reproduce the full longitudinal fraction.
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done in an inclusive phase space, the trained model can be used in any fiducial volume that is
more restrictive.

In summary, the key idea of our approach is to relate the tagging of LHC events to a single
theoretically clean quantity, using machine learning to cope with incomplete information.

3 Application: Z+jet

In order to illustrate the newly devised method, we apply it to the extraction of the longitudinal
polarisation of a Z boson in Z+j production at the LHC. We would like to emphasis that, in spite
of possibly different input features for the training of the NN for a different process, our method
is fully general and can be applied to any process featuring one or several Z or W boson(s). The
process we consider is,

pp → j + Z(→ µ+µ−) +X . (12)

While providing a non-trivial test-bed, this reaction is particularly suited for polarisation studies
as it has a very high cross section and allows for the full reconstruction of the final state.

Note that the production of a muon-antimuon pair is mediated by a photon and a Z boson.
However, since we aim at extracting the polarisation of an intermediate Z boson, the photon
contribution is regarded as an irreducible background to be subtracted before any polarisation
analysis [36, 40]. In the presence of a cut on the lepton-pair invariant mass around the Z pole
mass, the photon background (as well as the photon-Z interference) is typically small. In the
setups considered here (see Sect. 3.1), this irreducible background is at the level of 1%, estimated
from a comparison between the Z-mediated signal of Eq. (12) and the full off-shell calculation of
pp → j + µ+µ−.

Since we are interested in polarised signals, we choose to define polarisation vectors in the
Lorentz frame where the Z boson and the jet are back to back, which coincides (at LO) with
the partonic centre-of-mass frame. This reference frame is the one where the 2 → 2 scattering
happens and can be entirely reconstructed up to experimental uncertainties. Therefore, this
choice is well motivated both from a theoretical and from an experimental viewpoint. We stress
that any polarisation extraction from simulated events or experimental data is frame dependent.
This means that, although the general strategy we propose can be applied to any polarisation-
frame definition, the application considered here depends on the specific choice of the polarisation
frame. In practice, the rL quantity defined in Eq. (11) takes different values when computed for
the same phase-space point but for different polarisation-frame choices, therefore the NN-training
stage is tailored to the specific choice of polarisation frame.

3.1 Input parameters and event selections

In this section, we list the input SM parameters used for the numerical computations and the
event selections considered for the phenomenological analysis.

The simulations are performed at a centre-of-mass energy of
√
s = 13.6TeV for proton-

proton collisions at the LHC. The parton distribution function NNPDF31_nlo_as_0118 [68] has
been utilised thanks to Lhapdf [69]. The renormalisation and factorisation scales are fixed to

µR = µF = MZ. (13)

The EW coupling is fixed through the Gµ scheme [65, 70] is used for the electroweak coupling as

α =

√
2

π
GµM

2
W

(
1−

M2
W

M2
Z

)
with Gµ = 1.16639× 10−5 GeV−2 . (14)
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The following masses and widths have been taken,

MZ = 91.188GeV, ΓZ = 2.49877GeV,

MW = 80.419GeV, ΓW = 2.09291GeV. (15)

The masses or widths of all other particles do not play a role in this process or have been set to
zero. Note that these parameters are essentially the default ones in MG5_aMC@NLO [71].

A number of different event selections are used in this work. The first one, which we label
generation-level, is characterised by a transverse-momentum and rapidity cut on the leading jet,
as well as an invariant-mass cut on the charged-lepton pair,

pT,j > 10GeV , |yj| < 5, and 76GeV < Mµ+µ− < 106GeV . (16)

With this setup we have generated the initial parton-level event samples for both unpolarised
and longitudinally polarised Z bosons.

The second selection, labeled inclusive, used for some of the phenomenological results with
and without PS effects, is characterised by slightly more restrictive cuts, in order to avoid biasing
the PS application, namely,

pT,j > 20GeV , |yj| < 4, and 81GeV < Mµ+µ− < 101GeV . (17)

Notice that both the generation-level and inclusive setups avoid any additional cut on the Z-
boson decay products, making the selections not realistic in a collider environment. However, it
enables to be as inclusive as possible for the training of NNs, ensuring that any realistic selection
will be enclosed in the phase-space region.

