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Abstract
The quantum angle generator (QAG) is a new full quantum machine learning model designed to
generate accurate images on current noise intermediate scale quantum devices. Variational
quantum circuits form the core of the QAG model, and various circuit architectures are evaluated.
In combination with the so-called MERA-upsampling architecture, the QAG model achieves
excellent results, which are analyzed and evaluated in detail. To our knowledge, this is the first time
that a quantum model has achieved such accurate results. To explore the robustness of the model
to noise, an extensive quantum noise study is performed. In this paper, it is demonstrated that the
model trained on a physical quantum device learns the noise characteristics of the hardware and
generates outstanding results. It is verified that even a quantum hardware machine calibration
change during training of up to 8% can be well tolerated. For demonstration, the model is
employed in indispensable simulations in high energy physics required to measure particle energies
and, ultimately, to discover unknown particles at the large Hadron Collider at CERN.

1. Introduction

Quantum computing has the potential for a new paradigm in future computing to accelerate tasks or even
handle classically unsolvable problems [1]. In the current noise intermediate scale quantum (NISQ) era,
quantum devices suffer from non-negligible hardware errors, limited connectivity and a limited number of
qubits [2]. While practical quantum advantage is currently extremely difficult to accomplish, finding the best
suited algorithms to effectively combat the problems of NISQ-era devices remains a widely researched topic.
Quantum machine learning (QML) is a domain which achieves acceptable results on NISQ devices due to
the observed robustness against noise [3].

High Energy Physics (HEP) experiments, such as those at the Large Hadron Collider (LHC) at CERN
require enormous amounts of simulated data for deriving high precision physics results [4]. To handle this
demand, gigantic quantities of computing hardware resources are necessary, which has led to the creation of
the world’s largest computing grid operated by CERN [5]. To alleviate this strain on computational
resources, machine learning (ML) models have been developed that exhibit remarkable speed-ups over
current Monte Carlo-based simulations while maintaining the required level of accuracy. In general, QML
simulations represent a promising approach to address the only further increasing simulation demands in
the future [6, 7]. QML employs quantum circuits which exploit the quantum properties of superposition and
entanglement, which possess the potential to outperform neural networks, their classical analogue [8]. In
addition, QML might have the advantage of learning more complex distributions with fewer parameters than
classical ML due to their wider accessible phase space.

Encoding the classical data into qubit states on quantum computers is a non-trivial task [9]. Currently,
many encoding techniques exist, each exhibiting specific advantages and disadvantages, and in practice,
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identifying ‘the best’ encoding technique remains application dependent [9]. To achieve a potential quantum
advantage over classical computing, theoretical studies suggest that at least linear scaling from qubits to
features is required [10]. On the other side, models which employ better than linear scaling encoding
techniques have drawbacks, making them unsuitable for generating precise images on NISQ devices. For
example, amplitude encoding can only generate probability distributions and not absolute pixel entries,
i.e. energy values.

At present, there exist several quantum generative models, for example, the quantum circuit born
machine (QCBM) [11], quantum variational autoencoders [12] or variations of quantum generative
adversarial networks [13–15]. They all face limitations. Some models either do not scale well in terms of
qubits required relative to the number of encoded features, or they do not achieve a satisfying level of fidelity.
The quantum angle generator (QAG) presented in this paper and first introduced in [16], aims to overcome
these problems. Employing angle encoding with linear scaling of qubits to features, it achieves extremely
accurate results for a real-world problem on current physical noisy quantum devices.

The paper content is structured as follows. First, the HEP use case is motivated and the training data is
defined. Next, the QAG model and the employed angle encoding technique are presented. Then, multiple
circuit architectures are compared and the advantages of the best ones are highlighted. An in-depth accuracy
analysis of the model follows to highlight its excellent precision. The quantum hardware noise behavior is
evaluated, including training and inference executed on real quantum devices. Lastly, conclusions are drawn
and summarized.

2. High energy physics simulations

Simulations remain a crucial component of HEP analysis to evaluate the results obtained by the processed
data of the experiments. Currently, simulations are performed predominantly with Monte Carlo methods
such as the Geant4 toolkit [17]. However, Monte Carlo simulations are very hardware resource demanding
and occupy half of the worldwide LHC Computing Grid [18]. Future LHC experiments will require more
simulations due to more energetic particles, simultaneous collisions and detectors constructed with higher
granularity. However, the projected budget for hardware development and computing resources cannot keep
pace with these increasing demands [19, 20]. As a result, ML alternatives to Monte Carlo methods are being
actively researched. Initial prototypes predict significant reductions in simulation time and hardware
resources while retaining acceptable levels of accuracy [21–23]. This research goes one step beyond classical
ML. Since HEP data sets are generally created by underlying quantum mechanical effects, performing the
computations on quantum devices which likewise make use of quantum effects has the potential to
substantially enhance the simulations in accuracy and in terms of sustainable computing.

