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Decoding Nature with Nature’s Tools: Heterotic Line Bundle
Models of Particle Physics with Genetic Algorithms and
Quantum Annealing
Steve A. Abel, Andrei Constantin,* Thomas R. Harvey, Andre Lukas, and Luca A. Nutricati

The string theory landscape may include a multitude of ultraviolet
embeddings of the Standard Model, but identifying these has proven difficult
due to the enormous number of available string compactifications. Genetic
Algorithms (GAs) represent a powerful class of discrete optimisation
techniques that can efficiently deal with the immensity of the string
landscape, especially when enhanced with input from quantum annealers. In
this letter, we focus on geometric compactifications of the E8 × E8 heterotic
string theory compactified on smooth Calabi-Yau threefolds with Abelian
bundles. We make use of analytic formulae for bundle-valued cohomology to
impose the entire range of spectrum requirements, something that has not
been possible so far. For manifolds with a relatively low number of Kähler
parameters, we compare the GA search results with results from previous
systematic scans, showing that GAs can find nearly all the viable solutions
while visiting only a tiny fraction of the solution space. Moreover, we carry out
GA searches on manifolds with a larger numbers of Kähler parameters where
systematic searches are not feasible.

1. Introduction

To appreciate the astounding efficiency of evolution it is useful
to recall the numbers involved. The human genome contains
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some 3 billion base pairs; with four types
of bases, the total number of potential
DNA combinations reaches the unfath-
omably large number of 43,000,000,000. Al-
though it is impossible to estimate how
many of these would lead to biologi-
cally functional organisms, the fraction is
likely to be extremely small.
Equally prohibitive statistics plague

string theory. Estimates on the size of the
string landscape (the set of mathemat-
ically consistent four-dimensional solu-
tions of string theory) include the famous
10500 type IIB flux compactifications,[1,2]

as well as the more recent estimate of
10272,000 F-theory flux compactifications
on a single elliptically fibered four-fold.[3]

While the number of string compacti-
fications leading to standard-like mod-
els may in itself be as large as 10700,
as estimated in ref. [4], this number is

neverthelessminute in comparison to the size of the entire string
landscape. Random sampling is guaranteed to fail at identifying
such standard-like models from string theory, as is systematic
searching which given the scales involved is simply beyond any
present or future computational capabilities. Instead, one needs
to employ methods as powerful as Nature’s.
Genetic algorithms (GAs) form a class of discrete optimisa-

tion techniques that rest on the three pillars of evolutionary dy-
namics: selection, breeding, and mutation. While a proper math-
ematical framework for understanding the performance of GAs
is currently lacking, the empirical evidence strongly indicates that
GAs are highly efficient in identifying viable solutions within
very large search spaces. In the context of string model build-
ing, ‘good solutions’ correspond to compactifications whose low-
energy symmetry and particle content match those of the Stan-
dard Model and whose (stabilised) moduli explain all its free pa-
rameters.
In this paper we focus on geometric compactifications in the

E8 × E8 heterotic string theory involving abelian bundles over
smooth compact Calabi-Yau threefolds. We address the first task
of recovering the gauge symmetry and the particle content of the
Standard Model, while the second task of accounting for the free
parameters will be addressed in a future study, also relying on
GAs. The use of GAs in string phenomenology is relatively new,
with several studies already indicating its huge problem-solving
potential.[5–9] The present work brings three novel elements to
the discussion.

Fortschr. Phys. 2024, 72, 2300260 2300260 (1 of 10) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.fp-journal.org
mailto:andrei.constantin@physics.ox.ac.uk
https://doi.org/10.1002/prop.202300260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202300260&domain=pdf&date_stamp=2023-12-21


www.advancedsciencenews.com www.fp-journal.org

Firstly, the recent discovery of analytic formulae for cohomol-
ogy dimensions of line bundles over Calabi-Yau threefolds[10–13]

allows us to implement a GA search with the full set of spectrum
constraints. In this way we bypass computations in commuta-
tive algebra whose complexity can be as large as doubly expo-
nential in the number of variables and which cannot possibly be
carried out alongside a GA. Concretely, we search for = 1 su-
persymmetric SU(5) GUTs with four additional Green-Schwarz
anomalous U(1)s, three (5, 10) generations, no exotic 10 multi-
plets and at least one vector-like 5 − 5 pair to account for the
Higgs fields. The presence of additional U(1)-factors with ultra-
heavy gauge bosons implies that the low-energy gauge symmetry
is enhanced by several effectively global U(1)s, a feature that can
be efficiently exploited in the construction of improvedmodels of
Particle Physics through the constraints imposed on the allowed
operators in the Lagrangian.[14–20] While not directly constructing
standard-like models, past experience indicates that almost every
SU(5) model meeting the above requirements allows for several
embeddings of the (minimally supersymmetric) StandardModel.
Secondly, for Calabi-Yau manifolds with a low number of Käh-

ler parameters, we are able to confront the results of the GA
search with previous systematic scans[4,18] and reinforcement
learning searches,[21] showing that GAs are indeed capable of
finding nearly all available solutions while visiting only a tiny
fraction of the solution space. Moreover, we are able to probe
manifolds with larger numbers of Kähler parameters, where sys-
tematic searches are not feasible, thereby demonstrating the real
power of the method.
Finally, following ref. [22], we consider so-called Genetic Quan-

tumAnnealing (GQA) inwhich the classical GA is enhancedwith
input from quantum annealers. This introduces a form of direct
mutation into the algorithmwhich, as we demonstrate, promises
future significant speed-up, compared to the classical GA.