Finally, the third selection, which we dub fiducial, is then used to mimic a realistic setup at
the LHC. In addition to the cuts in Eq. (17), transverse-momentum and rapidity cuts are applied
on the charged leptons,

pT,µ± > 20GeV and |yµ± | < 2.7 . (18)

3.2 Tools

For the generation of longitudinal and unpolarised parton-level events, we have used version 2.7.3
of MG5_aMC@NLO [32], which enables to select intermediate-resonance helicity states in the
narrow-width approximation [60]. As a validation of the longitudinal signal, we have compared
the MG5_aMC@NLO results against those obtained with the private Monte Carlo framework
MoCaNLO, that uses the pole-approximation approach detailed in Refs. [72, 33, 34, 36, 40].
Good agreement has been found.

In order to compute PS effects, we have used version 8.244 of the Pythia8 program [73]
with standard settings. The space-like and time-like shower have been applied with both QCD
and QED effects. For what concerns QED effects, we veto further photon splittings into fermion
pairs in the shower. Note that we have not included multi-parton interactions and hadronisation
effects. The reason is to keep this example, while non-trivial, as simple as possible. We argue
that including these extra effects could simply be included upon performing a new training of
the NN. The principle of the ML technique we propose would not be hampered by different scale
choices, matching and PS settings that may be needed especially when including higher-order
effects.
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Figure 1: Structure of the neural network. Picture adapted from Ref. [76].

Finally, in order to compute rL for the various partonic channels, we have used the matrix-
element provider Recola 1 [74, 75] 3.

To obtain an approximate value r̃L, a machine learning approach was employed, utilising a
feed-forward NN. The model is built from the dataset characterised by the following twelve input
features, namely the four momenta of the (leading) jet, the antimuon, and the muon:

Ej, px,j, py,j, pz,j, Eµ+ , px,µ+ , py,µ+ , pz,µ+ , Eµ− , px,µ− , py,µ− , pz,µ− , (19)

along with the quantity rL defined in Eq. (11), representing the continuous label.
The dataset used for training and testing containes 286 073 and 285 187 elements, respectively.

As part of the data-preparation process, the dataset has been standardised according to a general
procedure where each feature is normalised, with the subtraction of the average value of the
feature and divided by its standard deviation. This approach is more suited than a min-max
normalisation, due to its lower sensitivity to outliers. The architecture of the NN is wide, and
this represents a crucial aspect of the proposed technique. Four hidden layers, consisting of 1000
nodes each, were employed. The mathematical representation of this NN involves a series of
transformations. The input x has a dimensionality of R12×1. The subsequent layers, indexed as
i ranging from 0 to 4, were computed using the formula,

z(0)(x;W ) = x,

z(i+1)(x;W ) = Wi+1σ(z
(i)(x;W )) + bi+1,

y(x;W ) = z(5)(x;W ). (20)

The weights are represented by W = (W1,W2,W3,W4,W5, b1, b2, b3, b4, b5), where W1 ∈ R1000×12,
while W2,W3,W4 ∈ R1000×1000, and W5 ∈ R1×1000. Additionally, b1, b2, b3, b4 ∈ R1000×1, and

3We used the most recent Recola 1 release (version 1.4.3) which supports helicity selections for intermediate
resonances at tree and one-loop level. Further documentation on the usage of polarisation-related subroutines
can be found at https://recola.gitlab.io/recola2/api/polsel.html#polsel.
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b5 ∈ R1×1000. The activation function used was the Rectified Linear Unit (ReLU) [77], defined
as σ(x) = max{0, x}. The structure of this NN is depicted in Figure 1.

The design of the machine learning model in this study follows the principles outlined in
Ref. [78]. According to the theory presented, the effectiveness of a NN is influenced by the
dynamics of its training process. It suggests that NNs with a “deep and narrow” architecture
exhibit chaotic dynamics during training, while those with a “shallow and wide” architecture
are easier to train. In the asymptotic case, infinitely wide NNs possess a convex loss landscape,
enabling the optimal solution to be found through gradient descent. However, such models
essentially become linear, losing the non-linear expressivity of the original network and potentially
limiting its representational capacity. Therefore, a compromise must be made between the ease of
training and the network’s expressivity. In our experiments, we achieved satisfactory performance
by employing a wide NN with a width-to-depth ratio of 200. Such a choice has been made by
empirical experimentation and refinement.

The training of the NN model was performed using the RMSprop algorithm [79], an adaptive
learning rate optimisation method specifically designed for mini-batch learning. The algorithm’s
parameters were set as follows: learning rate η = 0.001, smoothing constant α = 0.99, weight
decay of 0, and momentum of 0. The training process spanned 1000 epochs, with batches of size
500. The code implementing the model was developed in Python 3, making use of the PyTorch
library [80].

