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Trainability barriers and opportunities in
quantum generative modeling
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Quantum generative models provide inherently efficient sampling strategies and thus show promise for
achieving an advantage using quantum hardware. In this work, we investigate the barriers to the
trainability of quantumgenerativemodels posed by barren plateaus and exponential loss concentration.
We explore the interplay between explicit and implicit models and losses, and show that using quantum
generativemodelswithexplicit lossessuchas theKLdivergence leads toanewflavorofbarrenplateaus.
In contrast, the implicit MaximumMean Discrepancy loss can be viewed as the expectation value of an
observable that is either low-bodied and provably trainable, or global and untrainable depending on the
choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish
high-order correlations in the target data, while some quantum loss estimation strategies can. We
validate our findingsby comparing different loss functions formodeling data fromHigh-Energy-Physics.

The advent of quantum computing has opened up new avenues for solving
classically intractable problems1–4. Naturally, researchers gravitate towards
finding the first high-value applications that could be tackledwith near- and
mid-term quantum devices5. This includes not only speed-ups3,6–8 but
potentially superior memory efficiency9 or concrete qualitative
improvements10,11. Quantum machine learning (QML) is one of the
domains that attracts this attention2. Quantum systems, in being inherently
probabilistic, are particularly well suited to generative modeling tasks12.
Generative models aim to learn the underlying distribution of a dataset and
thereby provide a means of generating new data samples that are similar to
the original data. As well as providing a naturally efficient means of gen-
erating samples, quantum generative models can provably encode prob-
ability distributions that are out of reach for classical models13–15, and have
been proposed for various applications, such as handwritten digits16,
finance17, or High-Energy-Physics (HEP)18,19.

Despite the excitement surrounding the potential of generative QML,
there remain substantial questions concerning its scalability. This is non-
trivial to assess since implementations are constrained by hardware limita-
tions to small-scale proof-of-principle problems16,17,20–22. Thus analytic results
are essential to guide the successful development of this field. Of particular
concern is the growing body of literature on cost function concentration and
barren plateaus (BPs)23–30, where loss function values can exponentially
concentrate aroundafixedvalueand loss gradients vanishexponentiallywith
growing problem size. This phenomenon, which exponentially increases the

resources required for training, originates fromdifferent sources23,25,31–39, and
has been studied in a number of architectures23,25,30,40–45 as well as classes of
cost function32,37,40. However, its impact on quantum generative modeling
thus far has, except for the odd notable exception46, and very recent
developments47, been largely overlooked.

In this work, we provide a thorough study of trainability barriers and
opportunities in quantum generative modeling. Critical to our analysis is the
distinction between explicit and implicit models and losses. Explicit models
provide efficient access directly to the model probabilities, whereas implicit
models only provide samples drawn from their distribution48. Quantum
circuitBornmachines (QCBMs)49, the focusof thiswork, encodeaprobability
distribution in an n-qubit pure state and thus are a paradigmatic example of
an implicit model. Mirroring the capabilities of themodels, explicit losses are
those that are formulated explicitly in terms of the model and target prob-
abilities, whereas implicit losses compare samples from the model and the
training distribution. The most commonly used explicit loss for quantum
generative models is the Kullbach-Leibler (KL) divergence50. Other examples
include the Jensen-Shannon divergence (JSD), the total variation distance
(TVD) and the classicalfidelity. TheMaximumMeanDiscrepancy (MMD)51

on the other hand is one of the leading examples of an implicit loss.
Here we argue that the tension between using an implicit generative

model (providing only samples) with an explicit loss (requiring access to
probabilities) leads to a new flavor of BP. This result disqualifies all before-
mentioned explicit losses, and crucially the KL divergence, for efficient
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training of QCBMs without a strong inductive bias towards the target dis-
tribution. In contrast, the MMD as an implicit loss exhibits more nuanced
behavior and can be either trainable or untrainable. By viewing the classical
MMD loss as the expectation value of a quantum observable, we show that
varying the bandwidthparameter of aGaussiankernel interpolates theMMD
loss between a loss composed of predominantly global terms and one com-
posed of low-bodied terms with either exponentially or polynomially
decaying loss variances in the number of qubits. In particular, we derive a
polynomial lower bound on the loss for a wide family of different classes of
structured and unstructured models that depends only on the effective
entanglement light cone of the circuit. These results are summarized in
Table 1.

In parallel, we provide insights into how the globality of a generative
loss affects the types of correlations in a dataset that can reliably be learned.
In particular, we show that a k-bodied loss (see Fig. 5) cannot distinguish
between distributions that agree on all k-marginals but disagree about
higher-order correlations. Hence we argue that in the context of quantum
generative modeling, it is advantageous to train on full-bodied losses, that is
losses containing both low and high-bodied terms, rather than the purely
local losses advocated elsewhere in QML. The MMD is then a promising
candidate choice for the training of QCBMs as its bodyness can be con-
trolled via the bandwidth parameter.

We additionally expand the pool of viable loss functions by pro-
posing a new local quantum fidelity (LQF)-type loss which leverages what
we call a quantum strategy for evaluating losses. This is to be contrasted
with the conventional measurement strategy which simply uses samples
from the model distribution in the computational basis. We provide an
efficient training protocol using the LQF loss with provable trainability
guarantees.

Finally, we support our analysis with a comparison of the performance
of the KL divergence, MMD, and LQF losses for modeling HEP data.
Specifically, we consider electron energy depositions in the electromagnetic
calorimeter (ECAL) part of detectors involved in a typical proton-proton
collision experiment at the LHC.We learn to generate hits in the detector as
black and white images of various sizes, with up to 16 qubits. We confirm
that the properly-tunedMMD and the LQF losses remain trainable using a
restrictive shot budget, while training with the KL divergence becomes
increasingly futile.

Results
Framework
The goal of generative modeling is to use samples from a target distribution
p(x) to learn a model of p(x) which can be used to generate new samples.
More concretely, as sketched in Fig. 1, a generative model takes as input a
training dataset ~P consisting of M ¼ j~Pj samples drawn from the target
distribution p(x). This training set can be used to construct the empirical
probability distribution ~pðxÞ for all samples x 2 ~P. The training dataset, or
the training distribution, is then used to train the variational parameters θ of
a parameterized probability distribution qθ(x). If successful, the output of
the algorithm is a set of optimized parameters θopt such that the trained
model qθopt ðxÞwell-approximates the unknown target distribution p(x). The
trained model qθopt ðxÞ can then be used to generate new and previously

unseen data. For compactness, we use the notation p and qθ to denote the
target and model distributions respectively.

The process of training requires a loss function LðθÞ which estimates
the distance between the model distribution qθ(x) and the training dis-
tribution ~pðxÞ. For typical choices in loss function (detailed further in Sec-
tion “Loss functions”), the loss is minimized when the model parameters θ
are tuned such that the model distribution perfectly matches the empirical
distribution obtained from the training data. That is,LðθÞ ¼ 0 if and only if
qθðxÞ ¼ ~pðxÞ over the entire data space X . Thus, by perfectly minimizing
the loss, one perfectly learns the empirical distribution ~pðxÞ but not the true
target distribution p(x). This scenario is commonly called overfitting (In
contrast, discriminative machine learning models can be perfectly mini-
mized on the training data and not be overfitted.). To allow for
generalization52, whereby the model can generate novel data with similar
properties to the training data, one seeks to significantly reduce (but not
perfectlyminimize) the training loss.While generalization is the end-all goal
of generativemodels, it is not the focus of thiswork. Instead, we focus on the
training component of the generative framework, as failing to train also
prohibits generalization.

Quantum circuit models. One prototypical quantum generative model
is the quantum circuit Born machine (QCBM)13,49,53,54. Owing its name to
the Born rule of quantum mechanics, a QCBM encodes a probability
distribution over discrete data (here bitstrings) in an n-qubit pure
quantum state that depends on a parameterized unitary U(θ),

qθðxÞ ¼ jhxjUðθÞj0ij2: ð1Þ

Here ∣xi is a computational basis state corresponding to a bitstring x and,
without loss of generality, an initial state can be chosen as ∣0i ¼ ∣0i�n. We
note that estimating qθ(x) is equivalent to finding the expectation value of a
global projector jxihxj. More fundamentally, QCBMs enable the encoded
distribution to be efficiently sampled simply by measuring in a chosen
computational basis. That is, every measurement of the quantum state
provides an unbiased sample from the encoded distribution (in an ideal
noise-free setting).This is a verydesirableproperty in generativemodels that
many (classical) generative models do not share with the QCBM. Sampling
techniques for classical generative models are often unreliable and may
break down for certain distributions, as is the case for restricted Boltzmann
machines (RBMs)55,56. Born machines represent an effort to create a
powerful, flexible, and efficient generative model for classical discrete data,
andaswell asnumerous ‘standard’digital quantumimplemenations16,17,20–22,
they have been widely implemented using tensor networks57–60, continuous
variable hardware61, in a conditional setting18,62, with non-linearities63.