Electromagnetic calorimeters are constructed as high granularity sensor grids to measure the energy of
photons, electrons, and positrons through complex particle shower generation processes in space and time
[24]. They constitute a key component of HEP detectors to measure the energy of the particles produced in
the interaction process and occupy most of the simulation time [18]. Calorimeter outputs can be interpreted
at lowest order as static and spatial 3D images, which we call ‘shower images’: the value of each pixel
corresponds to the energy measured in a specific calorimeter cell. The initial data from [25] consists of
25× 25× 25 pixel images. An example of a 3D shower image is visualized in figure 1. To reduce the
dimensionality, the images are averaged along two spatial axes (x- and y-direction), resulting in a one-
dimensional representation that is further downsampled to eight pixels by averaging three contiguous pixels
along the z-direction. Although the initial data set provides many different energies, for simplicity this study
focuses on images recorded by particles in the energy range of [225, 275]GeV. The data set is split into a
training and test set, each consisting of approximately 1000 samples. The downsampled data is available in
[26], and an example image is illustrated later in this paper in figure 6(a).

3. The QAG

The QAG represents a QML model which employs the well established technique of angle encoding [27, 28]
to generate extremely precise images. It scales linearly with the number of encoded features. Thus, the
generation of n features requires n qubits. In this study, the number of features corresponds to the number of
pixels. A comprehensive description of the QAG model, its objective training function, and an evaluation of
several quantum circuits are provided below.

3.1. Model description
The QAG model consists of variational quantum circuits trained by an objective function. The model
structure is visualized in figure 2. All qubits are initialized in the basis state |0⟩. The state preparation
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Figure 1. An example 3D calorimeter shower image. A primary particle enters the calorimeter at (x,y,z) = (13,13,0) and
generates a secondary particle shower along the z-axis.

Figure 2. The structure of the quantum angle generator.

function implements a Hadamard (H) gate to constitute superposition, followed by a y-rotational (Ry) gate
to introduce randomness so that the model can draw new samples at each execution. For this, the Ry gate
angles Ω are randomly drawn from a [−1, 1] uniform distribution and pixel-wise multiplied by the pixel
standard deviations present in the training data to obtain correct pixel energy variations. To account for all
various primary particle energies, all angles Ω are multiplied by a random value between [−0.25, 0.25].

The unitary transformation consists of quantum circuits and constitutes the trainable part of the QAG
model. Various circuit architectures were tested as documented in section 3.3.

To convert the quantum states back into classical energy values via angle encoding, the model must be
executed multiple times and the quantum states measured. The number of executions is commonly denoted
as the number of shots nbshots. It is counted how often state |0⟩ is measured. The scalar intersection I of the
vertical axis on the Bloch sphere (z-axis) and the angle θ is calculated with:

I= 2 · counts(|0⟩)
nbshots

− 1 ,

θ = arcsin(I) .

(1)

The angle θ operates in the x-z-plane of the Bloch sphere and is defined as zero in the |+⟩ state. Rotating
θ clockwise leads to positive angles. The decoding process is visually illustrated in figure 3(a) with an
example state |Ψ⟩, its intersection I and the corresponding angle θ for a single qubit example. The angle θ
can then be transformed into a pixel energy E by the linear change of ranges equation:

E=
(Emax − Emin)(θ− θmin)

θmax − θmin
. (2)

Emax, Emin, θmax and θmin are defined in figure 3(b): the minimum energy Emin = 0MeV is set to θ =−π/2
and the maximum energy Emax = 0.6MeV is set to θ =+π/2. With Emin = 0 and θmax =−θmin equation (2)
can be simplified into:

E=

(
Emax

2 · θmax

)
· (θ+ θmax) . (3)

For multi-qubit quantum circuits: the final quantum states of all qubits are measured, and the outcomes are
decoded independently. Although the qubit results are individually decoded, the state of each qubit is
entangled with others due to the gates applied within the variational quantum circuit, as lined out later.
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Figure 3. (a) Decoding of an example stateΨ into an angle θ. (b) Some representative angles θ and its corresponding energy
values.