3.3 Results

The key quantity in this application is the ratio rL defined in Eq. (11). It encodes the whole
information on the longitudinal-polarisation dynamics, relatively to the polarisation balance in
the unpolarised process. As such, it determines the shape and normalisation of the kinematic
distributions for the longitudinal signal. It is therefore a multi-dimensional function with as
many dimensions as the number of random variables needed to generate the momenta of the
full final state. As explained above, this ratio is actually different for each partonic channel.
It means that in order to evaluate it on an event-by-event basis, one does not only need the
full kinematic but also the knowledge of the partonic channel. In order to have a feeling about
the structure of rL, we show in Fig. 2 the differential distribution in rL for unpolarised events,
in the generation-level setup. We also show, for comparison purposes, the distribution in the
corresponding rT and rint ratios, that are respectively defined as,

rT =
|MT|2

|M|2
and rint =

2Re (M∗
LMT)

|M|2
= 1− rL − rT . (21)

From Eq. (21) and Fig. 2, it is clear that, since all amplitudes are complex numbers, the interfer-
ence term can take negative values, and both rL and rT can exceed the unit. Owing to a peak at
1, the rT distribution in Fig. 2 suggests that in the considered process the transverse-polarisation
component is way larger than the longitudinal one. This is a well-known result in the SM [11, 12].
It also shows that the proposed method is particularly efficient as it can make full use of this
discriminating power.

rL-reweighting/tagging The first key observation that we have made above is that unpo-
larised event samples can be reweighted/tagged4 using rL to obtain longitudinally polarised

4In the following, we use indistinguishably reweighting and tagging unless otherwise stated. In the reweighting
approach, the event weights rL (or r̃L) are directly used to compute longitudinal distributions. In the tagging
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normalised to the unpolarised total cross section. The generation-level setup is understood.

accuracy MC truth rL-reweighting
inclusive setup

LO 0.1704(4) 0.1703(3)
LO + PS 0.1722(4) 0.1725(3)

fiducial setup
LO 0.1879(6) 0.1883(6)
LO + PS 0.1889(6) 0.1894(6)

Table 1: Longitudinal-polarisation fraction determined from MC-truth longitudinal events and
from rL-reweighting of unpolarised events, in the inclusive and fiducial setups. Monte Carlo
uncertainties on the fractions are shown in parentheses.

samples. This statement does not only hold at LO but also when including PS effects, thanks to
the factorisation of the radiative corrections as implemented in a PS, i.e. adding multiple QCD
and QED radiations in the collinear approximation at leading-logarithmic accuracy. This can be
seen in Fig. 3, where two differential distributions are shown at LO and LO+PS accuracy. The
distributions obtained with the rL-reweighting reproduce very well those obtained with longitu-
dinal events generated with the Monte Carlo (MC truth). This confirms that a longitudinally
polarised sample can be obtained by simply reweighting an unpolarised one with rL factors. In
addition, one can observe that while the PS corrections are sizeable (boh in the overall nor-
malisation and in the distribution shapes), the statement about the reweighting is equally true
in the presence of PS corrections. From the results of Table 1, it can also be appreciated how
the rL-reweighting performs well both in inclusive setups and in the presence of more exclusive
selection cuts. The differential results analogous to those of Fig. 3 but in the fiducial setup

approach, the longitudinal sample is extracted from the unpolarised one by means a one-dimensional sampling
according to rL (or r̃L) weights. The selected events are then used to compute the longitudinal distributions.
Notice that the two methods are equivalent within statistical uncertainties.
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Figure 3: Longitudinal reweighting of unpolarised events with rL (orange) compared to MC-
truth longitudinal events (red) at LO (solid) and LO+PS (dashed). Absolute differential cross
sections are shown in the top panel, ratios of reweighted results over MC-truth ones are shown
in the bottom panel. The following observables are considered: cosine of the angular separation
between the antimuon and the leading jet (left), leading-jet transverse momentum (right). The
inclusive setup is understood here.

(not shown here) also highlight an almost perfect behaviour of the reweighting method as in the
inclusive setup.