2. Heterotic Line Bundle Models

In String Theory the dimension of space-time is not an input,
but a prediction: the internal consistency of the theory at quan-
tum level requires this dimension to be 10. The additional six di-
mensions escape direct observation through compacification on
manifolds of sufficiently small size, however different topologies
and geometries can lead to very different four-dimensional uni-
verses.
Several proposals for connecting String Theory and Particle

Physics have been known since the mid-80s. Although believed
to be dual to each other, each of these approaches comes with
its own set of technical hurdles. The earliest and arguably one
of the most promising proposal is the E8 × E8 heterotic string
compactified on smooth Calabi-Yau threefolds with holomorphic
vector bundles.
In this context, the geometrical data describing the additional

dimensions consists of a Calabi-Yau threefold X which reduces
the number of large space-time dimension from 10 to 4, and a
holomorphic bundle V on X , needed to break the E8 × E8 gauge
symmetry to the Standard Model gauge group or to one of its
grand unification embeddings. The set of topologically distinct
pairs (X, V) that can serve as compactification data is virtually
unbounded, however, there are strong hints that physically viable

models can only be found within a finite, though extremely large,
subset.[18,23]

Two key questions arise at this point. 1) How can one deal
with the extremely large number of possible compactifications
in order to identify the most promising ones? 2) How far can the
analysis of String Theory models be pushed so as to become rel-
evant for Particle Physics? These questions receive the best an-
swers within the class of compactifications where V is a sum
of line bundles. In this case, two of the major technical diffi-
culties, checking slope-stability of the bundle and checking the
low-energy spectrum, become manageable. Stability checks are
relatively straightforward due to the split nature of the bundle,
while computations of the spectrum are made virtually instan-
taneous by the aforementioned discovery of line bundle coho-
mology formulae.[10,13] As a result, deciding the physical viability
of a heterotic line bundle sum model at the level of the particle
spectrum (three families of quarks and leptons, the presence of
a Higgs field and the absence of any exotic matter charged under
the Standard Model gauge group) can be accomplished within
a fraction of a second, something that has never been possible
before. By comparison, traditional constructions in the literature
have taken several years of laborious work to achieve a compara-
ble level of analysis.
Another salient feature of line bundle models is the presence

of additionalU(1)-symmetries, which can restrict the allowed op-
erators in the Lagrangian in a way that is robust against deforma-
tions away from line bundle sums.[23] In this way, the U(1) sym-
metries give rise to Froggatt-Nielsen models of fermion masses
and mixings within string theory.
More concretely, throughout this letter, V will be a rank-5 line

bundle sum V = ⊕5
a=1La over a Calabi-Yau threefold X , so that

the resulting model has SU(5) × S(U(1)5) symmetry. The nota-
tion La = X (ka) indicates a line bundle with first Chern class
c1(La) = kiaJi, where kia are the components of the integer vec-
tors ka ∈ ℤh and (J1,… , Jh) is a suitably chosen basis ofH

2(X,ℤ),
with dimension h = h1,1(X ). The five integer vectors (k1,… , k5)
uniquely specify the line bundle sum V . The manifold X will be
assumed to admit a free action of a non-trivial discrete group Γ,
such that the quotient manifold X∕Γ has a non-trivial fundamen-
tal group (in fact, isomorphic to Γ). Given such a group action,
there are, in general, several ways to break SU(5) to the SM group
using an appropriate discrete Wilson line on X∕Γ. Fixing X , the
aim will be to identify the line bundle sums V that satisfy the
following constraints:

(C1) E8 embedding

c1(V) =
5∑

a=1
ka

!
= 0 . In order to guarantee that the structure

group of V is S(U(1))5 and not smaller, no proper subsets
of line bundles in V are allowed to have a vanishing first
Chern class.

(C2) Anomaly cancellation

c2,i(V) = −1
2
dijk

5∑
a=1

kjak
k
a

!≤ c2,i(TX ) ,

∀i = 1,… , h, where dijk denote the triple intersection num-
bers and c2(TX ) the second Chern class of the tangent bun-
dle of X , relative to the basis (J1,… , Jh).

(C3) Supersymmetry/poly-stability
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There exists a non-trivial common solution ti to the van-
ishing slopes

𝜇(La) = dijkk
i
at
jtk

!
= 0 fora = 1,… , 5

such that J = tiJi is in the interior of the Kähler cone, which
in our examples corresponds to ti > 0. Solving the slope-
zero equations is computationally expensive and this check
is replaced by the weaker condition that each of the fivema-
trices Ma = (dijkk

i
a) has at least one positive and one nega-

tive entry. Moreover, the same should hold for every linear
combination vaMa. In practice, considering all the vectors
va with integer entries between −2 and 2 provides a strong
enough check.