It is worth to be noted that the angle θ and, therefore, the corresponding decoded energy E remain in
discrete values. Since, θ depends in value and accuracy on the number of shots nbshots: the larger nbshots, the
better the achievable energy precision and resolution. Fortunately, with present quantum devices, the nbshots
can be easily chosen to be large. Currently, on IBMQ devices the maximum possible number of shots is
nbshots = 100 000. For the simplified calorimeter use case, this is more than sufficient. For comparison, in a
previous classical reduced precision ML research in [29], it is demonstrated that already 256 discrete energy
levels are sufficient for correctly reproducing the full-size calorimeter shower image. In this reduced
precision research, the parameters of the neural network are quantized from a larger format (floating point
32) down to a smaller number format (integer 8). This study will show that 512 shots provide a sufficient
resolution. The detailed image generation process for the QAG model, as described in this subsection, is
provided as an algorithm in the appendix A.

3.2. Training objective function
The QAG model is trained with two losses employed as objective functions. The first one is the mean
maximum discrepancy (MMD) loss [30, 31], already successfully applied by other quantum models, e.g. the
QCBM [11]. Training exclusively with the MMD loss resulted in good average shower distributions.
However, when exploring the generated images in more detail, for example in the pixel correlation, the
model did not perform satisfactorily. Therefore, a second correlation (Corr) loss is added to help learn the
patterns present in the training data (e.g. image pixel correlations). The Corr loss is calculated by the
pixel-wise mean squared error (MSE) between the pixel correlation values present in the training data and
the ones inside the generated data. The pixel-wise correlations are illustrated in figure 6(b).

To train the QAG model, the simultaneous perturbation stochastic approximation (SPSA) optimizer [32]
is employed, which only requires two optimization steps per epoch. The hyperparameters for training were
found by extensive hyperparameter searches employing the Optuna [33] library. All tests in this study are
executed in Qiskit version 0.26.2. The models are trained for 500 epochs, containing one batch. The dynamic
MMD loss weight starts at a value of one and decays linearly with−0.001·epoch, starting from epoch 100.
Opposite, the Corr loss weight increases by the same value starting at zero. The dynamical training batch size
is set to generate one image in the first hundred epochs and afterward to 20 images to calculate the Corr loss
between multiple images. Each quantum job contains 512 shots for training and inference. The generator
SPSA optimizer learning rate is set to c0 = 1 with an exponential learning rate decay of 0.006 starting from
epoch 50. All these settings showed the best performance in the tests.

3.3. Quantum circuit study
The ideal circuit should contain a certain, optimized to be minimal, number of parameters to achieve a
sufficient level of accuracy. Different circuit architectures were compared to each other based on
characteristic numbers expressing the power of the circuit. The circuits employ trainable rotational gates and
two-qubit entanglement gates. As the angle encoding primarily uses the qubits y-axis component, we
predominantly employ Ry gates. For some circuit architectures, we test if additional z-rotational gates (Rz
gates) or deeper circuits with depth 2 (denoted as d2) can further improve the results. We use two-qubit
controlled-not gates (cx gates) native on IBM Quantum (IBMQ) [34] devices; while other entanglement
gates are compositions of multiple native gates of the hardware. Keeping an eye on the goal of executing the
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Figure 4. The MSE uncertainty (the smaller, the better) of the various trained circuit architectures as a function of Np (left), X
(middle) and E (right), see text for explanations. Green rectangles mark optimal areas.

training on a real quantum device, the absolute number of decomposed gates should be kept as small as
possible.

The characteristic circuit numbers used in this study are the number of trainable parameters Np, the
expressibility X and the entanglement capability E. Larger circuits with more trainable parameters are
potentially capable of achieving more accurate results. However, it might be that a plateau is reached at some
point where the same task can be solved with similar accuracy by a smaller circuit, which is being investigated
here. The definitions for X and E are from [35]: X describes how well the circuit can represent the pure states
of the representative Hilbert space. For a single qubit the expressibility exhibits how many states of the Bloch
sphere can be represented. In this paper, we measure 1−X: the closer to 1 the better the expressibility of the
model, while the closer to 0 the worse. The entanglement capability E is a measure that expresses the ability
of a circuit to generate entangled states between the qubits. Likewise, E ranges from 0 to 1, where 1 represents
the best achievable value. The circuit architectures under study are introduced in the appendix B. Their
corresponding characteristic numbers and theoretical potential are provided in the appendix C. In the
following, the circuits are evaluated for the calorimeter use case.