Leading order Turning the problem around, the results detailed in the previous paragraph
imply that experimental data (here idealised by LO+PS unpolarised events) can be used to
extract polarisation fraction provided that rL is known and can be computed on an event-by-
event basis. Actually, rL cannot be computed from experimental data, which do not give access
to the full kinematic dependence (including the initial state) and to the flavour of all external
particles. To bypass this issue, one can use NNs to obtain an approximation r̃L of the true ratio,
based on an incomplete information, namely the one available experimentally which consists in
the visible final-state momenta. Along this line, the first step is therefore to check if one can
obtain a good approximation of rL at LO by training a NN in a supervised setting, as described
above, with rL as input label and the final-sate jet momentum and lepton momenta as incomplete
information for the training features.

In Table 2 and Figs. 4–5, two different NNs, predicting r̃L factors as approximations of the
rL ones, are compared against the true Monte Carlo results, both at the level of polarisation
fractions and at the level of differential cross sections. The first network (labeled NN1, purple
curves in plots) underwent training for 106 epochs, employing a batch size of 100 and a learning
rate of 10−4. The second network (labeled NN2, olive curves in plots) was trained for 2 × 103

epochs, using a batch size of 500 and the same learning rate. The generation-level events were
used for the training.

The results of Table 2 show a good performance of the NN 1 model in reproducing the
polarisation fractions both at inclusive and fiducial level with sub-per-cent accuracy. The NN2
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Figure 4: Longitudinal reweighting of unpolarised events with r̃L predicted by two different NN
models (olive and purple curves) compared to MC-truth longitudinal events (red curve) at LO.
Absolute differential cross sections are shown in the top panel, ratios of reweighted results over
MC-truth ones are shown in the bottom panel. The following observables are considered: cosine
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Figure 5: Same structure as Fig. 4. The fiducial setup is understood.
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setup MC NN 1 NN 1/MC NN 2 NN 2/MC
inclusive 0.1704(4) 0.1705(5) 100.1% 0.1649(5) 96.8%
fiducial 0.1879(6) 0.1904(8) 101.3% 0.1812(8) 96.4%

Table 2: Longitudinal-polarisation fractions at LO determined from Monte Carlo-truth longi-
tudinal events (MC) and from reweighting of unpolarised events with NN-predicted r̃L (NN),
in the inclusive and fiducial setups. Monte Carlo uncertainties on the fractions are shown in
parentheses. The NN-predicted fractions are assigned Monte–Carlo-like uncertainties according
to the number of events at testing level.

model underestimates the longitudinal fraction by 3-4%.
In Figs. 4 and 5, the cosine of the angular difference between the positive lepton and the

jet as well as the transverse momentum of the jet are shown. The two figures differ in their
phase-space regions: Fig. 4 is for the inclusive setup while Fig. 5 is for the fiducial one. One
observes that the first NN is reproducing better the true result. In general, the agreement is at
the per-cent level for the phenomenologically relevant part of the phase space and therefore good
enough for our purpose. Also, it is worth pointing out that in suppressed regions of phase space
where the statistics is low, the agreement degrades substantially. The limited statistics used for
the training stage in this suppressed region does not constrain strongly enough the NN model,
leading therefore to a systematic error in the NN-model prediction for r̃L. For example, above
150GeV for the transverse momentum of the jet in Fig. 5, the agreement is worth than 20%.
This is nonetheless not an issue given that this region is suppressed by two orders of magnitude,
meaning that it contributes to about 1% to the cross section and therefore introduces only a
per-mille error or less in total.

Finally, we note that the results for the inclusive and fiducial setups are equally good. The
only difference that one can notice is that the fiducial results suffer from larger fluctuations. This
can be attributed to the lower statistics used in the fiducial case (≈ 220k events), owing to more
restrictive selections that cut away more than half of unpolarised events used in the inclusive
setup (≈ 480k events).

Parton-shower effects Overall, the above results prove that the method is reliable also in
typical experimental regions. Nonetheless, this is a simplified version of the problem as this
exercise was performed at LO meaning for events of identical multiplicity. A more realistic
description of the data necessarily requires PS corrections. Indeed LHC events are typically
affected by several effects such as multi-particle interactions, beam remnants, hadronisation,
extra QCD and QED radiations etc. These phenomena are well described by multi-purpose PS
programs like Pythia [73]. In our case, we have included QCD and QED radiations but other
effects could equally be included.

