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Abstract

Results from experiments like LSND and MiniBooNE hint towards the possible presence of an extra 
eV scale sterile neutrino. The addition of such a neutrino will significantly impact the standard three fla-
vor neutrino oscillations. In particular, it can give rise to additional degeneracies due to additional sterile 
parameters. For an eV scale sterile neutrino, the cosmological constraints dictate that the sterile state is 
heavier than the three active states. However, for lower masses of sterile neutrinos, the sterile state can be 
lighter than one and/or more of the three states. In such cases, the mass ordering of the sterile neutrinos 
also becomes unknown, along with the mass ordering of the active states. In this paper, we explore the mass 
ordering sensitivity in the presence of a sterile neutrino assuming the mass squared difference |�41| to be 
in the range 10−4 − 1 eV2. We study (i) how the ordering of the active states, i.e. the determination of the 
sign of �31 gets affected by the presence of a sterile neutrino in the above mass range, (ii) the possible 
determination of the sign of �41 for �41 in the range 10−4 − 0.1 eV2. This analysis is done in the context 
of a liquid argon detector using beam neutrinos traveling a distance of 1300 km and atmospheric neutrinos 
that propagate through a distance ranging from 10 - 10000 km, allowing resonant matter effects. Apart from 
presenting separate results from these sources, we also do a combined study and probe the synergy between 
these two in giving an enhanced sensitivity.
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1. Introduction

Neutrino oscillations, in which one flavor of neutrinos gets converted to others, have been 
discovered using diverse neutrino sources: from the sun to the atmosphere, from reactors to ac-
celerators, and a variety of detection techniques in different terrestrial experiments. This has 
validated the three neutrino oscillation picture, and most of the parameters governing the phe-
nomenon have been determined with sizable precision. These parameters are the mass squared 
differences �21, |�31|, and mixing angles θ12, θ13 and θ23. The remaining unknowns of the three 
flavor paradigm are the atmospheric mass ordering (the sign of �31), the octant of the mixing 
angle θ23, and the CP phase δCP . The next generation beam based experiments like DUNE [1,2], 
T2HK [3], ESSνSB [4] are expected to resolve these issues. These experiments plan to use a 
beam of higher intensity and larger volume detectors which can increase the statistics as com-
pared to the current generation accelerator experiments T2K [5] and NOνA [6]. Apart from these, 
there are dedicated future atmospheric neutrino experiments like Hyper Kamiokande [7], India-
based Neutrino Observatory [8], IceCube and Pingu [9] which can also help in throwing light on 
the final frontier of the three neutrino oscillation. The liquid argon detector in DUNE will also 
be able to observe atmospheric neutrinos [10–12]. Apart from the determination of parameters 
in the standard three flavor oscillation, these next generation experiments also open up the possi-
bility of probing beyond standard model (BSM) physics, which can occur at a sub-leading level. 
Several new physics scenarios like light sterile neutrinos, non-standard interactions, long-range 
forces, neutrino decay, and violation of fundamental symmetries like CPT, Lorentz-invariance, 
etc have been explored in the context of neutrino oscillation experiments [13,14].

Among these, the light sterile neutrino scenario is motivated by three long-standing anoma-
lies that have served as primary drivers in the development of a vibrant short-baseline neutrino 
program over the last decade. Two of these pieces of evidence come from the apparent oscil-
latory appearance of electron (anti)neutrinos in muon-(anti)neutrino beams originating from 
charged-pion decay-at-rest in the LSND experiment [15,16], and charged-pion decay-in-flight 
in the MiniBooNE experiment [17,18]. There has also been an anomaly associated with an over-
all normalization discrepancy of electron (anti)neutrinos expected in the radioactive decay of 
Gallium-71 [19–21]. One of the most theoretically motivated frameworks considered for the in-
terpretation of these anomalies is that of the presence of light (≈ 1 eV) sterile neutrino state [22].

A sterile neutrino is a neutral SU(2)×U(1) singlet with no ordinary weak interaction except 
those induced by the mixing. Very heavy sterile neutrinos (1014 − 1016 GeV) are proposed as 
the mediators in the type I seesaw model [23–25] which can give rise to small neutrino masses. 
Such neutrinos also play a significant role in leptogenesis [26,27]. Such neutrinos are natural 
candidates in grand unified theories. Sterile neutrinos of TeV energies have also been studied 
in the context of low-scale seesaw models [28,29]. Sterile neutrinos of keV mass are especially 
interesting because the sterile neutrinos would be a viable dark matter candidate [30].