(C4) Spectrum:
cohomology dimensions must satisfy 10-multiplets:
h1(X, V) = 3|Γ|
no 10-multiplets: h2(X, V) = 0
5-multiplets: h1(X,∧2V) = 3|Γ| + nh, nh > 0
Higgs: h2(X,∧2V) = nh Here |Γ| is the order of the discrete
group Γ and nh represents the number of Higgs doublet
pairs. In the absence of a cohomology formula, (C4) can
be replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum
𝜒(X, V) = 𝜒(X,∧2V) = 3|Γ|

(C5) Equivariance
Require that V descends to a bundle on X∕Γ. For sym-
metries acting trivially on the basis (J1,… , Jh) we require
that the Euler characteristic of every (maximal) partial sum
⊕ai

Lai in V consisting of line bundles with identical first
Chern classes, is divisible by |Γ|. For symmetries with a
non-trivial action on the basis (J1,… , Jh), V must admit a
partition into partial sums that are invariant under the in-
duced action of Γ on (J1,… , Jh) and, moreover, the Euler
characteristic of each partial sum must be divisible by |Γ|.

The GA scans discussed below have been carried out on four
different Calabi-Yau threefolds realised as complete intersections
in products of projective spaces. Using the standard notation for
configuration matrices, with superscript indices on X indicating
the Hodge numbers (h1,1(X), h1,2(X)) and a subscript index indi-
cating the position in the CICY list,[24] these four manifolds are
generic members of the following deformation families:

X (4,68)
7862 =

ℙ1

ℙ1

ℙ1

ℙ1

⎡⎢⎢⎢⎢⎣
2
2
2
2

⎤⎥⎥⎥⎥⎦
, X (5,45)

7447 =

ℙ1

ℙ1

ℙ1

ℙ1

ℙ1

⎡⎢⎢⎢⎢⎢⎣

1 1
1 1
1 1
1 1
1 1

⎤⎥⎥⎥⎥⎥⎦

X (6,30)
5302 =

ℙ1

ℙ1

ℙ1

ℙ1

ℙ1

ℙ1

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1
0 1 1
1 1 0
1 1 0
1 0 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
, X (7,27)

4071 =

ℙ1

ℙ2

ℙ1

ℙ1

ℙ1

ℙ2

ℙ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

All four embeddings are favourable, in the sense that a basis
(J1,… Jh) of H

2(X,ℤ) can be obtained by pulling back to X the
Kähler classes of the h projective factors. Line bundle cohomol-
ogy formulae on the manifolds X7862 and X7447, used to imple-
ment the constraints (C4) in the GA searches, are presented
in Appendix B. For the manifolds X5302 and X4071 cohomology
formulae are not yet available and we have used the weaker
spectrum constraint (C4’). The first three manifolds admit sym-
metries of orders 2 and 4 which leave the basis (J1,… Jh) in-
variant, while X4071, admits a free action by ℤ2 which maps
(J1, J2, J3, J4, J5, J6, J7) → (J1, J6, J3, J4, J5, J2, J7).

3. The Genetic Algorithm and Quantum Annealing

Fixing the manifold X , a sum of five line bundles V is speci-
fied by 4h integers (kia)

i=1,…,h
a=1,…4 , where the condition (C1) is used

to fix the fifth line bundle in terms of the first four. There are
no a priori bounds on these 4h integers. However, our previous
experience from systematic scans[4,18] indicates that only a rela-
tively small range is relevant, as bundles involving larger inte-
gers either violate the anomaly cancellation condition or fail to
match the required Euler characteristic. We choose this range as
kia ∈ {−2n + 1,… , 2n}, so that every integer can be encoded by
n + 1 bits without redundancy, and a completemodel is described
by a bit list of length Nbits = 4h(n + 1). In practice, we take n = 3
for the first three manifolds and n = 2 for the manifold X4071.
The classic GA algorithm begins by forming a random popula-

tion ofNpop individuals, that is by generatingNpop random binary
string genotypes of length Nbits. To decide how successful a par-
ticular individual is, we define a fitness function f : 𝔽Nbits

2 → ℝ on
this set of binary strings, which indicates how close the corre-
sponding bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The popula-
tion is then evolved via the three main evolutionary ingredients:
selection, breeding, and mutation. We use a selection method
based on fitness-ranking, which means that individuals are se-
lected for breeding with a probability that increases linearly with
their ranking, such that the probability for the fittest individual
to be selected is a multiple 𝛼 of the probability for the least fit
one. Typically, 𝛼 is chosen in the range 2 ≤ 𝛼 ≤ 5. The breeding of
the Npop∕2 pairs that are selected in this manner is implemented
by cutting and splicing each pair at a number of matching ran-
dom points. Typically (and, in particular, in this work) a single
point cross-over performs well enough, in which a cut is made
at a single random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction of bits in
the newly formed generation is flipped. It is worth highlighting
the crucial importance of mutation, in the absence of which the
system stagnates. As an additional feature, our implementation
includes elitism, which means that the fittest individual in every
generation is copied to the next generation without modification.
The genetic quantum annealing algorithm (GQAA) described