In order to account for PS effects in our method, one can try to use the previous NN trained
with LO events and apply it to events modeled with PS corrections. The results of this procedure
are shown in Fig. 6 for the cosine of the angular separation between the antimuon and the leading
jet, and for the leading-jet transverse momentum. Notice that in this case, we have only included
effects from QCD PS, avoiding further photon radiations. From the plots, it is rather clear that
this approach is failing. The reason for this is that the PS generates more QCD radiations leading
to a sizeable distortion of the event kinematics. In fact, comparing Fig. 6 with the fixed-order
results in Fig. 3, one observes that applying the NN trained with LO events to LO+PS events

14



0

50

100

150

200

250
d

/d 
co

s
+

j [
pb

]
Longitudinal signal in Z+j @ 13.6TeV: r MC

L  vs rDNN
L , LOPS, inclusive

MC truth
rew. with rDNN2

L

0.75 0.50 0.25 0.00 0.25 0.50 0.75
cos + j

0.8

0.9

1.0

1.1

1.2

ra
tio

 to
 M

C 
tru

th

10 3

10 2

10 1

100

d
/d 

p T
,j 

 [p
b/

Ge
V]

Longitudinal signal in Z+j @ 13.6TeV: r MC
L  vs rDNN

L , LOPS, inclusive

MC truth
rew. with rDNN2

L

25 50 75 100 125 150 175 200
pT, j [GeV]

0.8

0.9

1.0

1.1

1.2

ra
tio

 to
 M

C 
tru

th

Figure 6: Longitudinal reweighting of unpolarised LO+PS events with r̃L from the NN model
trained with LO events (olive curve), compared to MC-truth longitudinal events (red curve) at
LO+PS (QCD shower only). Absolute differential cross sections are shown in the top panel,
ratios of reweighted results over MC-truth ones are shown in the bottom panel. The following
observables are considered: cosine of the angular separation between the antimuon and the
leading jet (left), leading-jet transverse momentum (right). The inclusive setup is understood.

tends to reproduce the LO distribution shapes rather than the LO+PS ones.
As shown previously, one can apply a reweighting of the unpolarised sample and then apply

the PS procedure or viceversa in order to obtain a longitudinally polarised sample with PS effects.
This also means that for each showered event one can compute rL with the original LO momenta
before PS and therefore associate a meaningful rL to each showered event. One can therefore
train a new NN with the original rL (computed before showering) along with the momenta after
showering. Given that showered events possess more than one jet, only the four momentum of
the jet with the largest transverse momentum is provided as a feature for the NN-model training.

In order to tackle this problem, we adopted the following training strategy. First, a wide
neural network (labeled NNws) is trained using a warm-start initialisation [81]. Utilising the
warm-start approach in training NNs involves initialising the model with weights from a previ-
ously trained model. This strategy potentially accelerates convergence, enhances performance,
and reduces the need for extensive data, creating an efficient framework for model training. From
a physics intuition, in the generation chain that starts with LO process and move to LO+PS,
this step does not represents a completely new learning task rather it is a perturbation of the
original process. It follows that the procedure involved utilising the configuration of the network
previously trained on the LO events and starting the training with the LO+PS events from its
optimal configuration in terms of architecture of the NN and its relative weights. This procedure,
which is well-known in other machine-learning applications, has not been yet fully exploited in
high-energy physics. Skipping a complete NN architecture optimisation procedure is advanta-
geous because of the faster identification of the best model and of the computational-resource
saving. For the sake of comparison, a second general NN (labeled NNnows) is built from scratch,
looking for the best depth-to-width ratio with a randomly chosen initial configuration.
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Figure 7: Longitudinal reweighting of unpolarised events with r̃L from two different NN models
(blue and green curves) compared to MC-truth longitudinal events (red curve) at LO+PS (both
QCD and QED showers included). Absolute differential cross sections are shown in the top panel,
ratios of reweighted results over MC-truth ones are shown in the bottom panel. The following
observables are considered: cosine of the angle between the antimuon and the leading jet (left),
transverse momentum of the leading jet (right). The inclusive setup is understood.
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Figure 8: Same structure as Fig. 7. The fiducial setup is understood.
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setup MC NNws NNws/MC NN nows NN nows/MC
inclusive 0.1722(4) 0.1705(3) 99.0% 0.1646(3) 95.6%
fiducial 0.1889(6) 0.1853(5) 98.1% 0.1791(5) 94.8%

Table 3: Longitudinal-polarisation fractions at LO+PS determined from Monte Carlo-truth lon-
gitudinal events (MC) and from reweighting of unpolarised events with NN-predicted r̃L (NN),
in the inclusive and fiducial setups. Monte Carlo uncertainties on the fractions are shown in
parentheses. The NN-predicted fractions are assigned Monte–Carlo-like uncertainties according
to the number of events at testing level.