The existence of an eV scale sterile neutrino motivated by the short-baseline anomalies is 
in strong tension from cosmological bound on the effective number of neutrinos Neff and the 
sum of total masses of light neutrinos. From the recent measurement of Planck data [31] and 
combining together with the Hubble parameter measurement [32] and Supernova Ia data from 
the Pantheon sample [33], the extended fit to the parameters are

Neff = 3.11+0.37
−0.36(95% CL)∑

mν < 0.16 eV
(1)
2
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In order to get around cosmological constraints, we need to introduce new physics that directly 
affects the cosmological phenomenology of the light sterile states. Since the main problem of the 
canonical light sterile neutrino is that its thermalization in the early universe raises Neff to an 
unacceptably large level for BBN and CMB/LSS constraints. All known new physics solutions 
so far involve tampering with the thermalization process, in order to maintain Neff as close to 
the SM value as possible. A number of ideas have been proposed and explored throughout the 
years, e.g., large chemical potentials or, equivalently, number density asymmetries for the active 
neutrinos [34]; secret interactions of the sterile neutrinos [35,36] and low reheating temperature 
of the universe [37], etc. To explain the sterile neutrino mass ≈ eV, a recent theoretical model [38]
has been developed by sourcing the sterile neutrino mass from ordinary matter via an ultralight 
scalar, which will be viable cosmologically as well as consistent with the terrestrial hints and 
solar constraints.

Can there be sterile neutrinos lighter than the eV scale? In the presence of a sterile neutrino, 
there is a new mass squared difference �41 = m2

4 − m2
1. A very light sterile neutrino corre-

sponding to the mass-squared difference in ranges 10−4 − 0.1 eV2 is expected to be consistent 
with cosmological mass bounds. It was suggested in ref. [39] that the existence of a very light 
(≈ 10−5eV 2) sterile neutrino can provide the explanation for the lack of upturn in the solar 
neutrino oscillation probability below ≈ 8 MeV. A recent study has probed the possibility of 
alleviating the tension between the results of the ongoing beam experiments, T2K and NOνA 
for the value δcp using very light sterile neutrino with a wide mass difference range of 10−5 : 0.1
eV2 [40].

We focus our study on only one sterile neutrino added to the three light neutrinos, namely 
the 3+1 framework, and consider a wide mass range for |�41| varying in the range of 10−4 − 1
eV2. The cosmological constraints on the sum of all the neutrino masses imply that the sign 
of �41 can not be negative for �41 > 0.1 eV2. However, for lower mass squared differences, 
both signs of �41 are possible. In this work, we investigate the possibility of determining (i) 
the sign of �31 in the presence of a sterile neutrino corresponding to a) �41 = 1 eV2, b)�41

in the range of 10−4 − 0.1 eV2; (ii) the sign of �41 for the mass range 10−4 − 0.1 eV2. To 
answer these questions, we use a liquid argon time projection chamber (LArTPC) capable of 
detecting both beam and atmospheric neutrinos. The typical baseline we have used for the beam 
neutrinos is ∼ 1300 km which is similar to the DUNE experiment. We delineate the sensitivities 
to mass ordering by performing a combined analysis of beam and atmospheric neutrinos, along 
with a separate study for each. Additionally, we present the results, including the charge tagging 
capability of muon capture in liquid argon, allowing one to differentiate between μ+ and μ−
events in the context of atmospheric neutrinos.

The mass ordering in the presence of a light sterile neutrino has been studied in ref. [41] with 
the additional mass squared difference varying in a wide range in the context of a magnetized 
iron calorimeter detector proposed by the India-based Neutrino Observatory (INO) collaboration. 
Recently the sensitivity of the sterile mass ordering in the same mass range has been studied in 
reference [42] in the context of the DUNE experiment using beam neutrinos. We perform our 
study in the context of a liquid argon time projection chamber detector as in DUNE, using both 
beam and atmospheric neutrino events separately as well as in a combined analysis.