in ref. [22] makes a further step by realising the genotype of indi-
viduals in a quantum mechanical way, that is, as quantum reads
on a system of spins on a quantum annealer. This approach uses
quantum annealing to enhance theGA butmaintaining the same
topology for the algorithm. This sidesteps the difficulty of encod-
ing the problem directly onto the annealer (for recent discussions
in the Physics context see ref. [25] and also ref. [26]).
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The manner in which such a GQAA enhances the classical
GA is motivated by the way that classical GAs work. To under-
stand this we can use the schema theorem of Holland as a rough
guide (notwithstanding its still controversial status). According
to the theorem, the classical GA works by propagating favourable
sets of important alleles (i.e., the schema in question) through-
out the population, such that the number of individuals with a
good schema will grow exponentially with time. However there
is clearly some redundancy in the mechanism, because the only
way that the fitness gifting abilities of a particular schema can
be represented is through the number of individuals in the pop-
ulation that carry it. The GQAA works by instead representing
individuals in terms of continuous biases and couplings on a
quantum annealer. These continuous allele values are called the
classical genotype. In order to extract the phenotypes of all the in-
dividuals, the first step is to produce a so-called quantum geno-
type for them all by reading off the corresponding discrete spin
values produced in a quantum anneal. The quantum genotypes
that emerge from the quantum anneal are isomorphic to those
in the classical GA. Thereafter the calculation of the phenotype
and fitness, the selection and the breeding is all performed clas-
sically in the usual way, with the result being used to define the
next generation of biases and couplings.
The advantage of this arrangement is that now the fitness can

be represented continuously in the spin biasing of each individ-
ual. Thus, for example, the classical genotype of a very fit indi-
vidual will strongly bias its preferred quantum genotype, while a
weaker individual is more likely to be influenced by the stronger
individuals to which it couples. In this way the representation of
the fitness yielding advantage of a particular schema is enhanced
beyond simply counting the number of individuals in the pop-
ulation that carry it. This quantum annealing step can then be
thought of as a form of directed mutation, namely a mutation in
which the prior fitness of the parents influences the offspring that
are produced, as does the presence of much fitter individuals in
the population. Indeed, it completely replaces the classical muta-
tion step. There are several other aspects of the GQAA (especially
regarding the preferred format of the couplings between individ-
uals in the population) which are further described in ref. [22].
Note that in the limit in which there is no coupling between

the spins on the annealer such that there are only biases, and
in which the annealing is carried out perfectly adiabatically, the
classical genotype determines the quantum genotype exactly, and
the GQAA becomes a classical GA in this limit. This allows a
direct comparison of the potential enhancement conferred by the
GQAA using an otherwise identical system.

4. Results

Let us begin with the classical GA. We have implemented the
classic GA and the line bundle environment (performing the bi-
nary encoding and the computation of the fitness function) in C,
and the code is available here.[27,28] We performed seven different
searches, as summarised in Table 1. Each search was divided into
a large number of genetic episodes, with every episode contain-
ing 300 generations of 300 individuals each. The mutation rate
was set to 0.5%, and the selection probability factor to 𝛼 = 3.

Table 1. Summary of results for the 7 GA searches. The table compares
the number of models found here (GA) with numbers found in previous
comprehensive searches (Scan) for manifolds with h < 7, both as actual
numbers and as percentages. For the first three manifolds these numbers
refer to the models that pass a sufficient criterion for poly-stability, per-
formed after the GA search. The last column indicates the fraction of the
environment explored in the GA search.

Manifold h |Γ| Range GA Scan Found Explored

7862 4 2 [-7,8] 5 5 100% 10−10

7862 4 4 [-7,8] 30 31 97% 10−10

7447 5 2 [-7,8] 38 38 100% 10−14

7447 5 4 [-7,8] 139 154 90% 10−14

5302 6 2 [-7,8] 403 442 93% 10−19

5302 6 4 [-7,8] 722 897 80% 10−19

4071 7 2 [-3,4] 11,937 N/A N/A 10−14

4.1. The Manifolds X7862, X7447, and X5302

Systematic and comprehensive scans on these manifolds have
been previously carried out in ref. [18]. On the manifold X5302 a
search using reinforcement learning was carried out in ref. [21].
Our purpose here is to gauge the GA performance as a heuristic
method of search. The results are surprising. For the manifold
X7862 with h1,1(X ) = 4, the environment contains ∼1019 line bun-
dle sums.1 All ℤ2-models and 97% of the ℤ4-models were found
after visiting a fraction of 10−10 of this environment. For theman-
ifold X7447 with h

1,1(X) = 5, the size of the environment is ∼1024.
All ℤ2-models and 90% of the ℤ4-models were found after visit-
ing an even smaller fraction of 10−14 of the environment. Most
impressively, for the manifold X5302 with h

1,1(X) = 6 the environ-
ment contains∼1029 bundles and after visiting only a tiny fraction
of 10−19 of it, 93% of the ℤ2-models and 80% of the ℤ4-models
were found.
In Figure 1 we present the saturation curve for the number

of inequivalent ℤ4-models found in the GA search on X7447 as a
function of the number of states visited. Similar saturation curves
were also obtained in the other cases. An important common fea-
ture of these saturation curves, relevant for evaluating the per-
formance of the GA, is that the initial rate of finding new viable
models is of order 1 (inequivalent) models per 100 episodes. This
implies that, although the size of the environment increases by
several orders of magnitude with every additional Kähler param-
eter, while the number of viable models is expected to increase
only by an order of magnitude, the initial rate at which the GA
identifies these is independent of the number of Kähler parame-
ters.
The computational time required for a genetic episode is

O(10)s on a standard desktop and displays a linear increment
with the number of Kähler parameters (∼23s for X5302, compared
to ∼17.5s for X7447 and ∼12s for X7862). This means that each of
the searches mentioned above finished within a few hours on a
cluster of 100 CPUs.