The results provided by these two models are reported in Table 3 and Figs. 7–8 (green curves
for NNws, blue curves for NNnows). As one can see from both integrated and differential results
that the NN with warm start is outperforms the one built from scratch. From the results, it
is clear that the warm start has beneficial effects on the NNs. Firstly, it biases the training
towards solving a similar task, allowing the network to adjust its parameters to the new data,
which limits the search space and leads to faster convergence. Additionally, as the problem
becomes easier to solve, the quality of the solution improves. From a physics viewpoint, the
good behaviour of the NNws implies that the LO step is actually of crucial importance to be able
to use this method in an experimental analysis. In particular, the results are per-cent accurate
at the level of polarisation fractions, which is good enough for the level of precision of this study.
Considering differential observables, Fig. 7 refers to the inclusive case while Fig. 8 refers to the
fiducial case. The same conclusions as at fixed order hold, namely that the limited statistics do
play a role in the accuracy of the method, as can be observed in the far tails of the transverse-
momentum distribution in Fig. 8 or in other phase-space regions which are the least populated
ones. Nonetheless, at 100GeV in the transverse-momentum distribution of the leading jet, a
10-20% mismodelling can be observed. These effects cannot be solely attributed to the statistics
but should be considered as a systematic error of the NN. This mismodelling might originate from
PS effect as shown in Fig. 3 where the region around 100GeV marks a quantitative change in
the PS corrections. This could also be interpreted as a limitation of the NN model to capture all
features. Nonetheless, these 10-20% discrepancies appears in bins that are suppressed by almost
two orders of magnitude and therefore they are not physically significant when integrating over
the whole transverse-momentum spectrum. Hence, the method proposed here is still per-cent
accurate.

Event tagging with r̃L As already discussed in Sect. 2.2, the probabilistic interpretation of
rL leads to the expectation that the r̃L predicted by the NN models is positive. However, the
NN models have no physics insights about this constraint and r̃L is not always positive.

It turns out that at LO+PS level, the NNs are able to predict positive r̃L for more than 99%
of the event, both in the inclusive and in the fiducial setup. Interestingly, at fixed order, the
performances are worse, with positive longitudinal weights predicted for only roughly 95% of
the events. The events for which the NN predicts negative weights give a harder pT,j1 spectrum
compared to the events with positive r̃L, highlighting that in order to improve the accuracy of
the NN also in boosted regimes, a dedicated training with boosted events is needed. We checked
that discarding the events with negative r̃L, in spite of a partial improvement in the reproduction
of the transverse-momentum shapes, overestimates by several per-cent the overall longitudinal
fraction.
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setup MC NNws-sampl NNws-sampl/MC
inclusive 0.1722(4) 0.1716(5) 99.7%
fiducial 0.1889(6) 0.1850(8) 97.9%

Table 4: Longitudinal-polarisation fractions at LO+PS determined from MC-truth longitudinal
events (MC) and sampling (NN-sampl) of unpolarised events according to r̃L predicted with the
NNws model, in the inclusive and fiducial setups. Monte Carlo uncertainties on the fractions are
shown in parentheses. The NN-predicted fractions are assigned Monte–Carlo-like uncertainties
according to the number of events at testing level.

A viable strategy could be to include a suppression function for negative r̃L at the level of
the last layer of the NN models, as a small step toward physics-informed approaches. These ones
have already been applied for classification tasks in particle physics, where enforcing symmetries
conservation for transformations under the Lorentz group, provides a much more physically
interpretable model [82]. However, there is no guarantee of improved accuracy in the NN. In our
specific case, enforcing the positivity of the label actually worsens the overall performance. This
is due to the introduction of constraints complicating the landscape of the loss function, resulting
in more challenging geometries with multiple local minima. As a result, training becomes less
effective, leading to poorer predictions from the model. We have refrained from investigating
this aspect further, as the LO+PS results are satisfactory for the present application.

So far we have indistinguishably used the expression reweighting and tagging. However,
while the reweighting strategy can be applied also in the presence of negative weights, the event
tagging is not well defined anymore in that case. In other terms, performing a longitudinal
tagging according to the NN predictions is not possible for events with negative r̃L. While at
LO accuracy this means throwing away 5% of the events, at LO+PS accuracy, which is the most
important case as it mimics the experimental environment, less than a per cent of the events
have to be thrown away, which is good enough for our purposes.