An important, but rather subtle, distinction in generative modeling is
that between explicit and implicit generative models48,64. Explicit generative
models are ones that allow efficient access to themodel probability qθ(x) for
any data sample x. Here, “efficient” means that the probabilities can be
computed in a time andmemory that are polynomial in the size of the data
samples, i.e., OðpolyðnÞÞ resources. Explicit (classical) generative models
include for example auto-regressive models65, RNNs66, tensor networks
without loops (which includes tensor network Born machines)57,58, and

Table 1 | Summary of our main results

Circuit depth Explicit loss (pairwise) Implicit loss (MMD)

Conventional strategy Quantum strategy

Product No (Corollary 3) Yes (Local Quantum Fidelity32) Yes (σ∈ Θ(n), Theorem 2)

Shallow Yes (σ∈ Θ(n), Theorem 3)

Deep No23,31 No23,31

This table summarizesour key analytical results on the trainability of different loss functions inquantumgenerativemodeling tasks.Without a strong inductivebias, pairwiseexplicit losses areuntrainable for
all circuit depths with the conventional sampling strategy. A quantum strategy could be utilized to efficiently estimate the local quantum fidelity, Eq. (52), which is trainable for a shallow-depth circuit. The
MMD using a classical Gaussian kernel with a linearly-scaled bandwidth (σ ∈ Θ(n)) is expected to be trainable for a shallow-depth circuits. Note that “Yes” here indicates the existence of regimes with
trainability guarantees—it does not preclude untrainable regimes including, for example, the use of global quantum fidelity or the MMD with a fixed bandwidth.
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many forms of density estimators. In contrast, implicit models lack this
property and instead offer efficient access to samples from qθ(x), which
some forms of explicit models may struggle with. A popular example of an
implicit generativemodel isGenerative Adversarial Networks (GANs)67 that
leverage an implicit training scheme to learn powerful generators.

In the case of QCBMs implemented on quantum devices, it becomes
evident that we do not have (efficient) explicit access to qθ(x), but only to
samples of the distribution in the computational basis. Consequently,
QCBMs can be classified as implicit generative models. In this work, we
study the trainability issues that QCBMs suffer from as a result.

Loss functions. Similarly to the distinction between explicit and implicit
generativemodels, we draw a distinction between explicit and implicit loss
functions. In broad terms, explicit losses are those that can only be for-
mulated explicitly in terms of the target and model probabilities, whereas
implicit losses are those that can be formulated in terms of an average
over model and training data samples. This distinction at the level of loss
functions thus mirrors the capabilities and limitations of explicit and
implicit generative models.

More concretely, we define an explicit loss as a loss functionL that can
be written solely as a function of the probabilities of the target and model
distributions, without any dependence on the data itself. Explicit losses thus
take the general form

LexplðθÞ :¼
X
x1 ...xr

f pðx1Þ; . . . ; pðxrÞ; qθðx1Þ; . . . ; qθðxrÞ
� �

; ð2Þ

where f(⋅) is a function that depends on the target probabilities p(xi) and
model probabilities qθ(xi) for data variables xi 2 X with i = 1,…, r. For this
loss to be useful, the function f should be chosen such that it measures the
distance between the probability distributions p and qθ. Crucially, the
function f does not take the data values x themselves as arguments.

While in full generality explicit losses could comparemultiple copies of
the target and model probabilities (i.e., we can have r > 1), in practice, they

usually take the simpler form

LðθÞ ¼
X
x2X

f ðpðxÞ; qθðxÞÞ: ð3Þ

Wecall such losses pairwise explicit losses since they compare themodel and
target probabilities on the same data samples, or in our case, bitstrings. The
pairwise explicit loss covers all so-called f-divergences68, including the
commonly encountered KL divergence (KLD)69,

LKLDðθÞ ¼
X
x2X

pðxÞ log pðxÞ
qθðxÞ

� �
; ð4Þ

the reverse-KLD,

Lrev�KLDðθÞ ¼
X
x2X

qθðxÞ log
qθðxÞ
pðxÞ

� �
; ð5Þ

the Jensen-Shannon divergence (JSD)70,

LJSDðθÞ ¼ P
x2X

pðxÞ log pðxÞ
pðxÞ þ qθðxÞ

� �h
þ qθðxÞ log qθðxÞ

pðxÞ þ qθðxÞ
� �i

;

ð6Þ

and the total variation distance (TVD),

LTVDðθÞ ¼
X
x2X

jpðxÞ � qθðxÞj: ð7Þ

Another example of loss function that can be written in this form is the
classical fidelity,

LCFðθÞ ¼ 1�
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqθðxÞ

p
: ð8Þ

Fig. 1 | The generative modeling framework using quantum circuit Born
machines. Given a training dataset ~P with distribution ~pðxÞ over discrete data
samples x, the goal of a QCBM is to learn a distribution qθ(x) which models the real-
world distribution p(x) fromwhich the training data itself was sampled. This is done
by tuning the parameters θ of a parametrized quantum circuit such that the QCBM
minimizes a loss function that estimates the distance between the model and the

training distribution. The QCBM is an implicit model and can thus in general not be
paired with an explicit loss function, but it may be trainable using an implicit loss. In
contrast to the conventional loss estimation strategy (solid lines) of generating a set
of samples ~Qθ and forming an empirical distribution ~qθðxÞ, strategies that are `more
quantum' (dashed lines) can be employed with the aim of allowing QCBMs to be
trained with loss functions which conventionally appear explicit.
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Notably, any non-data-dependent post-processing of an explicit loss
retains its explicit character. Thus, any non-data-dependent function of an
explicit loss (Eq. (2)) may also be considered an explicit loss. For example,
the Rényi divergence71

LR;αðθÞ ¼
1

α� 1
log

X
x

pαðxÞ
qα�1
θ ðxÞ

 !
; ð9Þ

with 0 < α <∞ and α ≠ 1 can be classified as an explicit loss function.
On the other hand, we define an implicit loss as one that can be written

as an average over samples drawn from the target and model distributions.
That is, an implicit loss function can be expressed as

LimplðθÞ :¼ Ex1;...;xr�fp;qθg gðx1; . . . ; xrÞ; ð10Þ

where g(x1, …, xr) is some function that depends on the data (but not
probabilities), and the expectation is taken over data variables x1, …, xr
sampled either from the data distribution p or the model distribution qθ.

As a key example of an implicit loss, we focus on the commonly used
MaximumMean Discrepancy (MMD)51 loss. The MMD takes the form

LMMDðθÞ ¼ Ex;y�qθ
½Kðx; yÞ� � 2Ex�qθ ;y�p½Kðx; yÞ�

þEx;y�p½Kðx; yÞ�;
ð11Þ

where K(x, y) is a freely chosen kernel function. We consider the popular
choice of a classical Gaussian kernel, which is defined as

Kσðx; yÞ ¼ e�
kx�yk2

2
2σ ¼

Yn
i¼1

e�
ðxi�yi Þ2

2σ : ð12Þ

Here, ∥. ∥2 is the 2-norm, σ > 0 is the so-called bandwidth parameter, and xi,
yi are the values of bit i in bitstring x, y, respectively. This kernel in effect
provides a continuous measure of the distance between target and model
bitstrings.

Interestingly, an implicit loss can always additionally be expressed in a
formwhere it contains the target andmodel probabilities. Taking theMMD
loss in Eq. (11) as a concrete example, the loss can be re-written as

LMMDðθÞ ¼
P

x;y2X
qθðxÞqθðyÞKðx; yÞ

�2
P

x;y2X
qθðxÞpðyÞKðx; yÞ

þ P
x;y2X

pðxÞpðyÞKðx; yÞ:
ð13Þ

However, we stress that due to the data dependence in the kernelK(x, y), the
MMD loss function can in general not be classified as an explicit loss.

Nonetheless, this brings us to the subtle point that explicitness and
implicitness are in fact not strictlymutually exclusive, i.e., onemaybe able to
find a loss function that satisfies both Eq. (2) and Eq. (10) in specific cases.
For example, for the MMD this occurs if the kernel is chosen to be a
Kroneckerdelta function,K(x, y) = δxy.However, suchhybrid losses are very
much rare edge cases, and the overwhelming majority of losses are either
explicit or implicit. A more detailed discussion of the technical nuances of
the explicit and implicit loss distinction is provided in Supplementary
Note I.

Loss measurement strategies. Central to the trainability of quantum
generative models is the measurement strategy used to estimate the loss.
Here we draw a distinction between conventional and quantum mea-
surement strategies. For simplicity we now restrict our discussion to
implicit quantum generative models such as the QCBM.

The conventional measurement strategy, which can be employed by
both classical and quantum implicitmodels, starts by collecting sample data

from the target and model distributions in the bases in which the data
distribution ismodeled, e.g., the computational basis for the case of classical
data. For an implicit loss these samples can then be directly used to evaluate
the loss function in Eq. (10). For an explicit loss, this is not possible, and
instead one needs to use the collected samples to recreate an empirical
estimate ~qθ of the true model distributions qθ.

More formally, as sketched in Fig. 1, consider the set of bitstrings ~Qθ

obtained after collectingN samples from themodel and the empiricalmodel
distribution ~qθðxÞ constructed from these samples. Then, the statistical
estimate of the pairwise explicit loss function ~LðθÞ in Eq. (3) can be
expressed as

~LðθÞ ¼
X
x2X

f ð~pðxÞ; ~qθðxÞÞ: ð14Þ

Crucially, since this proxy is all we have access to, the properties of this
statistical estimate are what determine the trainability of an explicit loss
function when evaluated via the conventional strategy. We note that zero-
estimates of themodel probabilities with ~qθðxÞ ¼ 0 are often “clipped”with
a small regularization parameter ϵ≪ 1 in order to avoid numerical
instabilities in the loss computation.

This conventional strategy is somewhat classical in the sense that after
sampling is performed on the quantummodel, the post processing required
to compute the cost is entirely classical. However, “more quantum” mea-
surement strategies are also possible. In this case, a quantum circuit is used
to compute functions of the probabilities, potentially more directly and/or
collectively.

For example, rather than computing the classical fidelity in Eq. (8) by
explicitly computing the probabilities qθ(x), one could encode the target
distribution in a quantum state ∣ϕ

	 ¼Px

ffiffiffiffiffiffiffiffi
~pðxÞ

p
∣xi and compute the

quantum fidelity

LQFðθÞ :¼ 1� j ϕ



∣ψðθÞ	j2 ð15Þ

� 1�
X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pðxÞqθðxÞ

q�����
�����
2

: ð16Þ

Up to arbitrary global phase factors (and amod-square) this is equivalent to
the classical fidelity. However, it can be computed via coherent strategies—
namely a Loschmidt echo circuit72–75 or a SWAP test76,77.Wenote that in this
case quantumgenerativemodeling is equivalent to a state learning problem.
While this expression seemingly requires the entire training dataset to be
loaded into awavefunction, we present an approach in Sec. II B 5 to estimate
this cost using pairwise Hadamard tests.