1 The comprehensive scan of ref. [18] on environments of this size was
only possible due to the split nature of the bundle, which implied
that vast regions of the solution space could be discarded by impos-
ing constraints on individual line bundles, pairs of line bundles etc.
The present GA search does not make use of such simplifications.
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Figure 1. Saturation plot for the GA search on X7447 with |Γ| = 4 and
h1,1(X7447) = 5. The horizontal axis represents the number of genetic
episodes, in each episode a number of 90 000 states being visited. The ver-
tical axis corresponds to the number of inequivalent models found in the
search satisfying the necessary criterion (C3) for poly-stability. The com-
putational time for a genetic episode is O(10) s on a standard machine.

4.2. The Manifold X4071

The manifold X4071 pushes the search for realistic string mod-
els of particle physics into a new realm of larger Picard num-
bers. The favourable representation shown in Equation (2.1) was
taken from the maximally favourable CICY list of ref. [29] and
the ℤ2-symmetry from the recent classification of cyclic freely
acting symmetries undertaken in ref. [30]. The group ℤ2 acts
non-trivially on the second cohomology of the manifold, lead-
ing to a more involved bundle equivariance check as discussed
in Section 2. To our knowledge, this is the first instance when a
symmetry of this type was considered for the purpose of a large-
scale search.
The classification of ref. [30] gives examples of favourable CI-

CYs with numbers of Kähler parameters as large as 15 that ad-
mit freely acting cyclic symmetries. All of these examples involve
non-trivial actions on the second cohomology and the methods
discussed here for the manifold X4071 are directly applicable in
these cases. Performing searches on such manifolds would very
likely result in a plethora of viable string models.
The saturation curve for the number of inequivalent models

found on X4071 as a function of the number of states visited is
shown in Figure 2. The plot indicates that after 500 000 genetic
episodes saturation has not been reached. However, by doubling
the computational time a good degree of saturation would likely
be achieved.
Due to the more involved equivariance checks, the compu-

tational time required for a single genetic episode was slightly
longer than for the previous manifolds and averaged at around
1 min.

4.3. Results with GQAA

Let us now compare the potential performance of the GQAA on
X7447 and X5302, with the results obtained using the classical GA.
For quantum annealing, we used D-Wave’s Advantage_system4.1
whose annealer contains 5627 qubits, connected in a Pegasus
structure, with a total of 40 279 couplings between them. As such

Figure 2. Saturation plot for the GA search on X4071 with |Γ| = 2 and
h1,1(X4071) = 7. The horizontal axis represents the number of genetic
episodes, each episode containing a number of 90 000 visited states. The
vertical axis corresponds to the number of inequivalent models found in
the search, satisfying the necessary criterion (C3) for poly-stability. The
computational time for a genetic episode is O(1) min on a standard ma-
chine.

machines are still in development it is not possible at the time of
writing to reproduce analogous plots to the saturation plots in
Figures 1 and 2 for GQAA. (Indeed, considering only the avail-
able space on the annealer, a GQAA reproduction of Figure 1with
the same population and the same range for the integers kia would
already require 24 000 qubits, which is far beyond the available
number of qubits on the D-Wave’s Advantage_system4.1.).
Given these practical constraints, comparing the GQAA with

the GA then requires careful consideration. For example one
might consider resorting to smaller problems, such as a satura-
tion plot on X7862 with kia ∈ [−2, 1] using a smaller population.
However such a problem is then already somewhat trivial for both
algorithms to solve since there are a high number of perfect mod-
els in the search space. In other words the classical GA already
finds a solution in every other genetic episode (by comparison
with the saturation plot of the 7447 model in Figure 1 where it
finds a perfectmodel roughly once in every 100 genetic episodes),
so there is little room for the GQAA to show advantage over the
classical GA (although we should add that both algorithms are
still orders of magnitude better than a random search).
Therefore to ensure that we are analysing a problem that is

hard for the traditional GA, we can instead compare the early im-
provement in the best fitnesses for themuchmore difficult cases,
and with higher kia. We show this in Figures 3 and 4, which com-
pare the fitness evolution for the two algorithms on X7447 and
X5302, respectively. After optimising all the GA parameters and
choosing a suitable set of GQAA parameters (which can be found
in Table 2), we determined the fitness of the fittest individual for
the first 100 generations for both GA and GQAA, averaged over
20 runs.
By this measure we can indeed see evidence that the GQAA

has advantage over the classical GA. We note that the GQAA
best fitness grows faster throughout the generations than that
of the classical GA. Indeed, after 100 generations, the GQAA
best fitness is, on average, ∼52% better than GA in the first case
and ∼26% in the second case, respectively. We also note a much
smoother behaviour of the fitness improvement in the GQAA.
For example, the stall in fitness improvement for the classical

Fortschr. Phys. 2024, 72, 2300260 2300260 (5 of 10) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 3. Fitness of the fittest individual for both GA and GQAA for the
first 100 generations on X7447 with |Γ| = 4. The optimal value of the GA
mutation rate is 0.5% and the range for the integers kia is chosen to be
[−4, 3]. Npop was set to 50 for both GA and GQAA. The fitness was aver-
aged over 20 runs. All the other parameters related to the GQAA part are
specified in Table 2.

Figure 4. Fitness of the fittest individual for both GA and GQAA for the
first 100 generations on X5302 with |Γ| = 2. The optimal value of the GA
mutation rate is 1% and the line bundle integers are chosen in the range
kia ∈ [−7, 8]. Npop was set to 35 for both GA and GQAA. The fitness was
averaged over 20 runs. All the other parameters related to the GQAA part
are specified in Table 2.