We start by interpreting the results displayed in figure 4. The MSE accuracy metric is calculated by taking
the pixel-wise MSE between the average Geant4 and QAG images. The training is repeated 25 times for each
circuit and the mean and standard deviations are plotted. To prevent the influence of outliers, the best and
worst two trials are discarded in this analysis. The MSE is given as a function of: Np on the left, X in the
middle, and E on the right. By inspecting the plots, it can be recognized that the MSE does not correlate with
any of the characteristic circuit values in the plots, neither do the characteristic values correlate among
themselves, as shown in the appendix C.

The MERA-up, MERA-up_d2, and MERA-up_Rz architecture perform best with the lowest MSE. This is
consistent with the observation that they maintain a high X and E, as provided in the appendix B. The error
bars provide a hint about the training stability. It can be observed that the better the average MSE of a model,
the smaller its standard deviation.

All in all, the MERA-up_Rz circuit clearly performs best considering the characteristic circuit values and
the achieved accuracy in training. However, with the emphasis on a low number of Np, the plain MERA-up
circuit performs almost as well, while needing only half the number of parameters. Therefore, the following
studies employ the MERA-up circuit for training the QAG model.

4. In-depth accuracy analysis

In this section, we analyze the results of the QAG model operating the MERA-up circuit architecture. We
showcase typical accuracy metrics for the calorimeter simulation in HEP.

4.1. Training evaluation
In a first step, the statistical trends of the objective functions during training are investigated. In figure 5, the
unweighted loss functions (excluding loss weights) are plotted as a function of the training epochs. The mean
of twenty training repetitions is visualized as a thick solid line and the standard deviation (STD) as a colored
band. The Corr loss starts influencing the training only at epoch 100 because its weight is set to zero before.

The MMD loss of all training repetitions converges stable, and the STD band narrows towards the end of
the training. Overall, the MMD and Corr loss converge smoothly without strong oscillations, which is a
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Figure 5. The unweighted loss values the training epochs. The blue lines correspond to the MMD losses and the green lines to the
Corr losses. The thick solid line represents the mean loss across trials, the colored band around indicates the standard deviation
(STD), and the thin line denotes the loss of the best trial’s loss.

Figure 6. (a) Visualization of the average calorimeter shower shapes. The energy is given in an arbitrary unit (a.u.) due to image
downsampling. The pixel-wise correlation plot for (b) Geant4 and (c) the QAG model. The correlation ranges between−1 and 1;
a value of 1 indicates a perfect positive correlation.

desirable characteristic for stable (Q) ML training. The MMD loss contributes far more than the Corr loss
throughout the training. However, the Corr loss plays a significant role in achieving good physics accuracy in
the generated shower images.

4.2. Inference evaluation
In the following, the accuracy in inference is evaluated. The generated images of the best trained model are
compared to the Geant4 test data, which consists of 980 images. Likewise, there are 980 images generated by
the QAG model to create the following accuracy metrics. The details about how the accuracy metrics are
calculated are provided in the appendix D.
1. Average calorimeter shower shape: the first metric represents the calorimeter shower shape displayed

in figure 6(a). The shower shape is perfectly reproduced by the QAG model. The MSE corresponds to
0.000 59± 0.000 37, which is extremely close to zero, indicating a very good accuracy.
2. Pixel-wise correlation: the second metric corresponds to the pixel-wise image correlation. The

positive or negative correlation patterns between all the pixels are determined. The baseline represents the
correlation from Geant4 in figure 6(b). The correlation for the generated data of the QAG model is presented
in figure 6(c). It can be derived that the overall correlation pattern is accurately reproduced by the QAG
model. Like the Geant4 data, it consists of a larger and more compact positively correlated group of pixels.
The other pixels are negatively correlated. Inspecting the particular details, different color shades indicate
some minor deviations. However, the achieved correlation precision by QAG is astonishing. Therefore, it can
be concluded, that the quantum circuits are capable to reproduce complex correlation patterns through
substantial entanglement strategies, as present in the MERA-up architecture.
3. Energy sum: the energies contained in all pixels calculated for the individual images represent the third

accuracy metric. In figure 7(a), the energy sum histogram of the Geant4 images reveals a Gaussian shape and
is correctly reproduced visually by the QAG model, which is also confirmed by the mean µ and the standard
deviation σ.
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Figure 7. (a) The energy sum histogram, the four k-means clusters present in the images of (b) the Geant4, and (c) the QAG
images.

Figure 8. The energy deposition histograms for Geant4 and the QAG model. Each histogram represents the energy distribution
for an individual pixel, as labeled above each plot. The x-axes represent the energies on a consistent scale across all histograms.
The y-axes count the hits per energy bin, with each hit corresponding to the energy contained in a pixel for a single image. Note
the varying y-axis scales.