The plan of the paper is as follows. In section 2, we present the 3+1 framework which is used 
for the analysis. In section 3, we show the probability level study of Pμe, Pμμ in the presence of 
a sterile neutrino and explore the effect of sterile mixing and point out where these effects will be 
significant. Simulation procedures used for the neutrinos coming from the beam and atmosphere, 
3
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Fig. 1. The 3+1 mass spectrum: ordering of mass states in the presence of an extra sterile neutrino state m4 (blue) 
corresponding to two different sterile mass squared difference: A. |�41| ∼ 1 eV2, B. |�41| ∼ 10−4 eV2. The atmospheric 
mass ordering �31 lead by m3 (red) and sterile mass ordering �41 both can be normal (> 0) and inverted (< 0).

detector specification, and numerical analysis are given in section 4. Next, in section 5, we present 
and discuss the results. Finally, we conclude in section 6.

2. The 3+1 framework:

The minimal scheme postulated to explain the LSND and MiniBooNE results is the addition 
of one light sterile neutrino of mass of the order of eV scale to the three active neutrinos in 
the SM [15,22,43–47]. In this case, there is one additional independent mass squared difference 
which we take as �41 = m2

4 − m2
1.

The possible mass orderings, in this case, are shown in Fig. 1. We will refer to the sign of �31

as the atmospheric mass ordering (AMO) and the sign of �41 as sterile mass ordering (SMO) 
throughout the paper. NO(IO) and SNO(SIO) will signify normal (inverted) ordering for AMO 
and SMO, respectively. There can be four possibilities as follows,

(i) SNO-NO: where �41 > 0 and �31 > 0. The positioning of the 4th state depends on the value 
of �41. For �41 > 10−3 eV2, the 4th state lies above the 3rd state while if �41 < 10−3 eV2

it lies below the 3rd state.
(ii) SNO-IO: in this case �41 > 0 and �31 < 0 corresponding to inverted ordering of the light 

active neutrino. The 4th state lies above the three active states with positioning depending 
on the value of �41.

(iii) SIO-NO: this signifies to �41 < 0 and �31 > 0. The 4th state will always lie below the 
lightest active states with the placement depending on the value of �41.

(iv) SIO-IO: for this case both �41 and �31 are < 0. For �41 < 10−3 eV2, the 4th state lies 
above m3.
4
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Table 1
3σ Levels and Best fit values extracted from [48].

Parameters 3σ range Best Fit

sin2 2θ14 0.04 - 0.09 0.079
θ14 5.76◦ − 8.73◦ 8.15◦

sin2 θ24 6.7 × 10−3 − 0.022 0.015
θ24 4.68◦ − 8.6◦ 7.08◦

Note that the usual 3+1 picture corresponds to the cases (i) and (ii) with �41 ∼ eV2. The cases 
(iii) and (iv) with �41 ∼ eV2 are disfavored from cosmology.

For the 3 + 1 oscillation framework, the new mixing matrix U will have three additional 
mixing angles θ14, θ24, θ34 corresponding to mixing between the extra light sterile neutrino νs

and the active sector neutrinos along with two new CP phases δ14, δ34 and can be expressed as 
follows,

U = R̃34(θ34, δ34)R24(θ24)R̃14(θ14, δ14) × R23(θ23)R̃13(θ13, δ13)R12(θ12) (2)

where R̃ij = Uδ
ij (δij )Rij (θij )U

†δ
ij (δij ), Rij (θij )’s are rotational matrices in i-j plane and Uδ

ij =
diag(1, 1, 1, eιδij ) with δij ’s being the CP phases.

The global analysis of data performed in ref. [48] gives the best-fit values and sterile mixing 
angles for �41 = 1.3 eV2 as given in Table 1, However, the analysis performed in [49] including 
the MINOS+ data disfavored the allowed regions in θ24 from above with a new bound at 90% 
C.L. sin2 θ24 ≤ 0.006, i.e., θ24 ≤ 4.5◦. Also, the analysis of DayaBay and Bugey3 gives at 90% 
C.L. sin2 2θ14 ≤ 0.046. i.e., θ14 ≤ 6.2◦. The bounds on these sterile mixing angles vary with �41. 
For values of �41 in the range 10−4 : 0.1 eV2, the 90% C.L. bounds vary from θ14 ≤ 25◦ : θ14 ≤
2◦, and θ24 ≤ 56◦ : θ24 ≤ 4◦. Recent study [50] regarding the impact of sterile neutrino mixing on 
the solar neutrino data shows that the sensitivity to θ12 measurement is independent of the sterile 
neutrino mixing when �41 ≥ eV. However, the authors also claim that the same argument might 
not be true in the MSW resonance region with lighter sterile neutrino mass and needs to be tested.