To illustrate the applicability of the method, we show final results for the event tagging,
which turns out to be equivalent to the reweighting ones, at LO+PS accuracy. In Table 4, the
polarisation fractions obtained with tagging are compared to the MC-truth ones. As expected,
these results are good and almost equivalent to the reweigthing results provided in Table 3,
since only very few events have a negative r̃L. Notice that for this comparison we have only
considered the NN that employs the warm-start approach (NNws). The results are equally good
at the differential level, as can be observed in Figs. 9 and 10 for the inclusive and fiducial setup,
respectively. In particular, in these plots, the MC-truth longitudinal distributions are compared
with those obtained reweighting and tagging according to r̃L. Both are equivalent up to statistical
fluctuations. This finally demonstrates that using r̃L with experimental inputs enables an actual
longitudinal-polarisation tagging on an event-by-event basis.

3.4 Discussion

With this non-trivial LHC application detailed in Sect. 3, we have shown that one can assert
the polarisation fraction on an event-by-event basis using amplitude information by reverting to
machine learning. The method is per-cent accurate and particularly versatile. In this section
we discuss limitations of the methods as well as possible extensions, generalisations, and further
applications.
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Figure 9: Longitudinal reweighting (solid green) and tagging (dashed green) of unpolarised
events with r̃L predicted by the NNws model compared to MC-truth longitudinal events (solid red)
at LO+PS (both QCD and QED showers included). Absolute differential cross sections are shown
in top panels, ratios over MC-truth ones are shown in bottom panels. The following observables
are considered: cosine of the angle between the antimuon and the leading jet (top left), rapidity
separation between the antimuon and the leading jet (top right), tranverse momentum of the
antimuon (bottom left), transverse momentum of the leading jet (bottom right). The inclusive
setup is understood.
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Figure 10: Same structure as Fig. 9. The fiducial setup is understood.

Validity of the method In the present example the training phase has been performed on
events spanning a very inclusive sample. The trained models have then be used on a reduced
phase-space as for typical experimental analyses. This ensures that the method is used in its
region of validity. We therefore recommend to always perform the training on a more inclusive
phase-space than the one actually used in the analysis. If this is not the case, it is not guaranteed
that the method will still work as the network has not been trained (and thus validated) in the
whole region considered at testing level. While it is not excluded that the NN can perform some
extrapolation outside its training region, this has to be carefully verified. In particular, using
the extrapolation power of the NN might require a different NN and a potentially a dedicated
study on out-of-support extrapolation problem into a problem of within-support generalization.

While the specific application considered in this work concerns pp → Z + j at the LHC, the
general idea of training a NN with experimentally accessible kinematic information and squared
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polarised amplitudes can be applied to any single- or multi-boson process at colliders. We stress
that in order to apply this strategy to another process, a new NN has to be constructed, relying
on the corresponding input features that depend on the experimental signature. For example,
for processes with final-state neutrinos, whose momenta cannot be fully reconstructed, the input
feature would be the missing transverse momentum instead of the complete momenta of the
neutrinos.

Error propagation As formulated here, the method would provide a numerical value cor-
responding to the experimentally-extracted fraction that can be compared against theoretical
predictions. Nonetheless this extracted value has uncertainty of different sources: the accu-
racy of the theory prediction it relies on, the limited statistics of the training data set, and the
experimental accuracy (both statistical and systematic) of the data.

Usually, the theoretical uncertainty on the prediction is assessed by means of scale variations
of the factorisation and renormalisation scale. The envelop of the values of rL extracted for
different scale combinations would then provide the theory uncertainty associated to rL. This
quantity being a ratio of squared amplitudes, we expect the correlated scale uncertainties to be
rather small, owing to cancellations between the numerator (longitudinal matrix element) and
the denominator (unpolarised).

The uncertainty related to the finite size of the training sample can be inferred by performing
the training with different sample sizes or by performing error propagation in the NN. The same
applies to the experimental error associated to the reconstructed event kinematics, and it can be
estimated by repeating the method using pseudo-data.

It is important to consider that NNs are complex models, and training them using stochastic
gradient descent over a non-convex landscape does not guarantee optimal parameter quality
upon convergence. In contrast, linear and kernel models can be trained more efficiently due to
their convex and low-dimensional loss landscapes, albeit resulting in simpler predictors. The
non-linearity of NNs allows them to learn new and more effective representations of the data, a
process known as feature learning [78]. This feature learning effect makes NNs more powerful
but also presents challenges in their training process. In our approach, we have opted for wide
NNs that strike a balance between linear and nonlinear models. While infinite-width NNs are
equivalent to linear models and enjoy convex optimization landscapes [83], wide networks with
finite width exhibit a slightly more challenging training landscape. Nevertheless, training wide
NNs remains effective, with the difficulty of the landscape increasing as the depth-to-width ratio
grows. Considering all these aspects related to the complexity behavior of ML models, we refrain
from assigning any intrinsic uncertainty to the predicted output.