4. k-means Clusters: this metric evaluates if the QAG model can correctly represent specific image
modes. The Geant4 data is clustered with the k-means algorithm [36] to find four clusters or image modes as
illustrated in figure 7(b). Cluster 0 deposits substantially larger fractions of energy in earlier calorimeter cells
than in higher cluster numbers. Further, the particles from clusters 0 and 1 contain a larger energy fraction,
estimated by the integral area below the curves. Here we are interested in whether the QAG model can
reproduce this behavior. The four clusters of the QAG images are provided in figure 7(c). A similar structure
can be observed, which indicates a good accuracy in reproducing the energy contents and image modes on
average.
5. Pixel-wise energy distribution: the last metric is used to examine the distributions of the energy

content of each pixel, as illustrated in figure 8. Overall, the histograms of the QAG model match those of the
Geant4 model. Even pixels with non-Gaussian energy distributions in the Geant4 model are correctly
reproduced by the QAG model. For example, the longer tail towards smaller energies on the left side of pixel
4 is equally present in the histogram for the QAG model. The large histogram overlaps indicate that not only
the averages are reproduced with high accuracy, but also the energy distributions returned for each
individual pixel are correct.

5. Quantum noise study

In the current NISQ era, relatively high hardware error levels are one of the primary limitations to effectively
employing algorithms on real quantum devices. Similar as in the classical case, QML models appear to be
noise resilient to some degree of hardware errors [37–40]. In the following, the robustness of the QAG model
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Figure 9. Inference noise study. On the x-axis the noise levels are provided and on the y-axis the MSE as accuracy metrics (the
lower, the better). Inference is executed with various noise configurations and on real quantum hardware. At each point, twenty
images are generated.

to simulated noise is tested in inference and training. Furthermore, training and inference are executed on
real quantum devices with measured noise levels and compared to the results with simulated noise.

5.1. Inference
In a first step, quantum noise is applied only to the inference of a model trained without noise. Inference is
performed using three different noise configurations: simulated noise at varying levels, simulated noise
derived from the later used hardware, and finally, with the real quantum hardware. In the simulated noise
configurations, each qubit noise is modeled with the same readout measurement error, and each inter-qubit
connection with the same two-gate (CNOT) error. In the combined noise model both are on the same level.
In contrast, the hardware noise levels can vary widely for individual qubits as well as for gates.

Multiple noise configurations and error levels from zero up to 15% are tested. The MSE is utilized as the
accuracy measure. The results are illustrated in figure 9. For each configuration, the average value of 20
generated images is plotted in dependence of the noise level as a solid line and the standard deviation as a
colored band around the mean. The gray horizontal line serves as accuracy reference for the noise-free
configuration. All configurations maintain sufficient accuracy up to approximately 1.5% of noise. The
configuration with readout noise only (green) is most robust and maintains a stable accuracy of up to 8% of
noise. CNOT noise only (blue) and both readout noise and CNOT noise combined (orange) experience a
stronger impact. As expected, the combined configuration (orange) performs worst. As a side note, current
quantum devices have average noise levels below 5%, which is expected to gradually decrease further. But as
discussed in the following, the noise levels are unstable and can sometimes spike up. Therefore, wider noise
ranges were investigated.

Next, the inference is run by loading the real hardware noise model from ibmq_montreal into the
simulator. The ibmq_montreal device consists of a Falcon r4 processor with 27 qubits. The average readout
noise over the qubits employed at the time of the test is 2.51% and the average gate noise level is 0.97%. The
explicit noise model, containing the entries for each qubit, is provided in the appendix in figure 11(b). The
result is included in figure 9 (blue triangle). The noise level position (x-axis) is determined as the average of
readout and CNOT noise. Although the noise levels of the qubits vary strongly, the measured accuracy of the
hardware noise simulation agrees well with the simulated noise in mean and standard deviation within the
uncertainties. This suggests that a model trained without any noise would theoretically be able to run
inference on noisy hardware without a significant drop in accuracy.

Finally, the inference is executed on the real ibmq_montreal device. The result is plotted as a red triangle
in figure 9. The accuracy on the real hardware is worse than predicted by the simulation, as indicated by a
larger MSE value. The decomposition of the circuit to the real hardware includes swap operations, which
imply additional two-qubit entanglement gates for the quantum circuit. It is possible that these are not
included in the hardware noise simulation and lead to higher noise influence on real hardware and thus to
worse results.
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Figure 10. Training noise study. On the x-axis the noise levels are provided and on the y-axis the MSE as accuracy metrics (the
lower, the better). Training is executed with various noise configurations and on real quantum hardware. The training with fake
noise levels are repeated ten times.