The effective interaction Hamiltonian in matter for the 3+1 framework in flavor basis is given 
as follows,

Hint = diag(VCC,0,0,−VNC)

= diag(
√

2GF Ne,0,0,
√

2GF Nn/2), (3)

where VCC = √
2GF Ne is the charge current interaction potential, VNC = −√

2GF Nn/2 is the 
neutral current interaction potential and GF is the Fermi coupling constant with Ne, Nn corre-
sponding to the density of electron and neutron respectively of the medium in which neutrinos 
travel. In the presence of matter, the total Hamiltonian in flavor basis is expressed as follows,

H = 1

2Eν

U

⎡
⎢⎢⎣

0 0 0 0
0 �21 0 0
0 0 �31 0
0 0 0 �41

⎤
⎥⎥⎦U† + 1

2Eν

⎡
⎢⎢⎣

A 0 0 0
0 0 0 0
0 0 0 0
0 0 0 A

2

⎤
⎥⎥⎦ (4)

where the propagation medium has been considered to be the Earth’s matter with neutron density 
being equal to electron density, i.e., Ne = Nn and the matter potential term is A = 2

√
2GF NeEν

for neutrino with energy Eν .
5
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3. Oscillation probabilities in the presence of a sterile neutrino

In this section, we present both the appearance probability Peμ and disappearance probabil-
ity Pμμ at baselines of 1300 km and 7000 km for different sterile parameters. As in the three 
flavor framework, there are two useful approximate methods to calculate the oscillation proba-
bility in the matter: (i) α − s13 approximation [42], (ii) �21 = 0 approximation [51]. In the first 
case α = �21

�31
, sin θ13 are considered small parameters whereas in the second case �21 is consid-

ered as negligible. The probabilities evaluated in these approximations considering θ34 = 0◦ are 
presented in the following section.

3.1. α − s13 approximation

In the α − s13 approximation, the probabilities are computed by series expansion in the small 
parameters α = �21/�31 ∼ 0.03 and sin2 θ13 ∼ 0.02. The appearance probability calculated us-
ing α − s13 approximation in [42] is well suited for a baseline of 1300 km and can be expressed 
as,

P m
μe = 4s2

13s
2
23

sin2[(A′ − 1)�]
(A′ − 1)2

+ 8αs13s12c12s23c23
sin[A′�]

A′
sin[(A′ − 1)�]

A′ − 1
cos(� + δ13)

+ 4s13s14s24s23
sin[(A′ − 1)�]

A′ − 1
[P s

14 sin δ̃14 + P c
14 cos δ̃14]

, (5)

where the terms corresponding to sterile neutrino are,

P s
14 = R[1

2
A′c23 + (R − 1)(1 + s2

23)]
sin[(R − 1 + A′

2 )�]
R − 1 + A′

2

sin[(R − A′
2 )�]

R − A′
2

+ Rc2
23 sin[(R − 1 − A′

2
)�] sin[(R + A′

2 )�]
R + A′

2

(6)

P c
14 = R

R − 1
2

(
[R − 1

2
s2

23 − 1

2
] cos[(R − 1 − A′

2
)�] sin[(R − A′

2 )�]
R − A′

2

+ s2
23(R − 1) cos[(R − A′

2
)�] sin[(R − 1 + A′

2 )�]
R − 1 + A′

2

+ s2
23

sin[(A′ − 1)�]
A′ − 1

)
+ Rc2

23 cos[(R − 1 + A′

2
)�] sin[(R + A′

2 )�]
R + A′

2

, (7)

where A′ = A
�31

, R = �41
�31

, � = 1.27�31L
E

, δ̃14 = δ13 + δ14 and cij ∼ cos θij , sij ∼ sin θij , at limit 

R >> 1, for R >> A′
2 , approximately R − A′

2 
 R + A′
2 
 R, also R − 1

2 
 R, R − 1
2 s2

23 − 1
2 
 R

P s
14 
 1

2
A′c23

sin[(R − 1)�]
R − 1

sin[R�] + 2 sin[(R − 1)�] sin[R�]