GA on theX7447 manifold is reproducible and remains aftermany
more runs have been performed. Thus, it appears that, depend-
ing on the manifold in question, the GA can encounter blocks in
the fitness improvement that the QGAA is able to circumvent.
This partly explains why the improvement on the classical

GA in the first case (Figure 3) is twice that in the second case

Table 2.GQAA parameters and related values. For definitions, see ref. [22].
Two entries in the “Value” column refer to X7447 and X5302, respectively. A
single entry refers to both manifolds.

Parameter Description Value

Topology Polyandric J𝓁m couplings ‘Islands’

𝛼 Selection probability factor 4.0| 1.16

𝛼p Nepotism 0.05| 0.6

𝜌 Proportion of antiferromagnetic 0.5

𝜌′ Proportion of enhanced couplings 6.4%

𝜅 Strength of enhanced couplings − 𝛼 × 𝛼p

sq Minimum anneal parameter 0.75| 0.2

Jij Coupling strength ±0.08| ± 0.15

(Figure 4): 52% and 26%, respectively. However, we should also
note in this respect that besides being intrinsically dependent on
the characteristics of the problem (manifold structure, range of
the variables, etc.), the efficacy of the GQAA depends strongly
on the choice of GQAA parameters in Table 2. Thus while for
the GA it is possible to optimise meta-parameters such as mu-
tation rate, this becomes too time-consuming an operation for
the GQAA due among other things to the much larger number
of meta-parameters (the values of all the couplings for example).
Thus we consider Figures 3 and 4 to be evidence of advantage
even before a full optimisation has been performed. From these
results, it seems reasonable to believe that once the technological
limitations have been overcome, a GQAA saturation plot on the
manifold X7447 would require roughly half of the genetic episodes
required by the classical GA (Figure 1) to reach saturation or pos-
sibly even less once a full optimisation becomes possible.
Finally it is worth mentioning a salient fact which is that one

might suppose that the quantum annealing step could be re-
placed with simulated thermal annealing. However in contrast
to quantum annealing, thermal annealing appears to behave dif-
ferently such that we were not able to find any choice of meta-
parameters for which it could offer any benefit.

5. Conclusion

The main lesson emerging from the present work is that the size
of the string landscape is no longer a major impediment in the
way of constructing realistic string models of Particle Physics.
Using GAs we were able to scrutinise spaces of string compacti-
fications of sizes as large as ∼1030 and identify the vast majority
of good solutions residing in these spaces after visiting only a tiny
fraction of the total number of states. This has been carried out
for heterotic line bundle models on Calabi-Yau threefolds with
4, 5, 6, and 7 Kähler parameters but the basic methodology ap-
plies to other string constructions as well. We also presented evi-
dence that themethod can be enhancedwith quantumannealing,
Extending the methods to manifolds with larger numbers of

Kähler parameters (for example the favourable CICYs of ref. [30]
which include examples with up to 15 Kähler parameters) is per-
fectly achievable.While finding all themodels that satisfy the con-
ditions (C1)–(C5) of Section 2 may be impossible on such mani-
folds (the expected numbers of viablemodels being too large even
to store), our results suggest that GAs provide the means to pro-
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duce stringmodels on demand. Themethod can also be extended
to manifolds from the Kreuzer-Skarke list,[31] provided that more
examples with a non-trivial fundamental group are found.[32]

In order to impose the full spectrum constraints (as we did
here for the manifolds X7862 and X7447), explicit line bundle
cohomology formulae need to be obtained, using a combina-
tion of algebro-geometric methods[33–35] and machine learning
techniques.[11,36,37]

Finally, it is important to stress that the constraints (C1)–(C5)
of Section 2 do not represent a complete list of requirements, but
only lead to a broad brush version of the Standard Model. The
formidable success of GAs and the immediate access to coho-
mology data provided by the line bundle cohomology formulae
offer the possibility of substantially refining the requirements.
One of the many ways in which this can be accomplished would
proceed by first identifying a number of Froggatt-Nielsen mod-
els with four flavour U(1) symmetries that can explain the ob-
served hierarchies of fermion masses and mixings. The success-
ful Froggatt-Nielsen models would then correspond to specific
U(1)-charge assignments for the bundlemoduli fields, measured
by H2(X, V ⊗ V∗), which would be searched for along with im-
posing the other constraints. Other requirements that can be in-
cluded are the absence of fast proton decay operators, as well as
various model-dependent constraints for neutrino physics. Such
additional requirements will lead to a large reduction in the num-
ber of viable models, making complete (and more targeted) GA
searches possible even for models with a larger number of Käh-
ler parameters.