5.2. Training
The noise study is repeated to include noise also during training. We study if the QAG model can learn to
compensate for noise in training, especially when running on the real quantum device. Besides, we
investigate with which noise values the model can still maintain a reasonable accuracy.

The results are provided in figure 10. The configurations with readout noise (green) and CNOT noise
(blue) maintain a similar level of accuracy until approximately 3%. The accuracy of the combination of
readout and CNOT noise (orange) decreases marginally from 1% of noise and further with larger noise
levels. However, at 3% of noise, its accuracy is still close to the noiseless case, staying within one standard
deviation. This indicates that training the model with noise makes the QAG model more robust than only
applying noise to a trained model in inference only.

Next, two quantum devices are simulated. ibmq_montreal and ibm_cairo, which are both 27 qubit
devices, but ibm_cairo has the more advanced Falcon r5.11 processor. Likewise, the training is repeated ten
times and the results are added as blue and orange triangles in figure 10. It can be noted that the average
accuracy of the training with hardware noise performs slightly worse than the simulated combined noise
model (orange line). The strong overlap between the error from the noise simulation (orange band) and the
hardware noise simulation (orange and blue error bar) indicates that the accuracy difference is statistically
not significant.

Finally, the entire training was executed on the real quantum device. First, the training was carried out on
ibmq_montreal. During training, around epoch 280, an unpredicted significant noise change occurred and
the readout noise of one qubit increased to 8%, as shown in figure 11. As a result, the MMD loss spikes up, as
shown in figure 12(a). This negatively influenced the training. However, after the noise change during
training, the model recovered and adapted to the new noisy environment. In the still remaining number of
epochs the loss decreased to a modest level. The training was repeated on the best performing ibm_cairo
device without having a hardware calibration change during training, and the training losses are shown in
figure 12(b).

The results of both hardware training are included as red and green triangles in figure 10. The error bars
correspond to the accuracy deviations within 50 generated validation images. It can be observed that the
average accuracy of the ibmq_montreal hardware training (red) is visibly worse than the noise simulation
(blue). This is most likely due to the large noise increase and the fact that the model did not have enough
remaining epochs to fully recover. This is also indicated by the still decreasing losses towards the end of the
training. As mentioned above, the training was repeated on the more stable machine ibm_cairo. This time,
the training was completed without calibration changes and with about 1% lower hardware noise level
(readout noise 0.86% and CNOT noise 0.89%). The accuracy of the hardware training on ibm_cairo
(green) is only marginally worse than the one from the simulator (orange). This indicates that the simulated
and real hardware results behave similarly for low hardware noise levels. This fulfills the expectations derived
from the pure simulation that exhibit only statistically insignificant variations in the very good accuracy at
these low noise levels.
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Figure 11. The noise levels of the ibmq_montreal device are shown (a) before and (b) after the calibration change during
training. The lower x-axes displays qubit indices as provided at the IBMQ hardware, while the upper x-axes represents their usage
in the quantum circuit (e.g. in figure B1, counting from top to bottom). Inference is performed with the noise model (b), where it
is notable that the readout noise of qubit number five on the hardware increased from two to over eight percent. Note the
different y-axis scales.

Figure 12. The losses during training on the real quantum device for (a) ibmq_montreal and (b) ibm_cairo. Shown are the
unweighted MMD and Correlation loss as a function of the training epochs.

Comparing the absolute MSE magnitude of the real hardware training (≈0.002 and≈0.003) with the
one from inference from the previous section (≈0.005), the accuracy improved, suggesting that the QAG
model is able to adapt its parameters to the noisy hardware to improve its precision. This is also confirmed by
the ibmq_montreal training, where the accuracy worsened entirely after the calibration change, but then
recovered. In the appendix in figure E3(a), the average shower image created by the ibmq_montreal device
is visualized, and in figure E3(b) by ibm_cairo. The shower image of ibm_cairo agrees well with Geant4,
whereas ibmq_montreal exhibits some deficiencies because of the missing remaining training epochs after
the calibration.

6. Conclusion

The results of this study clearly demonstrate that the newly developed QAG model is capable of generating
images with good precision, as measured with a variety of validation metrics. This includes correctly
reproducing average values, but most importantly, also complex pixel-wise correlations with the chosen
optimal MERA-up quantum architecture. These results reveal that the QAG model with a good entangled
circuit is capable of learning intrinsic correlation patterns from the training data.