More generally, it remains an open question if/when commonly
encountered losses for generative modeling can be computed using quan-
tum strategies and whether or not this brings any advantages (Beyond
QCBMs, Quantum Generative Adversarial Networks (QGANs)78 trained
with classical discriminators79–81 in effect use a conventional measurement
strategy, whereas their variant with quantum discriminators82 use a quan-
tum strategy.). Nonetheless, we suggest that this is an interesting avenue for
future research.

Exponential concentration and barren plateaus. For a quantum
generative model to be trained successfully, the loss landscape must be
sufficiently featured to enable a solution to be found. There is a growing
awareness of the importance of BPs, and its sister phenomenon expo-
nential concentration, for QML23–30. A BP is a loss landscape where the
magnitudes of gradients vanish exponentially with growing problem
size23,25–29,31–37. Closely related and equally problematic is exponential
concentration where the loss is shown to concentrate with high prob-
ability to a single fixed value24. This, with high probability, results in
poorly trainedmodels using a polynomial number ofmeasurement shots
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(regardless of the optimization method employed)27. More precisely,
exponential concentration can be formally defined as follows.

Definition 1. (Exponential concentration). Consider a quantity X(α) that
depends on a set of variables α and can be measured from a quantum
computer as the expectation of some observable. X(α) is said to be deter-
ministically exponentially concentrated in the number of qubits n towards a
certain fixed value μ if

jXðαÞ � μj⩽ β 2 Oð1=bnÞ; ð17Þ

for some b > 1 and all α. Analogously,X(α) is probabilistically exponentially
concentrated if

Prα½jXðαÞ � μj⩾ δ�⩽ β

δ2
; β 2 Oð1=bnÞ; ð18Þ

forb > 1.That is, the probability thatX(α) deviates fromμbya small amount
δ is exponentially small for all α.

A number of causes of exponential concentration and BPs have been
identified including using parameterized circuits that are too
expressive23,25,31,43 or too entangling33,34,44. Hardware noise35,36,83 has also been
shown to exponentially flatten the loss landscapes, which strongly hinders
the potential of current noisy quantum devices. The exponential con-
centration can also happendue to randomness in the training dataset37–39. In
addition, there are studies on the exponential concentration in different
QMLmodels including dissipative parametrized quantum circuits44 as well
as quantum kernel-based models30.

Finally, the choice of loss function can also induce these phenomena.
Thus far, loss concentration has predominantly been studied in the context
of losses of the form

CðθÞ ¼ Tr½OUðθÞρUðθÞy�; ð19Þ

whereρ is ann-qubit input state andO is aHermitianoperator. Inparticular,
it has been shown that “global”32 losses, i.e., those whereO acts non-trivially
on OðnÞ qubits, induce loss concentration even for very shallow random
circuits. Conversely, local losses whereO acts non-trivially on atmost log(n)
adjacent qubits (and more generally low-body losses where the adjacency
constraint is lifted—see panel a) of (Fig. 5) have been shown to enjoy
trainability guarantees32,40 with shallow unstructured circuits. Furthermore,
we note that how BPs affect parametrized quantum circuits with a non-
linear loss in the discriminative QML setting has been studied in ref. 37.

Herewe study exponential concentration for generativemodeling tasks
on classical discrete data using implicit quantumgenerativemodels, and use
our insights to establish guidelines of how best to train such models. Cru-
cially, in this generative modeling context, the fixed points of the model
probabilities tend to be exponentially small and the loss function contains
the sum over exponentially many terms. These two together render pre-
viously used tools not directly applicable for studying the trainability of
quantum generative models.

Large gradient variances are not enough. The presence or absence of
BPs is usually diagnosed by computing the variance of the loss over a
given parameter distribution. Crucially this is usually computed for the
exact loss, i.e., not including the effect of shot noise. Here we argue that
this approach can fail in the context of quantum generative modeling. In
particular, if one computes the variance of the KLD loss then the loss
variance can be non-exponentially vanishing even for very deep circuits.
However, as we will argue in this section, the KLD loss is untrainable for
both deep and shallow unstructured circuits if the model is implicit (i.e.,
only gives efficient access to samples and not to the probabilities).

We now show that the variance of the exact KL divergence depends
directly on the support of the target distribution and hence can be poly-
nomially large. This is quantified by the following proposition which we
prove in Supplementary Note III.

Proposition 1. Consider the KLD loss as defined in Eq. (4). Assume access
to the exact target distribution p(x) and the model distribution qθ(x). Then,
we have
• For deep (Haar random) parametrized circuitU(θ), the variance of the

loss scales asymptotically (2n≫ 1) as

Varθ½LKLDðθÞ� ¼ π2

6

X
x

p2ðxÞ: ð20Þ

• For a random tensor product circuitUðθÞ¼Nn
i¼1UiðθiÞ whereUi(θi)

is a random single-qubit unitary, the variance of the loss scales as

Varθ½LKLDðθÞ� ¼ n� π2

6

X
x;x0

pðxÞpðx0Þ x � x0
�� ��

H ; ð21Þ

where ∥ ⋅ ∥H is a Hamming distance.

It follows that the variance of the exact KLD can be non-exponentially
vanishing even for a deep circuit, where onewould generally expect a BP23, if
the purity∑x p

2(x) of the target distribution is non-exponentially vanishing.
For this condition to bemet, allweneed is that at least oneprobability p(x) of
the target distribution is non-exponentially vanishing. This is captured by
the following corollary.

Corollary 1. Under the same assumption as in Proposition 1, for the target
distribution, at least one probability is at least polynomially large. Then, the
variance of the KLD loss function does not vanish exponentially with the
system’s size. That is, 9x : pðxÞ 2 Ω 1

polyðnÞ
� �

, we have

Varθ½LKLDðθÞ� =2O 1
bn

� �
; ð22Þ

for some constant b > 1.

We note that any distribution with support on at most D bit strings
necessarily has at least oneprobability that is 1/D large. Thus the support of a
distribution lower bounds the variance of the exact KLD. This is reflected in
Fig. 2. For the GHZ dataset, which has Oð1Þ support, we observe a strong
evidence for non-vanishing variance for all circuit depths. For linear and
quadratic support datasets, the variances moderately decrease as the num-
ber of qubits increases for deep circuits.

Thus we see that for certain target probability distributions, the KLD
does not exhibit a BP for explicit models. This suggests that quantum-
inspired models that can provide direct access to probabilities (e.g., tensor
network Born machines57,58) might be trainable with the KLD. However,
current generativemodels running on quantumdevices only provide access
to samples fromadistribution viameasurements and, aswewill argue in the
next section, the large variance of the exact loss, in contrast to standard
VQE-style losses, does not translate to substantial loss gradients in practise.

Trainability analysis on loss functions
In this section, we analyze the trainability of different loss functions used in
quantum generative modeling.

Pairwise explicit losses. Part of the power of quantum generative
models is that they can be used to continuously parameterize and express
distributions over discrete data with exponential support. That is, an n-
qubit model can be used to model distributions over 2n different n-
bitstrings. However, while the true target distribution may have expo-
nential support, the amount of training data ~P is in practise restricted.
More precisely, for large n (e.g., n > 50), it is reasonable to assume that the
number of bitstrings in the training dataset scales atmost polynomially in
n. Similarly, the number of bitstrings samples obtained from the model
must also scale at most polynomially in n. That is, j~Pj; j~Qθj 2 OðpolyðnÞÞ.

This discrepancy between the polynomial support of the training data
and the exponential support of themodel, canmake it highly challenging to
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train implicit models using pairwise explicit loss functions. In loose terms,
the problem is that the only bitstrings that contribute to the evaluation of a
statistical estimate of an explicit cost are those corresponding to bitstrings ~P
in the trainingdata.Toestimate the loss one thusneeds goodestimates of the
model distributions over the support of ~P. However, for an implicit model
these estimates are obtained via sampling and the set ~P contains an expo-
nentially small proportion of the total number of bitstrings. As such, for
generic models (i.e., those using no information about the particular dataset
at hand), the probability of measuring any bitstring in the training set will
also be exponentially small (as sketched inFig. 3), leading to a poor statistical
estimate of the loss. This observation was in fact one of the original moti-
vations formoving away from the KLD and introducing theMMD loss in a
quantum context in ref. 54 or follow-up works such as ref. 13.

Concentration of pairwise explicit losses. To make this line of argu-
ment more concrete, the first family of models we will consider are those
where the individual model probabilities qθ(x) are exponentially con-
centrated over different values of θ. This is the case for a large family of
unstructured parameterized quantum circuits. Since estimating qθ(x) is
equivalent to computing the expectation value of the global projector
jxihxj, the concentration of qθ(x) can be viewed as resulting from the
global-measurement-induced BP phenomenon32. In this case, con-
centration is observed even for an ansatz that is comprised of only a single
layer of single-qubit rotations. However, alternative phenomena (e.g.,
noise35 or expressibility31) can also lead to the exponential concentration
of qθ(x). More formally, the following proposition holds.

Proposition2. (Concentrationofmodel). For all possible bitstringsx 2 X ,
the underlying probability qθ(x) of the quantum model exponentially
concentrates towards some exponentially small fixed point μ∈O(1/bn) for
b > 1 if the quantum generative model is constructed with:
• A single layer of random single qubit gates UðθÞ¼Nn

i¼1UiðθiÞ. Or,
more precisely, if fUiðθiÞgθi forms a local 2-design on qubit i32.