Appendix A: The Fitness Function

The fitness function f (X, V) is the measure of how close a line
bundle sum V over a smooth Calabi-Yau threefold X comes to
satisfy the constraints (C1)–(C5) of Section 2. It receives several
contributions,

f = fanom + find + fslope + fequiv + fstr. gp + fspec , (A1)

which we now discuss in turn. The contribution associated with
the cancellation of anomalies is

fanom = 10
h∑
i=1

min(c2,i(V) − c2,i(TX), 0)

hk2max rk(V)
, (A2)

where kmax = 2n is the (absolute) maximal line bundle integer al-
lowed in the search. The sum contains h terms that are quadratic
in the line bundle integers, hence the pre-factor (hk2max)

−1. The
factor of 10 and the numerical factors appearing below in the ex-
pressions for the other contributions to the fitness function are
arranged such that all contributions are of roughly the same or-
der of magnitude for a typical bundle V .
The contribution from the Euler characteristic of V is

find = −100
| ind(V) + 3|Γ||
hk3max rk(V)

. (A3)

The necessary slope-0 checks discussed under (C3) involve a
number of matrices which are required to have both positive and
negative entries. If a number npos of these matrices are found to

have non-negative entries only and a number nneg are found to
have non-positive entries only, there is a (negative) contribution
to the fitness function equal to

fslope = −
npos + nneg

10
. (A4)

For equivariance, in the case of symmetries acting trivially on the
second cohomology of X we have a contribution

fequiv = −
∑

distinctL⊂V

m(L)𝜒(X, L) mod|Γ| , (A5)

where m(L) is the number of times L appears in the line bundle
sum V .
Symmetries with a non-trivial action Γ on the second coho-

mology permute non-trivially the projective space factors in the
embedding of X , which amounts to a permutation of line bundle
integers in V . The fitness contribution from equivariance then
has to take into account two aspects. On the one hand, in the
ideal case the permutation induced by Γ on V will produce a
bundle that can be identified with V up to re-orderings of the
line bundles. The failure to achieve this ismeasured by summing
over the absolute values of the differences between the line bun-
dle integers in V and the integers obtained after applying the Γ-
permutation and a line bundle re-ordering, and minimising over
all possible re-orderings. We call this minimal sumM, which in
the ideal case vanishes. Furthermore, provided that M = 0, we
compute an equivariance contribution analogous in spirit to (A5)
above, with the difference that we first partition the line bun-
dles in V into parts that are formed from the cycles of the Γ-
permutation, compute their Euler characteristics, mod out by |Γ|
and sum over all the parts. We denote this value as N. With these
considerations, the total fitness contribution from equivariance
is taken to be

fequiv =

{
−|Γ| −M M ≠ 0
−N M = 0

, (A6)

where in the caseM ≠ 0 we have added a default penalty of −|Γ|,
corresponding to themaximal penalty that can be accrued fromN
whenM = 0. This default penalty provides an incentive to evolve
towards achievingM = 0.
The contribution from the constraint on the structure group is

given by

fequiv = − |S|
10

, (A7)

where S is the collection of subsets of line bundles in V whose
sum of first Chern class vanishes.
The contribution corresponding to the spectrum, on mani-

folds where a cohomology formula is available, is computed as

fspec = −1000
h0(X, V)+h3(X, V)+h0(X,∧2V)+h3(X,∧2V)

hk3max rk(V)
2

−100
h2(X, V)
hk3max

+
𝜃(h2(X,∧2V) − 1∕2) − 1

10
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−5
max(h2(X,∧2V)∕|Γ| − 2, 0)

hk3max rk(V)
, (A8)

where the first term corresponds to the requirement that the
zeroth and the top cohomologies of V have to vanish in view
of slope-stability, while the other terms correspond to the exact
spectrum constraints in (C4). Concretely, the second term corre-
sponds to the absence of 10-multiplets, the third term penalises
the lack of Higgs multiplets, while the fourth term penalises the
presence of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-multiplets,
given the find contribution in (A3) above. In the absence of a coho-
mology formula we set fspec = 0, since the index constraint (C4’)
has already been taken care of in (A3).

Appendix B: Line Bundle Cohomology Formulae

B.1. The Manifold X7862

Cohomology formulae for the tetra-quadricmanifoldX7862, which
corresponds to a generic hypersurface ofmulti-degree (2,2,2,2) in
(ℙ1)×4, have previously been given in refs. [10, 23, 38]. However,
these earlier formulae were only correct in a finite range of line
bundle integers. A complete formula has appeared in ref. [39],
and here we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.
The embedding is favourable and also Kähler favourable. We

denote by (J1,… , J4) the generators of the Kähler cone (X) in-
herited from the ambient space. A line bundle L over X with first
Chern class c1(L) =

∑4
i=1 kiJi has Euler characteristic

𝜒(X, L) = ∫X
ch(L) ⋅ td(X) = 2

4∑
i=1

(
ki +

∏
j≠i

kj

)
. (B1)

Apart from (X ), the effective cone of X includes an infinite
number of simplicial cones. They correspond to the Kähler cones
of isomorphic Calabi-Yau threefolds which can be reached from
X by a sequence of flops (see ref. [33]). These additional cones are
obtained from the Kähler cone by the action of an infinite group
generated by the matrices

M1 =

⎛⎜⎜⎜⎜⎝
−1 0 0 0

2 1 0 0

2 0 1 0

2 0 0 1

⎞⎟⎟⎟⎟⎠
, M2 =

⎛⎜⎜⎜⎜⎝
1 2 0 0

0 −1 0 0

0 2 1 0

0 2 0 1

⎞⎟⎟⎟⎟⎠
,

M3 =

⎛⎜⎜⎜⎜⎝
1 0 2 0

0 1 2 0

0 0 −1 0

0 0 2 1

⎞⎟⎟⎟⎟⎠
, M4 =

⎛⎜⎜⎜⎜⎝
1 0 0 2

0 1 0 2

0 0 1 2

0 0 0 −1

⎞⎟⎟⎟⎟⎠

(B2)