Our study exhibit the significant impact that quantum hardware noise can have on the accuracy of
quantum machine learning models. The results evidence that training the models with noise leads to better
performance (stable until 3% noise) because the QAG model adapts to the underlying noise behavior and
converges faster in contrast to the situation of applying noise in inference only (stable until 1.5% noise). This
was also verified on the real hardware by the ibm_cairo training. Furthermore, our study shows that the
QAG model is robust and can produce accurate results even with significant hardware calibration changes
with up to 8% noise, as demonstrated by the training on ibmq_montreal. Overall, the newly developed
QAG model demonstrates that training quantum machine learning models with realistic quantum hardware
noise can lead to robust models and accurate results, which is of great importance for the future development
of real world quantum machine learning applications.
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Appendix A. QAG inference algorithm

Algorithm 1 shows the pseudo code for generating one image using the QAG model from section 3.1. Here
the MERA-up architecture (appendix B) is used as an example. The standard deviation σpixel for the energy
distribution of each pixel is obtained from training data.

Algorithm 1. Quantum angle generator inference.

Input: nbshots ▷ Number of measurements
σpixel ▷ Array of the pixel standard deviations

Output: E ▷ Array of pixel energies forming the image

Begin
Initialize all 8 qubits to state |0⟩
Randomly draw value v from uniform distribution [−0.25,0.25]
for all index, qubits do

Apply Hadamard gate H to qubit
Randomly draw Ω from uniform distribution [−1,1]
Ωpixel =Ω · v ·σpixel[index]
Apply rotation Ry(Ωpixel) to qubit

end for
Apply the MERA-up unitary transformation to all qubits
Measure the qubits nbshots times
Count number of times state |0⟩ is measured→ counts(|0⟩)
Compute θ according to equation (1)
Compute pixel energies E according to transformation 3
Return E

End

Appendix B. Quantum circuit architectures under study

The quantum circuit architectures investigated in this paper are summarized in figure B1. In general, it was
observed that hierarchical architectures perform best while maintaining a reasonable number of quantum
gates and parameters. Specifically, we examine the tree tensor network (TTN) architecture and multi-scale
entanglement renormalization ansatz (MERA) introduced in [41]. Multiple variations of these circuits are
tested: (1) circuits with a depth two (naming scheme ‘d2’). These circuits contain two layers, with all circuit
gates placed twice, to evaluate if deeper circuits perform better. (2) Circuits additional with Rz-gates are
employed after each Ry-gate (naming scheme ‘Rz’) to assess if rotations around an additional axis can
improve the accuracy. Both architecture variants double the number of parameters of the initial circuit.

For the MERA architecture, further variations are analyzed where only the right circuit half from the
original architecture is implemented, denoted as the MERA upsampling (MERA-up) circuit. In the
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Figure B1. The basic quantum circuit architectures under study. Top left: TTN architecture, top right: Linear entanglement
architecture, bottom: the full circuit corresponds to the MERA architecture, with the red highlighted section corresponding to the
MERA-up architecture.

MERA-up circuit, the information is upsampled from the central qubit and spread to all the other qubits,
similar to what happens in classical ML generative models, for example, transpose convolutional neural
networks. The left half of the MERA circuit, the MERA downsampling (MERA-down) architecture, is not
tested because it would rather compress the information as required in classification tasks that are not used
in this paper. The last architecture contains a simple linear entanglement strategy.

In [35], multiple complex four-qubit architectures are compared. However, these architectures are not
exploited in our study. The reason is most of them contain many more gates and parameters, and they do not
scale well for more than four qubit circuits. Also, many architectures employ parameterized two-qubit
rotational gates which we found, taking the decomposition into account, not as effective as the combination
of separate rotation and entanglement gates.

Appendix C. Characteristic circuit numbers

The results of evaluating the characteristic circuit numbers (number of parameters Np, expressibility X and
entanglement capability E) are shown in figure C2. In figure C2(a) E is plotted as a function of X. The
MERA_Rz and MERA-up_d2_Rz architecture perform best and lie almost on top of each other in the top
right corner, directly followed by MERA-up_Rz and TTN_Rz. The Linear architecture and the basic TTN
perform worst. It can be clearly noted that circuits with more gates (Rz, d2) perform better. Np is studied in
figures C2(b) and (c). It can be seen that the best two circuits—MERA_Rz and MERA-up_d2_Rz—contain
by far the largest number of parameters. However, a more limited number of parameters is desirable to
address NISQ hardware limitations. The MERA-up_Rz and TTN_Rz architectures contain approximately
half the number of parameters compared to the MERA_Rz and MERA-up_d2_Rz circuits but perform
almost similarly accurately. Therefore, they may be preferred in practice. Further reducing the number of
parameters, the MERA-up architecture with only Np = 23 parameters maintains adequate values for E and X
and is the baseline circuit for the more detailed studies. All characteristic circuit numbers measured in the
circuit study are summarized in table C1. In the table, it is evident that the MERA-up circuit maintains a
considerably lower training time on the classical hardware compared to models with a higher number of
parameters. The training was executed on a cluster equipped with 32 Intel Xeon Gold 6130 CPU cores
running at 2.10GHz.
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Figure C2. Study of potential correlations between the three characteristic circuit numbers. On the left: X versus E. In the middle:
Np versus X. On the right: Np versus E.