• L layers of random k-local 2-designs, i.e.,UðθÞ ¼QL
l¼1

Nn=k
j¼1 Ul;jðθl;jÞ

with eachUl,j(θl,j) acting on kqubits and fUl;jðθl;jÞgθl;j forming a k-local
2-design over θl,j

32.
• A parameterized quantum circuit U(θ) such that its ensemble over θ

i.e., {U(θ)}θ forms an approximate 2-design on n qubits23,31. This holds
even for the problem-inspired circuits25.

• A linear-depth quantum circuit subject to local Pauli noise between
each layer35.

Proposition2provides examples of caseswhere themodel probabilities
exponentially concentrate over all bitstrings inX . However, we find that in
fact trainability difficulties arise even if model probabilities are only expo-
nentially concentrated over the training dataset (but perhaps not on points
outside the dataset). That is, all that is required for untrainability is that the
probability of measuring a sample that is also in the dataset is practically
zero. This is likely to be the case even for highly structured quantum circuits
if the generativemodel is built without a strong inductive bias.We formalize
this intuition in Supplementary Note II B.

Wenowargue that the exponential concentration of probabilitiesqθ(x)
over the dataset causes ~LðθÞ to also exponentially concentrate. To under-
stand why, let us look at the probability of measuring one specific bitstring
(e.g., x0—the all-zero bitstring) and assume that qθ(x0) is exponentially
concentrated towards some exponentially small value μ. Then, for any given
parameter constellation, it is highly likely that qθ(x0) is exponentially close to
μ. To estimate qθ(x0) on a quantum computer we sampleN bitstrings from
the quantum model and record the observations. The chance that none of
the sampled bitstrings are the specific bitstring that we are interested in is
ð1� qθðx0ÞÞN � 1� Nμ. However, the number of circuits N that can be
efficiently run is necessarily limited—herewewill assumeN∈ poly(n). Thus
we have that the probability of notmeasuring the bitstring we are interested
in is exponentially close to 1. That is, the statistical estimate of ~qθðx0Þ is
almost always zero. We can then generalize this intuition for a single bit-
string to the estimation of each of the (polynomially many) target bitstrings
and therefore thewhole loss function.The following theorem formalizes this
argument.

Theorem 1. (Concentration of pairwise explicit loss for concentrated
models). Consider the loss function of the form in Eq. (3). Assume that for
all bitstrings in the training dataset, x 2 ~P, the quantum generative model
qθ(x) exponentially concentrates towards someexponentially small value (as
defined in Definition 1). Suppose that N 2 OðpolyðnÞÞ samples are col-
lected from the quantum model corresponding to the set of sampled bit-
strings ~Qθ , and that the training dataset ~P contains M 2 OðpolyðnÞÞ
samples. We define the fixed point of the loss as

L0ð~P; ~QθÞ ¼
X
x2P

f ð~pðxÞ; 0Þ þ
X
x2Qθ

f ð0; ~qθðxÞÞ; ð23Þ

with P (and Qθ) being a set of unique bitstrings in ~P (and ~Qθ). Then, the
probability that the estimated value ~LðθÞ is equal to L0ð~P; ~QθÞ is

Fig. 2 | Study of loss concentration with the exact KLD loss function. Numerical
evidence that the exact KLD loss can have a non-vanishing loss variance even when
model probabilities exhibit exponential concentration. We study the loss con-
centration in randomly initialized line-topology circuits for various datasets, and
increasing the number of qubits n and circuit depth. We emphasize that the model
probabilities qθ(x) where evaluated exactly and in the absence of shot noise. We also

show the infinite layer results beyond 6 qubits that are generated using Eq. (20). The
GHZ dataset consists of the all-0 and all-1 bitstrings (Oð1Þ support), the OðnÞ and
Oðn2Þdatasets consist ofn andn2 randombitstrings, respectively, and the cardinality
dataset contains all bitstrings with n

2 cardinality (Oð2nÞ support). There appears to be
a strong data dependence for the magnitude of the loss variance, which could lead to
exponential concentration.

https://doi.org/10.1038/s41534-024-00902-0 Article

npj Quantum Information |          (2024) 10:116 6

www.nature.com/npjqi


exponentially close to 1, i.e.,

Pr~Qθ ;θ
½~LðθÞ ¼ L0ð~P; ~QθÞ�⩾ 1� δ; ð24Þ

with δ 2 O polyðnÞ
cn

� �
for some c > 1.

As a direct consequence of Theorem1, the following corollary gives the
concentration points of some specific explicit loss functions mentioned in
this work.

Corollary 2. (Concentration points of common explicit loss functions).
Under the same conditions as in Theorem 1, the following loss functions
concentrate at
• KL-divergence:

LKLD
0 ð~P; ~QθÞ ¼

X
x2P

~pðxÞ log ~pðxÞ
ϵ

� �
: ð25Þ

Here ϵ≪ 1 is a clipping value, which is commonpractice to avoid the
singularity of the logarithm at qθ(x) = 0.

• Classical fidelity:

LCF
0 ð~P; ~QθÞ ¼ 1: ð26Þ

• Reverse KL-divergence:

Lrev�KLD
0 ð~P; ~QθÞ ¼

X
x2Qθ

~qθðxÞ log
~qθðxÞ
ϵ

� �
: ð27Þ

• Total variation distance:

LTVD
0 ð~P; ~QθÞ ¼ 2: ð28Þ

Looking at the expressions for the fixed points given above, in the case of
the KL divergence, classical fidelity and total variational distance, the fixed
point is independent of θ. Thus it is clear that the costs cannot be used to train
the quantum circuit model. In the case of the reverse KL divergence, the fixed
pointdependsonθbut is independentof the trainingdata and thus the reverse
KL also cannot be used to train the model to learn the target distribution.

More generally, for all explicit losses of the form Eq. (3), the con-
centration pointL0ð~P; ~QθÞ, Eq. (23), can be separated into two terms: (i) the
term that involves only ~P and (ii) the other that involves only ~Qθ . In other
words, the θ dependence of the estimator of the loss is independent of the
target distribution and thus the estimate of the loss is worthless for training
the generativemodel. This no-go result is rigorously established inCorollary
3. Our approach is to show that the loss function at two arbitrary parameter
values θ1 and θ2, contains no information about the training distribution.

Corollary 3. (Untrainability of pairwise explicit loss functions). Under the
same conditions as inTheorem1, theprobability that thedifference between
the two statistical estimates of the loss function at θ1 and θ2 does not contain
any information about the training distribution is exponentially close to 1.
Particularly, we have

Pr~Qθ ;θ
½~Lðθ1Þ � ~Lðθ2Þ ¼ ΔL0ð~Qθ1

; ~Qθ2
Þ�⩾ 1� 2δ; ð29Þ

with δ 2 O polyðnÞ
cn

� �
for some c > 1, ~Qθ1

(and ~Qθ2
) is a set of sampling

bitstrings obtained from the quantum generative model at the parameter
value θ1 (and θ2), as well as

ΔL0ð~Qθ1
; ~Qθ2

Þ ¼
X
x2Qθ1

f ð0; ~qθ1 ðxÞÞ �
X
x2Qθ2

f ð0; ~qθ2 ðxÞÞ; ð30Þ

with Qθ1
(and Qθ2

) being a set of unique bit-strings in ~Qθ1
(and ~Qθ2

).
Crucially, ΔL0ð~Qθ1

; ~Qθ2
Þ does not depend on any ~pðxÞ 2 ~P.

To support our analytic claimswe further conducteda numerical study
of the exponential concentration of pairwise explicit costs. For concreteness,
we here decided to focus on the KL divergence. In Fig. 4, we plot the mean
and variance (over θ) of theKLdivergence for the target distribution ~pð0Þ ¼
1 as a function of the number of measurement shots and qubits. For sim-
plicity we take our model to be a (Haar) random product state.

Fig. 4 | Variance of the KL divergence with finite shots. Concentration of the KL
divergence loss as a function of the number of measurements and qubits for random
product state circuits. Herewe take the target distribution to be~pð0Þ ¼ 1 and take the
cutoff of the KLD to be ϵ = 10−14. Vertical lines indicate where the number of
measurements equal 2n. Thus, we see that the the KLD estimate is biased upwards
with any finite number ofmeasurements, and the number ofmeasurements required
to achieve a reasonable level of uncertainty increases exponentially with the number
of qubits n.

Fig. 3 | The problemwith pairwise explicit losses. In the space with 2n unique n-bit
bitstrings, samples x generated from an uninformed model with high probability do
not coincide with any of the training bitstrings. In other words, the empirical model
distribution ~qθðxÞ and the training distribution ~pðxÞ do not both have non-zero
probabilities for any bitstring x. On the other hand, an implicit loss function such as
the MMD provides a continuous measure of distance between the distributions by
use of a Gaussian kernel with bandwidth σ.
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Wesee in (Fig. 4a) thatwith a polynomial number ofmeasurements, as
per Eq. (25), the empirical estimate of the loss concentrates at logð1=ϵÞ �
32:2 for ϵ = 10−14. Correspondingly, with a polynomial number of mea-
surements the variance in (Fig. 4b) is exponentially close to zero. Using an
exponential number ofmeasurements, the estimate of the KL tends towards
its true value and the variance is again small. The transition between these
two regimes is marked by a very high variance corresponding to the case
where the measurement count is high enough for there to be some overlap
between the sampled bits strings and the 0 bitstring, but not enough overlap
to obtain a reliable estimate of qθ(0). This results in the loss estimate to
sporadically fluctuate between logð1=ϵÞ and logð1=qθðxÞÞ with qθ(x) > 0.
While in Fig. 4 the target dataset consists of a single bitstring, larger datasets
only shift the curves to the left by a polynomial amount.

Broader Implications. While our results above are formulated for
training QCBMs with pairwise explicit costs, we argue that the underlying
problem is more general and immune to simple solutions. One approach,
for example, might be to take non-data-dependent functions of pairwise
explicit losses, as in the case of the Rényi-divergence in Eq. (9). However,
such loss functions exponentially concentrate in the same manner as the
explicit losses themselves when employing the conventional measurement
strategy. A more promising but challenging approach would be to attempt
to measure such losses via quantum strategies. We discuss this further in
Section “Quantum strategies: quantum fidelity”.