Consequently, any effective line bundle L is related to a line bun-
dle L′ contained in the closure of the Kähler cone by a finite num-
ber of transformations

c1(L
′) = Mi1

Mi2
…Mik

c1(L) ∈ (X) . (B3)

However, h0(X, L) = h0(X, L′) = 𝜒(X, L′), since the number of
global sections of a line bundle is invariant under flops and the
second equality holds by Kodaira’s vanishing theorem and the
Kawamata-Viehweg vanishing theorem (the latter required on
the walls separating the Kähler cone of X). In fact, there are
a number of two-faces of (X) which are not covered by the
Kawamata-Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki vanish and the
remaining integers are non-negative. In these cases, the zeroth
cohomology function is simply

∏4
i=1(1 + ki), which can be eas-

ily traced back to the zeroth cohomology of two line bundles on
ℙ1 × ℙ1.
This procedure gives an extremely efficient method for com-

puting the zeroth cohomology of line bundles on the tetra-
quadric threefold. In practice only a small number of transforma-
tions arise in Equation (B3), since the cones are increasingly thin
as one moves away from(X) and contain line bundles where at
least one of the integers is very large.
Once the zeroth cohomology is known, the third cohomology

follows by Serre duality,

h3(X, L) = h0(X, L∗) . (B4)

Note that since the effective cone is convex there are no line bun-
dles, except for the trivial line bundle, that have both h0(X, L) and
h3(X, L) non-vanishing.
The middle cohomologies are related to the zeroth and the

third cohomologies by the formula

h1(X, L) − h2(X, L) = h0(X, L) − h3(X, L) − 𝜒(X, L) . (B5)

On the tetra-quadric manifold it turns out that almost all line
bundles either have h1(X, L) = 0 or h2(X, L) = 0. In all these cases
Equation (B5) provides a formula for the middle cohomologies.
The exceptions correspond to line bundles for which two of the
line bundle integers are zero and the other two have opposite sign
and are greater than 1 inmodulus. If kA and kB denote these non-
zero integers, then the relation

h1(X, L) + h2(X, L) = −2(1 + kAkB) , (B6)

holds in all of the exceptional cases. Together with Equation (B5),
this fixes the middle cohomologies.

B.2. The Manifold X7447

This manifold corresponds to the intersection of two generic hy-
persurfaces of degree (1,1,1,1,1) in (ℙ1)×5. The line bundle coho-
mology structure is very similar to that of the manifold X7862. The
Kähler cone is five dimensional and is inherited from the em-
bedding space. Additionally, the effective cone contains infinitely

Fortschr. Phys. 2024, 72, 2300260 2300260 (8 of 10) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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many cones obtained from the Kähler cone by the action of an
infinite group generated by the matrices

M1=

⎛⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
, M2=

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0

0 −1 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

M3=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0

0 1 1 0 0

0 0 −1 0 0

0 0 1 1 0

0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
, M4=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 −1 0

0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

M5=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
.

(B7)

As before, the zeroth cohomology dimensions of most line bun-
dles can be obtained using the invariance under this group action
and the Kawamata-Viehweg vanishing theorem. The line bundles
on the boundary of (X) that are not covered by the Kawamata-
Viehweg theorem have at least two of the integers ki vanish-
ing, in which case the zeroth cohomology function is simply
(1 + kA)(1 + kB)(1 + kC) and the other two integers, denoted by kA
and kB, are non-negative, which we denote by kA and kB. In these
cases, the zeroth cohomology function is given by

∏5
i=1(1 + ki).

For the computation of higher cohomologies we use Serre du-
ality h3(X, L) = h0(X, L∗) and the observation that the only line
bundles which have both a non-vanishing first and second coho-
mology have three vanishing integers ki and the other two have
opposite sign and are greater than 1 in modulus. As before, de-
noting by kA and kB the non-zero integers, the following simple
relation holds

h1(X, L) + h2(X, L) = −2(1 + kAkB) (B8)

in all of these exceptional cases. Together with Equation (B5), this
fixes the middle cohomologies.
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[37] M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Ruehle, JHEP 2021,
01, 196, [arXiv:2007.00009 [hep-th]].

[38] A. Constantin, Heterotic String Models on Smooth Calabi-Yau Three-
folds, PhD thesis, Oxford University, Oxford 2013, [arXiv:1808.09993
[hep-th]].

[39] A. Constantin, Intelligent Explorations of the String Theory Land-
scape, [arXiv:2204.08073 [hep-th]].

Fortschr. Phys. 2024, 72, 2300260 2300260 (10 of 10) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300260 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [10/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org
https://github.com/harveyThomas4692/GA-LineBundles
https://github.com/harveyThomas4692/GA-LineBundles

	Decoding Nature with Nature80's Tools: Heterotic Line Bundle Models of Particle Physics with Genetic Algorithms and Quantum Annealing
	1. Introduction
	2. Heterotic Line Bundle Models
	3. The Genetic Algorithm and Quantum Annealing
	4. Results
	4.1. The Manifolds , , and 
	4.2. The Manifold 
	4.3. Results with GQAA

	5. Conclusion
	Appendix A: The Fitness Function
	Appendix B: Line Bundle Cohomology Formulae
	B.1 The Manifold 
	B.2 The Manifold 

	Acknowledgements

	Conflict of Interest
	Data Availability Statement

	Keywords