 (
1

A′c23 + 2) sin[R�]2 (8)

2R

6
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P c
14 
 (1+c2

23) cos[(R − 1)�] sin[R�]+s2
23 cos[R�] sin[(R − 1)�]+s2

23
sin[(A′ − 1)�]

A′ − 1


 sin[2R�] + s2
23

sin[(A′ − 1)�]
A′ − 1

(9)

3.2. �21 = 0 approximation

As �21 << �31 < �41, in the calculation of probability in the two mass scale dominance 
(TMSD) approximation [51], the terms with �21 are neglected. This is valid for �21L/E << 1, 
e.g., at 7000 km baseline around the resonance energy (7 GeV). The dominant term in the νμ−νe

oscillation probability in TMSD approx. is given by,

P 1
μe = 4 cos2 θ13m cos2 θ14m sin2 θ13m(cos2 θ24m sin2 θ23 − sin2 θ14m sin2 θ24m) sin2[1.27�m

31L

E
]

+
{

2 cos3 θ13m cos2 θ14m sin θ13m sin θ14m sin 2θ24m sin θ23 sin [1.27�m
31L

E
]
}

× sin[1.27�m
31L

E
+ δ13 − δ14]

−
{

2 cos θ13m cos2 θ14m sin3 θ13m sin θ14m sin 2θ24m sin θ23 sin [1.27�m
31L

E
]
}

× sin[1.27�m
31L

E
− δ13 + δ14]

(10)

where θ13m, θ14m, θ24m are modified mixing angles, �m
ij ’s are modified mass-squared differences 

as defined in ref. [51].

3.3. Effect of sterile parameters on sign of �31

In this section, we discuss the dependence of the probabilities on the sterile parameters. For 
our study, we chose two illustrative mixing angles θ14 = θ24 = 4◦ and/or 7◦. The phases δ13 and 
δ14 are varied in the range −180◦ to 180◦, unless otherwise mentioned. The probabilities for 
both θ34 = 0◦ and non-zero θ34 = 7◦ are discussed. In this section, the GLoBES [52] package 
is used to generate the probabilities. We consider constant matter density for the plots in this 
section. Matter density is taken as 2.85 g/cc and 3.95 g/cc for 1300 km and 7000 km baseline, 
respectively.

3.3.1. Effect of non-zero θ14, θ24
We have plotted the appearance (left), and disappearance (right) probabilities in Fig. 2 as a 

function of the neutrino energy varying the phases δ13, δ14. The blue[NO] and orange[IO] bands 
at the top (bottom) panels refer to mixing angles θ14 = θ24 = 4◦(7◦) in the 3+1 framework. 
Whereas, the regions between cyan and yellow lines correspond to the variation of δ13 in three 
generation framework in NO and IO, respectively. In the right panel, we also show Pμμ over 
2 − 4 GeV in a magnified inset. The important observations are as follows,

• In the 3+1 framework, the probability bands corresponding to NO and IO are closer than 
those in the three generation framework. This suggests a reduced hierarchy sensitivity in the 
3+1 framework.
7
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Fig. 2. Probabilities Pμe(left) and Pμμ (right) as a function of energy Eν due to variation of phases δ13, δ14 for NO 
and IO at 1300 km baseline for �41 = 1 eV2. Blue and orange bands in top (bottom) panels refer to varied phases for 
θ14 = 4◦ (7◦), θ24 = 4◦ (7◦) corresponding to NO and IO respectively. The regions between cyan (yellow) curves are 
due to the variation of δ13 in 3ν case for NO(IO).

• The gap between NO and IO bands increases with the decreasing values of the sterile mixing 
angles.

• In Pμe channel, for the 3+1 framework, the difference between the two probability bands is 
seen in the energy range 1-3 GeV.

• The disappearance channel probability Pμμ doesn’t depend on the phases, as can be seen 
from the narrow bands in NO and IO cases for both three and 3+1 frameworks.