More generally, while we provide strict no-go results only for pairwise
explicit losses,webelieve that any explicit losses in the general formofEq. (2)
will suffer from concentration or exponential imprecision due to the
inherent inability of implicit models to accurately estimate the model
probabilities in polynomial time (A possible exception is if a particular
implicit model instead allows for efficient estimation of gradients of an
explicit loss function, as it is the case forRBMs trainingon theKLdivergence
loss function.). We are however not aware of any practical explicit loss
function that cannot be brought into the pairwise explicit form.

We further stress that our results hold for unstructured ansätze or
ansätze that lack an appropriate inductive initial bias. Thus, while explicit
losses suchas theKLDwill notwork at scalewith implicitmodels straight out-
of-the-box, our no-go theorems could be side-stepped using clever initi-
alization strategies in conjunctionwith specializedansätze. For example,while
we argue in Supplementary Note II B that initializing the quantum circuit
model on a subset of training states will not alleviate the fundamental issue
when using a generic ansatz, thismaywork if one leverages a quantum circuit
that constrains the model to the symmetry sector of the data. Among other
hard constraints, this is conceivable if the data consists only of samples with a
certainhammingweight or cardinality, as it canbe the case in certainfinancial
applications84,85. However, many real-world datasets may not contain strong
symmetries that one can leverage so straightforwardly. It is therefore critically
important to study the effect of strong parameter initializations and inductive
biases using explicit losses—both theoretically and experimentally.

Implicit losses: maximummean discrepancy. In the previous section
we saw that an explicit loss function, used in conjunction with an implicit
generative model and the conventional sampling strategy, exhibits
exponential concentration and hence is untrainable. The root cause was,
at least in part, a miss-match between using an explicit loss function with
an implicit model. Thus it is natural to ask whether an implicit quantum
loss would fare better.

Here we focus on analyzing theMMD loss function (see Eqs. (11) and
(13)), which is a commonly-used implicit loss. In contrast to the pairwise
explicit losses discussed previously, each bitstring drawn from the model is
generally comparedwith all training bitstrings, with the kernel functionK(x,
y) controlling the contribution of each comparison. With a poor choice in
kernel it is clear that the MMD will be susceptible to exponential con-
centration. For example, the Gaussian kernel with the bandwidth σ→ 0 is
equivalent to a delta function kernel, K(x, y) = 〈x, y〉 = δxy. In this case the
MMD reduces to the pairwise explicit loss

P
x2X ðpðxÞ � qθðxÞÞ2 (see

Supplementary Note I for details), and consequently is subject to our no-go

result in Theorem1. This thus prompts the question of how exactly σ affects
trainability.

Properties of theMMD loss. To study the properties of theMMD loss, it
is helpful to note that each term in the MMD can be viewed as the expec-
tation value of an observable whose properties depend on the choice of σ.
This change in perspective allows us to leverage existing knowledge from the
VQA trainability literature. In particular, prior no-go results on VQAs with
observable-type loss functions are now directly applicable here, including
those on cost function induced32, expressiblity-induced23,31, and noise-
induced35 BPs.

Specifically, each term in the MMD can be written as

Mðρ; ρ0Þ ¼ Tr½OðσÞ
MMDðρ� ρ0Þ�; ð31Þ

where we have defined the MMD observable

OðσÞ
MMD :¼

X
x;y

Kσ ðx; yÞjxihxj � jyihyj: ð32Þ

This observable acts on 2n qubits, namely n qubits corresponding to the
QCBM, ρθ ¼ jψðθÞihψðθÞj, and n qubits corresponding to the dataset,
ρ~p ¼

P
y~pðyÞjyihyj. For the first term in the MMD, both x and y are

sampled from theQCBMandwe have ρ ¼ ρ0 ¼ ρθ . The cross-term instead
has ρ = ρθ and ρ0 ¼ ρ~p, and the final term has ρ ¼ ρ0 ¼ ρ~p.

In the Pauli basis, the MMD observable OðσÞ
MMD takes the elegant form

OðσÞ
MMD ¼

Xn
l¼0

wσ ðlÞD2l; ð33Þ

where D2l are normalized 2l-body diagonal operators (defined explicitly in
Supplementary Note IV A), and

wσ ðlÞ ¼
n

l

� �
ð1� pσÞn�lplσ ð34Þ

are Bernoulli-distributed weights with effective probability

pσ ¼ ð1� e�1=2σÞ=2: ð35Þ

Thus estimating the MMD loss function in Eq. (11) using a batch of mea-
surements ~Q is equivalent to using the same measurements to estimate a
weighted expectation of the observables D2l.

The properties of the MMD observable clearly depend on the dis-
tribution of the termsof different bodyness through thewσ(l) factor. Figure 5
shows how wσ(l) are distributed for different σ. Owing to the Bernoulli-
distributed weights, we can straightforwardly provide the average bodyness
of OðσÞ

MMD, which is given by

El�ωσ ðlÞ½2l� ¼ 2npσ ; ð36Þ

and the variance in the bodyness, which is

Varl�ωσ ðlÞ½2l� ¼ 4npσ ð1� pσ Þ: ð37Þ

From these expressions it follows that the MMD loss is predominantly
composed of global operators when σ 2 Oð1Þ. More concretely the fol-
lowing proposition holds.

Proposition 3. (MMD consists largely of global terms for σ 2 Oð1Þ). For
σ 2 Oð1Þ, the average bodyness of the MMD operator containing Pauli
terms with weight wσ(l) is

El�wσ ðlÞ½2l� 2 ΘðnÞ: ð38Þ
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Similarly, the variance in the bodyness is given by

Varl�wσ ðlÞ½2l� 2 ΘðnÞ: ð39Þ

This shows that with fixed-size bandwidths σ, as is commonly done
(e.g., ref. 54), theMMD suffers from global loss function-induced BPs32 and
hence is untrainable. This practice of using constant bandwidths is carried
over from classical ML literature86–88, but Proposition 3 shows that this is
fundamentally incompatible with quantum generative models using
unstructured circuits.

In contrast, we show that if the bandwidth scales linearly in the number
of qubits, σ∈Θ(n), the MMD loss function is approximately low-bodied.
We recall that being low-bodied is more general than being local, the latter
corresponding to the case where an operator is low-bodied and each term
only acts non-trivially on adjacent qubits. The following proposition for-
malizes this relation by quantifying the error made when truncating the
MMD observable after a certain bodyness.

Proposition 4. (MMD consists largely of low-body terms for σ∈Θ(n)).

Let ~Lðσ;kÞ
MMDðθÞ be a truncated MMD loss with a truncated operator ~O

ðσ;kÞ
MMD

that contains up to the 2k-body interactions in OðσÞ
MMD,

~O
ðσ;kÞ
MMD :¼

Xk
l¼0

wσðlÞD2l; ð40Þ

where wσ(l) are Bernoulli-distributed weights defined in Eq. (34). For
σ∈Θ(n), the difference between the exact and local approximation of the
loss is bounded as

∣LðσÞ
MMDðθÞ � ~Lðσ;kÞ

MMDðθÞ∣⩽ ϵðkÞ; ð41Þ

with

ϵðkÞ 2 O nðc=kÞk
� �

; ð42Þ

for some positive constant c.

This implies that one can view the MMD loss with a bandwidth σ ∈
Θ(n) as composed almost exclusively of low-body contributions. We
therefore expect, given the results of refs. 32,40, that the the MMD is
trainable for σ∈Θ(n) for quantum generative models which employ shal-
low quantum circuits. We note that there appears to be no merit in
increasing σ beyondΘ(n), as that simply increases the relative weight of the
constant l = 0 term inEq. (33). That is, theMMDoperator tends towards the
trivial identity measurement for σ→∞.

To probe this further, and get a better understanding of the effect
of σ on the trainability of the MMD loss, we start by considering the
case of QCBM with a product ansatz. This allows us to find a closed-
form expression of the MMD variance as a function of the circuit
parameters (Supplemental Proposition 2) fromwhich we can study the
concentration of the MMD for different σ values. Our findings are
summarized by the following Theorem (proven in Supplementary
Note IV B 3).

Theorem2. (Product ansatz trainability ofMMD, informal). Consider the
MMD loss functionLðσÞ

MMDðθÞ as defined in Eq. (11), which uses the classical
Gaussian kernel as defined in Eq. (12) with the bandwidth σ > 0, and a
quantum circuit generative model that is comprised of a tensor-product
ansatz U¼Nn

i UiðθiÞ with fUiðθiÞgθi being single-qubit (Haar) random
unitaries.Givena trainingdataset ~P, the asymptotic scalingof the varianceof
the MMD loss depends on the value of σ.