Table C1. The characteristic circuit valuesNp, X and E are listed. Additionally, the statistics of the MSE accuracy metrics and the training
times t in minutes are provided for the individual circuits for repeating the training 25 times on the calorimeter data set. The line
highlighted in bold corresponds to the MERA-up circuit, which is excessively evaluated in this paper in section 4 and 5.

Circuit Name Np X E MSE t in min

Linear 16 0.8191 0.261 0.00 113± 0.0008 35.0± 0.2
TTN 29 0.8068 0.462 0.00 245± 0.0012 41.5± 0.6
TTN_Rz 58 0.9912 0.918 0.00 440± 0.0022 85.9± 1.5
MERA 45 0.9564 0.855 0.00 220± 0.0011 51.3± 0.5
MERA_Rz 90 0.9997 0.959 0.00 634± 0.0036 121.5± 9.6
MERA-up 23 0.9377 0.894 0.000 59± 0.0004 39.4± 2.9
MERA-up_d2 46 0.9715 0.906 0.00 038± 0.0002 50.5± 0.2
MERA-up_Rz 46 0.9961 0.926 0.00 047± 0.0005 75.2± 7.5
MERA-up_d2_Rz 92 0.9999 0.954 0.00 094± 0.0008 116.2± 4.3

Appendix D. Definitions of accuracy metrics

In this section, we provide detailed formulas for the inference accuracy metrics discussed in section 4.2.

D.1. MSE of the average shower shape
The MSE for the average calorimeter shower shape is derived from the difference between the average images
of Geant4 and the QAG model, calculated over 980 generated inference images and the corresponding 980
Geant4 images. In the subsequent equations, k iterates over the N= 980 images and i denotes the ith pixel of
each image. Hence, EG4k, i (Geant4) and EQAGk, i (QAG model) correspond to the energy of pixel i from image k.

The average pixel energies E
G4
i and E

QAG
i are computed as follows:

E
G4
i =

1

N

N∑
k=1

EG4k, i and E
QAG
i =

1

N

N∑
k=1

EQAGk, i . (D1)

The MSE is then calculated by iterating over theM= 8 individual pixels by the index i:

MSE=
1

M

M∑
i=1

(
E
G4
i − E

QAG
i

)2
. (D2)

As the MSE corresponds to an error, the smaller the value, the better the accuracy of the QAG model.

D.2. Energy sum histogram
Each histogram entry (or hit) is the total energy Ê of a shower image:

ÊG4 =
M∑
i=1

EG4i and ÊQAG =
M∑
i=1

EQAGi , (D3)

where i is iterating over theM= 8 pixels.
The means of the distributions for our data sets, Geant4 and QAG, are denoted as µG4 and µQAG,

respectively. Similarly, the standard deviations are represented by σG4 and σQAG.
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Figure E3. On the left, the average shower images of the QAG model are trained on ibmq_montreal and in the middle on
ibm_cairo. The correlation plot on the right is created for the ibm_cairo training.

The means µ of the total energy for the N = 980 images are then calculated using the well-known
equation:

µG4 =
1

N

N∑
i=1

ÊG4i and µQAG =
1

N

N∑
i=1

ÊQAGi . (D4)

And the standard deviations, denoted by σ, are computed as:

σG4 =

√√√√ 1

N

N∑
i=1

(
ÊG4i −µG4

)2

and

σQAG =

√√√√ 1

N

N∑
i=1

(
ÊQAGi −µQAG

)2

(D5)

A closer agreement between the means and standard deviations of the two distributions indicates a
higher accuracy of the QAG model.

Appendix E. Full training on quantum device

The average shower images of the quantum hardware training are correctly reproduced, as provided in
figure E3. The correlation plot for the ibm_cairo training is provided in figure E3(c). The overall correlation
pattern is correctly reproduced. All in all, the model trained on ibm_cairo shows a good performance.
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