• The Pμμ curves for opposite mass orderings are hard to separate from each other at energies 
lower than 2 GeV. However, some demarcation is visible at energies in the range of 2-7 GeV 
for both three generation and 3+1 generation, as shown in the right panels.

• In the disappearance channel, we don’t see a significant effect of variation of the sterile-
active mixing angles θ14, θ24 on the probability bands.

In Fig. 3, the appearance (left) and disappearance (right) probabilities have been shown at 
7000 km baseline. Such baselines will be relevant for atmospheric neutrinos. The significant 
observations are as follows,

• There is a prominent difference between the probability bands of NO and IO, implying sen-
sitivity to mass ordering at 7000 km baseline in the 3+1 framework. The difference decreases 
for sterile case w.r.t. the standard one.
8
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Fig. 3. Probabilities Pμe(left) and Pμμ (right) as a function of energy Eν at 7000 km baseline for �41 = 1 eV2. The 
shaded bands of blue and orange refer to varied phases δ13, δ14 for θ14 = 4◦ (7◦) for NO(IO). The regions between cyan 
(yellow) curves are due to the variation of δ13 in 3ν case for NO(IO).

• Also, with lower values of θ14, θ24, the gap between the probability bands of opposite mass 
ordering increases.

• For Pμμ channel, a significant gap exists between bands of opposite mass orderings at en-
ergies higher than 4 GeV whereas, in Pμe channel, the gap is present even at much lower 
energies of 3 GeV.

• From Pμe plot, at 7 GeV, the gap between NO and IO bands is around 0.23 that is similar to 
what has been calculated using eq. (12).

In order to understand the features of the Fig. 2, 3 from analytical expression, we compute 
the minimum difference in the probability Pμe for two different mass orderings by varying the 
phases,

�P ≡ [P 1NO
μe (δNO

13 , δNO
14 ) − P 1IO

μe (δIO
13 , δIO

14 )]min (11)

where the other parameters have been kept fixed. Using only the dominant first term of (10), the 
difference in probability can be expressed as,

�P = �Pnp + A1[sin2(M − N) cos δNO − sin2(M + N) cos δIO ]+
A2[sin 2(M − N) sin δNO + sin 2(M + N) sin δIO ] (12)

where �Pnp is the part with no phases involved and is given as follows,

�Pnp = cos2 θ14m sin2 2θ13m(sin2 θ24m sin2 θ14m − cos2 θ24m sin2 θ23) sin 2M sin 2N (13)

The other part containing the phases depends on the amplitude parameters A1, A2 and the fre-
quency parameters M, N that are defined as,

A1 = cos2 θ14m cos 2θ13m sin 2θ13m sin θ14m sin 2θ24m sin θ23 (14)

A2 = cos2 θ14m sin 2θ13m sin θ14m sin 2θ24m sin θ23 (15)

M = �31 cos 2(θ13 − θ13m) × 1.27L

E
(16)

N = A cos 2θ13m(1 + cos2 θ14 + cos2 θ14 sin2 θ24) × 1.27L

E
(17)
9
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Fig. 4. Pμe as a function of energy Eν with the variation of phases δ13, δ14, δ34 for NO (blue) and IO(orange), �41 = 1
eV2 at 1300 km (left) and 7000 km (right). Shaded blue (orange) bands refer to θ14, θ24, θ34 = 7◦ for NO(IO). Regions 
between cyan (yellow) curves are due to variation of δ13 in 3ν case for NO(IO).

We use �31 = 2.5 × 10−3 eV2, θ24 = 7◦, θ14 = 7◦, θ23 = 45◦ to calculate the �P at the first 
oscillation maxima. For L = 1300 km at E = 2.5 GeV, �P < 0, which means the minima of the 
NO curve is below the maxima of the IO curve. This implies the overlap of NO and IO bands 
suggesting the presence of degeneracy. Whereas, for 7000 Km at E = 7 GeV, �P > 0, i.e., mass 
ordering can be determined even with varying the phases δ13 and δ14.