For σ 2 Oð1Þ, we have

Varθ½LðσÞ
MMDðθÞ� 2 Oð1=bnÞ; ð43Þ

with some b > 1.
On the other hand, for σ∈Θ(n), we have

Varθ½LðσÞ
MMDðθÞ� 2 Ωð1=nÞ: ð44Þ

Fig. 5 | Bodyness of the MMD loss. a We illustrate the difference between “low-
body”, “local”, “global” and “full-body” operators. An operator O is low-bodied if it
acts non-trivially on atmostOðlogðnÞÞ qubits. If a low-bodied operator acts on qubits
that are adjacent to each other, then O is said to be local. On the other hand, O is
global if it acts non-trivially on Θ(n) qubits. Lastly, a full-body operator consists of
the sum of several operators that are low-body/local and global. bWe depict the
weightwσ(k) for the terms in theMMDoperator as a function of their bodyness k for
n = 50, 100, and 200 qubits and the bandwidths σ = 0, 1, and n/4. The average weight
over these three σ values is also shown. For small σ, the MMD operator is a sum of

predominantly global operators, i.e., with σ 2 Oð1Þ the mean bodyness is Θ(n). In
contrast, σ ∈ Θ(n) results in predominantly low-bodied operators. c Sketch of the
expected landscapes for low-body, global and full-body losses respectively. Because
low-body and global operators are exclusively sensitive to low-body and global
features, respectively, their loss landscapes exhibit spurious minima, which don’t
coincide with the minimum of the true target distribution. A full-body loss on the
other hand should have a single optimal solution solution where all its constituent
operator’s minima align.
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We numerically verify Theorem 2 in Fig. 6. In panel (a) we show that
the analytical predictions for different bandwidths coincide perfectly with
the numerical estimates. The exponentially vanishing loss variances
observed for σ∈O(1) are expected to render the loss untrainable. This is
demonstrated in panel (b), where we further train a QCBM with σ = n/4
(which approximately maximizes the variance) and σ = 1. We find that a
QCBMwith σ = n/4 can be successfully trained even for n = 1000 qubits. In
contrast, the training starts to fail to learn the ∣0i target state aftern ≈ 50 and
is fully untrainable at n = 100 when σ = 1 is used.

It is interesting to note that the approximately optimal bandwidth
σ � n

4 for the product state ansatz coincides with the so-called median
heuristic51 from classical ML literature. For random circuits, the median
(hamming) distance between bitstrings is in fact n2, whichwe satisfy with the
factor of 2 in our kernel convention.

To go towardsmorepractical generativemodeling,we recall that ref. 40
proves that cost functions of the form of Eq. (19) using 2k-body observables
with k 2 OðlogðnÞÞ are trainable using 1D-random logðnÞ depth circuits.
Since Proposition 4 implies that the MMD is well approximated by a
logðnÞ-body cost, it should follow that the MMD is also trainable at logðnÞ
depths. There are a few technical caveats associated with constructing a full
proof. For example, the first term of the MMD requires working with
4-designs instead of 2-designs, and the second term depends on the target
distribution, leading to additional subtleties. However, there is no strong
reason to expect that these technicalities make the MMD untrainable.

To extend the trainability result beyond a simple tensor product ansatz,
we consider a generic Pauli rotation ansatz of the form UPQC(θ) =U(α)
Utensor(β) where

UðαÞ ¼
YM
k¼1

e�iαkGk=2Vk ð45Þ

such that the generators fGkgMk¼1 are some n-qubit Pauli strings Gk 2
f1;X;Y ;Zgn and fVkgMk¼1 is a set of non-parametrized Clifford gates, and
U tensorðβÞ¼

N
i¼1nUiðβiÞ is a layer of random single qubit rotationsUi(βi).

We additionally assume all parameters are uncorrelated. Then, we have the
variance of the MMD loss scales as follows.

Theorem3. (General Pauli rotation ansatz trainability ofMMD, informal).
Consider a general Pauli rotation ansatz of the form in Eq. (45) and the
MMD loss function as defined in Eq. (11) using the Gaussian kernel in Eq.
(12) with the bandwidth σ ∈ Θ(n). As long as the average light cone of the
back-propagated MMD observable with U 0ðαÞ remains in the order of
logðnÞ, then the QCBM is trainable in the sense that

Varθ½LðσÞ
MMDðθÞ� 2 Ωð1=polyðnÞÞ: ð46Þ

Theorem 3 indicates that in practice one has to only determine the
average light cone of the effective MMD observable back-propagated by a
given ansatz (see Eq. (243) in Supplementary Note IV C for a formal defi-
nition) to have a trainability guarantee. In Supplementary Note IV C, we
provide further details on how to compute this average light cone for the
Pauli rotation ansatz. An example of an ansatz satisfying the few-body light
cone condition is a shallow depth circuit with nearest neighbor connectivity
(which could be either hardware efficient or problem inspired). Crucially,
we emphasize that this light cone argument goes beyond the 2-design
assumption and is expected to work even more generally to any ansatz that
may not even be in the Pauli rotation form.

It is worth noting that as few mild technical assumptions are required
tomore formally state Theorem 3. These, alongwith our proof are provided
in Supplementary Note IV C.We further remark that although some proof
techniques are similar to ref. 89, the main technical challenges here are to
analytically show that the covariance between different terms which involve
higher moments vanish and compute the exact form of the variance lower
bound of the purity term. We further remark that although some proof
techniques are similar to ref. 89, the main technical challenges here have
arisen from dealing with the two system registers of the MMD which
involves computing the exact form of the higher moments.

Theorem 3 is further supported by our numerical evidence for the
trainability of the MMD for deeper circuits and more realistic datasets
shown inFig. 7.Hereweplot the loss variance as a functionof circuit depthL
and the number of qubits n for σ = n/4 on four datasets from four different
target distributions. We observe that the polynomial scaling of the loss
variance does in fact extend beyond product states to shallow circuits, i.e.,
L 2 OðlogðnÞÞ. However, for sufficiently deep circuits, i.e., L∈Ω(n), the
MMD variance appears to decay exponentially. This aligns with
expressibility-induced BPs observed in other VQA applications, which
occur even for maximally local loss functions, i.e., k = 1.

The role of local minima. Our results so far appear to indicate that
picking a single bandwidth σ∈Θ(n) maximizes the trainability of the
MMD loss function with a Gaussian kernel. While it is true that this
choice maximizes the expected magnitude of initial gradients for a
QCBM, non-vanishing gradients are a necessary condition but not suf-
ficient to guarantee reliable training performance. And in fact it turns out
that while low-body losses exhibit large gradients they come with other
limitations. Particularly, we show that the bodyness of a generative loss
function defines themaximal order ofmarginals of the target distribution
that can be distinguished. That is, the model only learns to match the
target distribution on subsets of bits, i.e., on itsmarginals. This introduces
a continuous family of minima which are indistinguishable from the true
minimum when using a low-bodied loss function, but which are sys-
tematically wrong for the purposes of generative modeling. The worry is
that the non-vanishing loss gradients in low-bodied losses are pre-
dominantly due to the presence of such spurious minima and do not
point in the direction of the true global minimum. This is sketched in
Fig. 5.

Formally, letqθ(xA) denote themarginalmodel distributionon a subset
A⊆ {1, 2,…, n} of qubits, and ~pðxAÞ themarginal target distribution on that
same subset. For more details we refer to Eq. (368) and Eq. (370) in

Fig. 6 | σ-dependence of the MMD loss function. a Comparison of the MMD
variance between the analytical prediction (see Eq. (182) in Supplementary Infor-
mation for an exact analytical expression) and empirical variance using 100 mea-
surements from a product state ansatz. b Training a product state ansatz on the ∣0i
target state for σ = 1 and σ = n/4 using the CMA-ES113 optimizer and 512 mea-
surements. In both cases the QCBM ansatz consists of a single layer of Ry rotations
on each qubit.
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SupplementaryNote IVD.The connection between the bodyness of the loss
operator and the marginals of the model and target distributions is then
formalized in the following Proposition.

Proposition 5. (The truncated MMD loss is not faithful). Consider a
distribution qθ(x) that agrees with the training distribution ~pðxÞ on all the
marginals up to k bits, but disagrees on higher-order marginals. The dis-
tribution qθ(x) minimizes the truncated MMD loss. That is, suppose

qθðxAÞ ¼ ~pðxAÞ; ð47Þ

for all A⊆ {1, 2,…, n} with ∣A∣⩽ k, then

~Lðσ;kÞ
MMDðθÞ ¼ 0: ð48Þ

Crucially, this is true even if for some B⊆ {1, 2,…, n} with ∣B∣ > k

qθðxBÞ≠ ~pðxBÞ: ð49Þ

In other words, if the MMD operator can be approximated well by a
truncated operator with at most 2k-body terms, model distributions that
match the target distribution exactly up to k-body marginals or higher
cannot be distinguished from ones that match fully. As an example of such
distributions, consider theuniformdistributionover thebitstrings [001, 011,
101, 110], where the third bit is the bit-wise addition of the previous twobits.
Using only second-order marginals, it is not possible to distinguish this
correlated distribution from the uniform distribution over all eight possible
outcomes.

Notably, long-range correlations in the data can still be learned by the
low-bodied MMD loss, just not ones that are particularly high-order (Note
that this is in contrast to a loss composedpurelyof local termswhichwouldbe
restricted to learning local/short-rangecorrelations.).Not all distributionswill
however exhibit such higher-order correlations and thus some distributions
will be learnableusing losses composedof low-body terms.Viewing this result
through the lensof generalization to theunderlyingdistribution, there are two
opposing consequences thatwouldneed tobe studied in futureworks.On the
one hand, convergence to the systematically wrong low-order minima is
likely to impede generalization. On the other hand, one could also imagine
that being ignorant to very high-order marginals of the training set could
reduce overfitting and thus enhance generalization.

Proposition 5 thus establishes that to fulfill the promise of quantum
generative models, that is to be able to learn both long-range and many-

body correlations, one cannot use exclusively low-body losses. However,
such a requirement is in immediate tension with the low-bodyness required
for the trainability guarantees (see Theorem 2). In particular, in Proposition
4 we show that for σ∈Θ(n) the contribution of k∈Θ(n) terms are expo-
nentially small in n. Thus, although the loss is still strictly faithful given an
infinite shot budget, with a reasonable shot budget we will not be able to
resolve the contribution from the exponentially small high-body terms.
Hence, there can be spurious minima that we cannot resolve from the true
minimum and therefore for all practical purposes the loss is effectively not
truly faithful.