Model independence As already mentioned, the polarisation of weak bosons is a pseudo-
observable and its extraction necessarily understands some degree of model dependence. In the
method we propose, the model dependence is encoded into the rL function. In the present work,
the SM is considered: it means that events are tagged according to SM expectations and the
longitudinal fractions extracted should be compared against the one of theoretical predictions
within the SM. Such a model dependence is impossible to avoid. In fact, even a simplified version
of rL relying only on the boson-decay matrix elements still depends on the polarisation fractions
determined by the model-specific production mechanism. However, since the method proposed
in this work is model agnostic, the same procedure can be performed with more general models,
i.e. simplified models or effective field theories, or even with UV-finite theories.
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Extension to higher orders In the present work, we have restricted our analysis to LO+PS
accuracy. Nonetheless, it is in principle possible to extend this to higher orders in perturbation
theory, at least for QCD corrections to processes with leptonically decaying bosons. If one can
produce a sample of unweighted events at a given order in perturbation theory, the presented
method can be extended.

Having unweighted events at fixed order implies having events with different jet multiplicity
(depending on the order considered). It means that for each multiplicity i = 0, 1, ..., the exact riL
can be computed using loop and/or tree amplitudes depending on the accuracy of the sample. As
ratios, they should actually be free of infrared singularities if QCD dependencies factorise from
the polarisation effects. As in the presented application, the NN can learn a single approximate
r̃L based on the experimental input available and in particular by feeding only the leading jet(s)
in the transverse momentum. Adding PS or further corrections can then be achieved as shown
in the previous sections.

We stress that we have not explicitly tested this method with higher orders and therefore that
if ones wants to use this proposal, it should be carefully checked first. In particular, the main
assumption here is that QCD corrections and polarisation effects factorise to a large extend (as
PS and polarisation effects). This implies that the inclusion of EW corrections would probably
requires a more refined analysis given that they are known not to factorise.

Generalisation to other problems As highlighted several times, the key aspect of the
method is to encode the whole physics problem in one single ratio (in the present application rL)
which can be approximately reconstructed using incomplete information thanks to NN methods.
It therefore implies that the method can be applied to any physics problem that can be cast in
this form. The only requirement being that the key quantity is bounded as it is the case for
ratios of amplitudes. It also means that appropriate problems for this method are the extraction
of a signal over a background which is very common in experimental particle physics.

4 Conclusions

The polarisation of heavy gauge bosons encodes the intricate structure of the electroweak sector
of the Standard Model. The theoretical study and the experimental extraction of such pseudo-
observables is thus of prime importance for the present and upcoming physics programme of
the LHC. It is therefore key to combine our theoretical understanding to make use of all the
information available in experimental data in order to probe the structure of the Standard Model
at the deepest.

In this work, we have designed an original method to extract polarisation fractions using the
maximal information encoded in the amplitude thanks to the versatility of neural networks. The
key feature is that all information is encapsulated in a single number which can be computed on
a event-by-event basis. In particular, the neural network is able to construct a particularly good
approximation of this quantity which can then be evaluated with incomplete information, namely
the one available in experiments. This number allows to assert whether an event is most likely
longitudinally polarised or not. In this way, all information i.e. the fully differential information
is exploited and not only the information contained in one or several observables as it is the case
for other methods. It also means that no fitting procedure is required. Another advantage is
that the theory dependence is clearly identified as it is only encoded in the amplitude. Finally,
the amplitude considered can be the one of arbitrary-general or -specific models of quantum field
theory.
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To illustrate the method, we have applied it to the extraction of the longitudinal polarisation
of a Z boson in the hadronic process pp → Z + j, in the leptonic decay channel at the LHC.
We have demonstrated that the idea is working with a per-cent accuracy by reverting to the
sequential training of a neural network. In particular, when being used in actual experimental
analyses, the closure tests that we have presented here should be carried out to ensure the
correctness of the results.

Finally, we point out that the method we have developed is very general. It can therefore be
applied to other problems and/or generalised. In particular, the method seems to be particularly
appropriate for the extraction of signals over irreducible or even reducible background.
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