3.3.2. Effect of non-zero θ34
In Fig. 4, the appearance probability is plotted as a function of neutrino energy at 1300 km 

(left) and 7000 km (right) baseline for θ14, θ24, θ34 = 7◦. The shaded blue (yellow) bands are 
due to the variation of the phases δ13, δ14, δ34 for NO(IO). The regions between the solid cyan 
(yellow) curves correspond to the variation of δ13 in the 3ν framework for NO(IO). The most im-
portant observation is a notable decrease in the gap between NO and IO bands at both baselines. 
In the case of 7000 km, there is still a gap between the opposite mass ordering bands, which gets 
diminished for a non-zero θ34.

3.3.3. Effect of |�41|
In this section, the sensitivity to atmospheric mass ordering is studied at the probability level, 

with the sterile mass squared difference �41 in the range 10−4 - 0.1 eV2.
To understand the effect of �41 on sensitivity to atmospheric mass ordering, we probe the 

difference in the appearance probability �Pμe as a function of �41,

�Pμe = |P true
μe (�31, δ13, δ14) − P test

μe (−�′
31, δ

′
13, δ

′
14)|min (18)

We compute the minimum difference �Pμe (using GLoBES), by considering a particular AMO 
with constant δ13, δ14 in P true

μe whereas P test
μe is calculated for the opposite AMO by varying 

the phases and |�31|. The phases are varied over their full range, and for �31, variation over 
the current 3σ range in the opposite mass ordering is considered. In Fig. 5, we illustrate the 
probability difference �Pμe in the �41 − Eν plane at 1300 km. The important observations are 
as follows,

• Around �41 = 2.5 × 10−3 eV2, �Pμe is either very high or low depending upon the values 
of δ13 and NO/IO.
10
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Fig. 5. The difference in appearance channel probability �Pμe for opposite AMO as a function of �true
41 and Eν at 1300 

km baseline for SNO-NO (above) and SNO-IO (below). The plots in the left (right) panel has δtrue
13 = 90◦(−90◦) and 

fixed δ14 = 0◦ .

• We observe an oscillating pattern of �Pμe along �41 for a fixed energy. This oscillation 
becomes rapid at higher �41 values.

• Significant contribution to �Pμe is seen for energies in the range of 1.5 − 4 GeV.
• For the SNO-NO case (top panels), the occurrence for maxima and minima reverses for 

δ13 = 90◦, and −90◦.
• However, for the SNO-IO case, the maxima and minima occur at the same �41 for δ13 =

90◦, −90◦. Although, the magnitude is higher for δ13 = 90◦.

3.4. Effect of the sign of �41 in Pμe channel

As we consider �41 in the rage 5 × 10−4 : 10−1 eV2, the sterile mass ordering also becomes 
unknown, giving us four possibilities depending on the ordering of the three active states. The 
difference in the probability for the opposite signs of �41 is defined as,

�Ps = |P true
μe,μμ(+�41, δ13, δ14) − P test

μe,μμ(−�′
41, δ

′
13, δ

′
14)|min (19)

We plot �Ps (using GLoBES) by marginalizing over �′
41 in opposite SMO and phases δ′

13, δ
′
14

in Fig. 6 for appearance (left) and disappearance channel (right) over a wide range of the sterile 
mass squared difference and neutrino energy at 1300 km baseline (top) and 7000 km (bottom). 
We have taken constant values of θ14, θ24 = 7◦, δ13 = −90◦, δ14 = 90◦ in P true

μe,μμ. It can be 
observed that the high values of �Ps are mostly concentrated in the mass square range of 10−3 :
11
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Fig. 6. Difference in the appearance probability �Pμe(left), and disappearance probability �Pμμ(right) for different 
sterile mass ordering in the �41 − Eν plane at 1300 km(top), 7000 km(bottom).

10−2 eV2 range. In Pμe channel, the contribution is lower than Pμμ. The difference is observed 
to be larger at higher baselines.

In Pμe channel, probability difference is higher around �41 = 1 −2 ×10−3 eV2 while a dip is 
found immediately after around �41 = 2.5 − 3 × 10−3 eV2. In Pμμ channel for energy below 4 
GeV, a similar pattern is observed. However, at higher energies, a higher �P value is observed.