One approach to resolving this tension would be to adapt the initial
value of σ from Θ(n), where the loss exhibits large gradients but pre-
dominantly learns low-order marginals, towards Oð1Þ to also learn high-
order correlations as the model improves. This is in line with studies from
the classical ML literature showing that bandwidths for optimal MMD
performance are oftentimes smaller than the so-calledmedian heuristic90–92,
which coincideswithour result ofσ∈Θ(n).Another approach,which is also
already employed in classical ML literature, is to use a kernel that averages
the effects of several σ86–88. That is, the kernel is taken to be

Kcðx; yÞ ¼
1
jcj
X
i2c

Kσ i
ðx; yÞ �

Xk
l¼1

hwσ ðlÞicD2l ð50Þ

for a set of bandwidths c = {σ1, σ2, …}. The resulting weight of each 2k—
body term of the new MMD observable is an average of the weightings
corresponding to each σi in c as shown in Fig. 5. Theorem 2 shows that for a
QCBMwithout inductive bias to not fall prey to exponential concentration,
at least one of the σineeds to beΘ(n). But the results of Proposition 5 suggest
that for data sets exhibiting high-order correlations a small bandwidth σ i 2
Oð1Þ is required for correct convergence. It stands to reason that the optimal
set c contains a spectrum of bandwidths that both enable trainability and
faithful convergence to the target distribution (as sketched in Fig. 5c). How
successful this strategy is in practice remains to be determined.

Broader Implications. Our work highlights that one can treat classical
machine learning losses as quantum observables to study their properties.
This implies that our results transfer to other types of quantum generative
models beyond the QCBM that will also be affected by the fundamental
limitations described by Proposition 5. In fact, we show in Supplementary
Note IVE that any generativemodeling loss function for classical data that
can be brought into the form LðθÞ ¼ Tr½Mρθ�, with a diagonal mea-
surement operatorM, faces the same tension described above. That is, if
M contains at most k-body terms in the Pauli basis representation, then

Fig. 7 | Study of loss concentration with the MMD loss function. Numerical
evidence that the MMD loss with Gaussian bandwidth parameter σ = n/4 does not
exhibit global or explicit loss function barren plateaus, but does exhibit loss con-
centration with deep quantum circuits.We study the loss concentration in randomly
initialized line-topology circuits for various datasets, and increasing number of
qubits n and circuit depth. The infinite layers results were generated by drawing

wavefunctions from the Porter-Thomas distribution114. The GHZ dataset consists of
the all-0 and all-1 bitstrings (Oð1Þ support), theOðnÞ andOðn2Þ datasets consist of n
and n2 random bitstrings, respectively, and the cardinality dataset contains all bit-
strings with n

2 cardinality (Oð2nÞ support). There does not appear to be a strong data-
dependence for the magnitude of the loss variance.
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the loss cannot distinguish two distributions that agree on all k-order
marginals but disagree on higher-order marginals. Thus losses composed
exclusively of local terms (with the conventional measurement strategy)
cannot be used in generative modeling to learn complex higher-order
correlations.

With a little thought it becomes clear that an exclusively global loss is
also undesirable. Not only do such losses exhibit exponential concentration
for unstructured circuits, they will also in general possess spurious minima
in virtue of only probing global properties of the distribution (i.e., the
average global parity), as shown in Fig. 5. Instead we advocate using full-
body losses which contain both low and high-body terms, such as those
obtained by averaging in Fig. 5. Even then, global contributions cannot be
vanishingly small or else they will not be possible to resolve with a realistic
shot budget.

For another example, one may aim to train a quantum generative
model using a QGAN framework, where a Discriminator D provides a
score D(x) to every sample. The corresponding operator can then be
written asM ¼PxDðxÞjxihxj. The Discriminator may have to initially
implement an effectively low-bodiedoperator to facilitate initial gradients,
but later in training become higher-bodied to learn global features. That is
not to say that the Discriminator should only classify marginals of the
bitstring such as in ref. 93. Rather, the architecture and initialization
should be such that the operator M in the Pauli basis initially contains
low-body terms but can include high-body terms during convergence.
Interestingly, the interpolation from trainable to faithful could be natu-
rally full-filled during training when the Generator andDiscriminator are
optimized in tandem.

Fine-tuning the interplay between the loss function gradients, density
of local minima and the faithfulness of a generative loss is beyond the scope
of this work, but is an important direction for future research.We especially
emphasize thenecessity to evaluate the implicationsof our results onmodels
and datasets of practical relevance. In Section “Training on a HEP dataset”
we take steps in this direction by investigating training a QCBM to model
real data from the HEP domain.

Quantum strategies: quantum fidelity. While the classical fidelity in
Eq. (8) is an explicit cost function, the quantum fidelity, defined in
Eq. (15), allows for a simple known quantum estimation strategy. Key to
the quantum fidelity loss is to interpret the training distribution as a
target state ∣ϕ

	 ¼Px

ffiffiffiffiffiffiffiffi
~pðxÞ

p
∣xi. The QCBM model loss can then be

rewritten as the expectation of an observable, e.g., in the form of Eq. (19),
with ρ ¼ jϕihϕj and O ¼ j0ih0j being the all-zero projective measure-
ment. Crucially, as O ¼ j0ih0j is a global projector, the quantum fidelity
is subject to a globality-induced BPs32 and the loss exponentially

concentrates towards one24. That is, we have

Varθ½LQFðθÞ� 2 Oð1=bnÞ: ð51Þ

This global-measurement-inducedBP canhowever be avoidedby localizing
LQFðθÞ. That is,we replace the global projectivemeasurement j0ih0jwith its
local versionHL ¼ 1

n

Pn
i¼1 j0iih0ij � 1�i, where�i indicates all qubits except

qubit i. The new localized version of the quantum fidelity loss is given by

LðLÞ
QFðθÞ ¼ 1� ϕ



∣UðθÞHLU

yðθÞ∣ϕ	: ð52Þ

This local loss is faithful to its global variant for product state training in the
sense that it vanishes under the same conditions94, i.e., when the QCBM
distribution matches the data distribution exactly. However, it enjoys
trainability guarantees via the results of ref. 32. This implies that, unlike the
MMD and other classical losses that utilize the conventional measurement
strategy, the LQF can effectively distinguish between high-order marginals
even at k = 1 bodyness. However, although the local loss function can evade
global measurement-induced BPs, it still suffers under BPs from other
sources, such as expressibility or noise. Additionally, it is not yet explored
how practical a fidelity loss is for the purposes of generalizing from
training data.

Figure 8 depicts numerical variance results for the fidelity loss on a
range of datasets, circuit depths, and numbers of qubits. For all datasets, the
LQFexhibits only polynomially decaying variance over randomparameters
when the quantum circuits are not too deep. As a reference, we additionally
depict the global quantum fidelity which exponentially decays for all circuit
depths.

The challenge now becomes how to estimate LðLÞ
QFðθÞ using measure-

ments from the quantum computer. The seemingly straight-forward
approach is to prepare the initial state ∣ϕ

	
, evolve it under U†(θ), and then

evaluate the observable defined by HL through measurements in the com-
putational basis. However, loading classical data into a quantum state ∣ϕ

	
is

not expected to be feasible in general. In SupplementaryNoteV,we propose
an approach that can be used to estimateLðLÞ

QFðθÞ using a series ofHadamard
tests without needing to prepare ∣ϕ

	
. We note that, while in theory our

approach requires a number of Hadamard tests that scales with the amount
training data, we expect stochastic techniques, such as stochastic gradient
descent95, to be sufficient in practice.

Broader Implications. In this section, we have presented one
example of a quantum strategy to measure a fidelity-based loss for
quantum generative modeling. While this approach puts more load on

Fig. 8 | Study of loss concentration with the local quantum fidelity loss function.
Numerical evidence that the local quantum fidelity loss function does not exhibit
global or explicit loss function barren plateaus. It does however exhibit expressivity-
induced barren plateaus with deeper and deeper circuits, as it is the case for all

generic VQA-type loss functions in the form of Eq. (19). In contrast, the global
quantum fidelity variance decays exponentially at all circuit depths. The numerical
setup is the same as for the MMD in Fig. 7, and the infinite layers results were
generated by drawing wavefunctions from the Porter-Thomas distribution114.
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the quantum computer as compared to losses employing the conven-
tional measurement strategy, it enjoys simultaneous trainability and
faithfulness to the target distribution.

An interesting extension would be to explore other quantum
approaches for efficiently training QML models. One could for example
attempt to compute theKLdivergence or other explicit losses directly on the
quantumcomputer. Although the implementation of non-linear operations
onquantumcomputers has beendemonstrated in refs. 96–98,we arenot yet
aware of quantum strategies beyond one related demonstration for the
Rènyi divergence in ref. 46.One alternative approachwould be to attempt to
indirectly turn theQCBM into an explicit generativemodel by estimating its
probabilities using amplitude amplification or other techniques. As dis-
cussed in Section “Large gradient variances are not enough”, with access to
exact probabilities the KL divergence can provably avoid BPs even with
unstructured circuits for certain target distributions.

Training on a HEP dataset
In this section, we perform realistic training of QCBMs on a more practical
dataset which is derived from HEP colliders experiments. We compare the
implicit cost functions MMD and LQF with the explicit KL divergence for
an increasing number of circuit depth L and the number of qubits n, and
across several measurement budgets. To summarize our results, we observe
that the presence of shot noise causes the trainingwithKLD to fail, while the
MMD and LQF both hold up significantly better.

Dataset. We consider a dataset consisting of energy depositions in an
ECAL99. The data was generated using aMonte Carlo approach (theGeant4
toolkit100), which accurately describes the ECAL detector behavior under a
typically proton- proton collision at a LHCexperiment. The dataset consists
of the energy deposition on a 25 × 25 × 25 grid, that we downsized to a two-
dimensional grid of various sizes. The images are converted to a black and
white scale by considering the pixel ‘hit’ if the energy deposition exceeds a
certain threshold, which is chosen as one tenth of the mean energy deposit.
We map each pixel to a qubit and take the state ∣1i to represent a hit. This
dataset naturally has a polynomial support and thus is precisely the type of
dataset that we might hope to learn using QML.

Training. We use a parametrized quantum circuit of the form

UðθÞ ¼
YL
l¼1

RðθlÞWlðαlÞ
" #

Rðθ0Þ; ð53Þ

where R(θl) is a layer of arbitrary single qubit unitaries that can be para-
meterized using 3n Euler angles, WðαlÞ :¼

Qn�1
i¼1 CXi;iþ1RYiðαilÞCXi;iþ1

acts as parametrized entangling gatewithCXi,j aCNOTgate between qubits
i and j and RYiðαilÞ a single qubit rotation of qubit i around the y-axis, and
the parameters θ = {θl,αl}.Weuse theTVD, seeEq. (7), as a commonmetric
to assess the performance of each loss function. To verify performance
accurately, we compute the TVD using exact simulation. The gradients for
each loss are computed using the parameter shift rule101 which provides
estimates of the analytical gradient, and the parameters are updatedwith the
ADAM102 optimizer with a decaying learning rate lr(t) =
maxð0:01e�βt ; 10�5Þ, where t is the optimization step and β = 0.005 the
decaying rate. The computation of the KLD is stabilized using a regulariser
of ϵ = 10−6, which has been tuned through trial and error. To follow best-
practices with the MMD, we average the gradient estimation over several
different bandwidths

σ ¼ 0:01; 0:1; 0:25; 0:5; 1; 10
� �

n; ð54Þ

which incurs no additional quantum resources. This makes the loss full-
bodied and thus keeps the model trainable while aiding convergence. We
note that these are likely not the optimal bandwidths to average over but it
demonstrates the best-practice approach.

Results. Figure 9 shows the TVD, computed with infinite statistics,
on the training curve of the QCBMs with varying numbers of qubits
n ∈ {4, 9, 12} (rows) and layers (symbols), where the gradients are
computed with different numbers of shots (columns) for different loss
function (colors). The lines denote the median over ten random

Fig. 9 | Finite-shot comparison of loss functions. TVD, computed with infinite statistics, on the training curve of the QCBMs with varying numbers of qubits n = 4, n = 9
and n = 12 (rows) and layers (symbols), where the gradients are computed with different numbers of shots (columns) for different loss function (colors).

https://doi.org/10.1038/s41534-024-00902-0 Article

npj Quantum Information |          (2024) 10:116 13

www.nature.com/npjqi


parameter initialization while the shaded area denotes the 25% to 75%
percentile. We observe that the performance of the KLD quickly dete-
riorates as the number of shots is reduced while the MMD and LQF
remain more stable. We further observe that increasing the expressivity
of the QCBM from log2n to n layers does not lead to a significant
increase in performance for a low number of shots.

To demonstrate the scalability to larger systems, we also train a n= 16
QCBM with log2n ¼ 4 layers and 100 shots per function evaluation. The
quantum circuit has a linear entangling topology and the initial parameters
are chosen uniformly at random. We highlight that the downsized data at
n= 16 is structurally different to the one in Fig. 9, which can yield quanti-
tatively different results. In panel (a) of Fig. 10, we depict the median and
25%–75% percentiles for the KLD and LQF over 50 and 10 random repeti-
tions respectively, whereas for the MMD we use 6 random repetitions per
line. We also compare the MMD performance for different bandwidths
σ = 0.01, σ= n/4, and a kernel averaging σ = [0.01, n/4, n].We indeed see that
largeσ shows improved initial trainability and smallσ improved convergence.
In panel (b) we show the probability histograms of the 15 most occurring
images in the dataset, as well as the final respective model probabilities. The
corresponding 4 × 4 pixel images are displayed at the bottom panel (c).

In this 16-qubit example, it appears that the LQF is no longer
performing on-par with the MMD, as was the case in Fig. 9 for smaller
system sizes. A possible explanation is that one chooses all relative
phases in the data state ∣ϕ

	 ¼Px

ffiffiffiffiffiffiffiffi
~pðxÞ

p
∣xi, which strongly reduces the

number of wavefunctions that minimize the LQF loss even though they
may produce the desired measurement distribution. This may not only
produce less solutions, it also enforces that the ansatz needs to be able to
express exactly that state. While this could be leveraged using specia-
lized real-valued ansätze, this is not attempted here. We conclude that
the practical properties of the LQF loss as compared to implicit losses
using the conventional measurement strategy are still to be studied in
more detail.

To emphasize the importance of the size of the support, in Supple-
mentary Note VI we also consider an exponential version of the dataset, by
using anegative logarithmtransformation.Wefind in this case that theKLD
does not suffer from exponential concentration and can be trained. This
explains the successes previously observed for training QCBMs using the
KLD for small-scale problems. However, as the amount of classical training
data cannot scale exponentially these successes are not relevant to larger,
non-classically simulable, problems.

Discussion
In this work, we have introduced the notion of explicit and implicit
losses, which broadly reflect the capabilities of explicit and implicit
generative models48. We argue that these concepts provide a useful

framework to understand the trainability of quantum generative
models. In particular, we argue that the mismatch between the
indirect access to probabilities provided by implicit models with the
explicit probabilities required by explicit losses renders implicit
models untrainable via explicit losses. More concretely, focusing our
attention on QCBMs as a commonly used implicit model, we prove
that pairwise explicit losses exponentially concentrate (Theorem 1).
This result prohibits efficient training using a large class of
commonly-used losses including the KL divergence, JS divergence,
and the TVD. Such losses may however be usable with explicit
“quantum” generative models such as tensor network Born
machines57–59.

Crucially, our results assume access to a polynomial (in the
number of qubits) number of training data samples andmeasurements
from the quantum circuit. With only moderate numbers of qubits, this
assumption is unnecessary and explicit losses such as the KL diver-
gence may appear to be trainable (see e.g., refs. 16,17,20–22). More
generally, if we restrict the number of qubits used to classically
simulable sizes, this assumption can be lifted and one could use
quantum generative models purely for their efficient sampling cap-
abilities. However, to harness the full potential of quantum generative
modeling one surely wants to push to non-classically tractable problem
sizes, at which point this assumption is essential. For example, even
with only 50 qubits, access to ~250 ≈ 1015 training samples or quantum
measurements is unrealistic.

While formulated initially for random quantum circuits, the
intuition underlying Theorem 1 suggests our no-go result extends to
scenarios where the implicit generative model’s measurement dis-
tribution only has polynomial support (e.g., near-identity initialization
of the circuit103), as well as beyond the pairwise explicit form of the
explicit loss. One exception may be if the quantum generative model
has a strong inductive bias. Hence our work further motivates the
search for new methods for constructing parameterized circuits with
strong inductive biases (e.g., via warm starts104–108 or incorporating
symmetry constraints28,42,109–112).

In contrast to explicit losses, implicit losses are naturally suited to
training implicitmodels.Within this line of thought, we have identified
the MMD loss with a Gaussian kernel as a promising implicit loss for
training QCBMs. We show that this loss can be interpreted as the
expectation value of a quantum observable, where crucially the prop-
erties of the observable depend on the bandwidth parameter σ. In the
common case where σ is independent of the system size, σ 2 Oð1Þ, the
observable becomes predominantly global and thus exponentially
concentrates. Conversely, when σ scales linearly with the system size, σ
∈ Θ(n), the low-body interaction terms in the observable are largely

Fig. 10 | 16 qubit QCBM training. a Exact TVD computed during training of n = 16
QCBMs with log2n ¼ 4 layers and 100 shots per loss evaluation. We report median
TVD values and 25% to 75% percentiles for theMMD, LQF and KLD loss functions.
For the MMD, bandwidths σ = 0.01, n/4, and n are used to both showcase improved

trainability of large σ and improved convergence of small σ. b Histograms of the
trained QCBMs on the 15 most probable images, which are shown in panel (c). The
black lines denote the training dataset probabilities.
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dominant over the global terms and hence exhibit large gradients. We
further use these insights to derive a rigorous polynomially lower
bound on the MMD loss variance for a wide range of structured and
unstructured circuits with small effective light cones.

Our main results for explicit and implicit losses assume the con-
ventional strategy for estimating a generative loss function from an
implicit model, where the model provides a set of samples in the
computational basis, which are then used to estimate the loss in con-
junction with the training data samples. While this is the standard
classical strategy, quantum generative models can employ alternative
quantum strategies by leveraging quantum computing power. As an
example, we propose the LQF as a trainable loss function for generative
modeling. Developing alternative quantum strategies for training
quantum generativemodels is an interesting avenue for future research.
A natural candidate might be, as suggested in ref. 13, to implement the
MMD loss with a quantum kernel, where the kernel values themselves
are estimated using quantum computers. While one could hope for a
potential quantum advantage with this approach (especially when
training on quantum data), there is the additional challenge that
quantum kernels without inductive bias tend to exponentially
concentrate30.

To put our conclusions to the test, we studied how these loss
functions perform in more practical scenarios with data derived from
High Energy Physics experiments at the LHC. This dataset naturally
satisfies our assumptions of a polynomial number of data samples at all
system sizes. Our training results are found to be consistent with our
theoretical predictions in which both the MMD and quantum fidelity
losses significantly outperform the KLD loss when a strict measurement
budget is employed.

Finally, while our work addresses the question of whether a given
loss exhibits non-exponentially vanishing gradients, we stress that this
is just one ingredient among many to ensure the success of quantum
generative modeling. Of particular importance is the observation that
models with local losses will generally struggle to learn global correla-
tions due to the function’s inability to distinguish high-order features in
the data. Hence we advocate using full-body losses, which contain both
low and high-body terms, for quantum generative modeling. More
broadly, the ability of a model to successfully generalize will also pre-
sumably depend on the choice in loss, but this is beyond the scope of this
work. Nonetheless, ensuring non-vanishing loss gradients and ensuring
faithfulness of the loss function are critical steps since failing here
precludes the successful training and generalization of quantum gen-
erative models. Hence, our work constitutes an important first step to
understanding of the barriers that need to be overcome to achieve a
quantum advantage in generative modeling.
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