4. Simulation procedure and details of the experimental setup

The experimental setup under consideration consists of a megawatt-scale muon neutrino beam 
source accompanied by a near detector (ND) and a far detector(FD). The ND will be placed close 
to the source of the beam, while the FD, comprising a 40 Kton LArTPC detector, is placed at 
a distance of 1300 km away from the neutrino source. The large LArTPC at an underground 
observatory is also capable of observing atmospheric neutrinos. The proposed DUNE experiment 
has a similar experimental configuration [1]. In this analysis, both neutrino beam coming from 
the accelerator and the atmospheric neutrinos have been considered.

4.1. Events from accelerator beam

A beam-power of 1.2MW leading to a total exposure of 10 × 1021 pot has been imple-
mented for the numerical analysis. The neutrino beam simulation has been carried out using 
the GLoBES [52] software. We assume the experiment to be running for 3.5 years each in the 
neutrino mode and the antineutrino mode. We consider a constant matter density of 2.85 g/cc.
12
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Table 2
Assumptions of the LArTPC far detector parameters and uncer-
tainties.

Parameter Uncertainty Value

μ+/− �θ 2.5◦

e+/− �θ 3.0◦

(μ+/−, e+/−) Energy GLB files for each E bin [1]

Detection efficiency GLB files for each E bin [1]

Flux normalization 20%

Zenith angle dependence 5%

Cross section 10%

Overall systematic 5%

Tilt 5%

4.2. Atmospheric events

The atmospheric neutrinos produce muons and electrons. These event rates corresponding to 
an energy bin of width dE and in a solid angle bin of width d	 are expressed as,

d2Nμ

d	 dE
= σcDeff

2π

[(
d2�μ

d cos θ dE

)
Pμμ +

(
d2�e

d cos θ dE

)
Peμ

]
, (20)

d2Ne

d	 dE
= σcDeff

2π

[(
d2�μ

d cos θ dE

)
Pμe +

(
d2�e

d cos θ dE

)
Pee

]
(21)

Here �μ and �e stands for the νμ and νe atmospheric fluxes [53] respectively, the disappearance 
and appearance probabilities are given as Pμμ and Peμ respectively, σc is the total CC cross 
section and Deff is the detector efficiency. The energy and angular resolutions for the LArTPC 
detector, implemented using Gaussian resolution function R, are defined as follows,

RE(Et,Em) = 1√
2πσ

exp

[
− (Em − Et)

2

2σ 2

]
. (22)

Rθ (	t,	m) = N exp

[
− (θt − θm)2 + sin2 θt (φt − φm)2

2(�θ)2

]
, (23)

where N is the normalization constant. Here, Em (	m) and Et (	t), denote the measured and true 
values of energy (angle) respectively. The smearing width σ is a function of Et. The smearing 
function for the zenith angle is a bit more complicated. The direction of the incident (measured) 
neutrino is specified by two variables: the polar angle θt(θm) and the azimuthal angle φt(φm), 
denoted together by 	t(	m). The measured direction denoted by 	m is expected to be within a 
cone of half angle �θ of the true direction. The far detector (LArTPC) parameters assumed are 
mentioned in Table 2[54].

4.2.1. Charge identification using muon capture in argon
The charge id of the muon can be identified using the capture vs decay process of the muon 

inside the argon [55]. The working principle of charge id of the muon is as follows: a fraction of 
the μ− like events that undergo the capture process are identified using capture fraction efficiency 
13
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and the rest of the muons as well as all the μ+ undergo muon decay. We have implemented these 
as mentioned in [51].

4.3. χ2 analysis

We have evaluated the χ2 for a fixed set of parameters using the method of pulls. We can 
tackle various statistical and systematic uncertainties directly through this method. The flux, 
cross sections, and other systematic uncertainties are taken into account by allowing these inputs 
to vary from their standard values in the computation of the expected rate in the i-jth bin, Nth

ij . Let 

the kth input deviate from its standard value by σk ξk with σk denoting the uncertainty. The value 
of Nth

ij with the modified inputs is given by,

Nth
ij = Nth

ij (std) +
npull∑
k=1

ck
ijξk , (24)

where Nth
ij (std) gives the expected rate obtained with the standard values of the inputs in the 

i-jth bin and npull is the total number of sources of uncertainty (5 for our case). The ξk’s are 
the pull variables and they determine the number of σ ’s by which the kth input deviates from its 
standard value. In eq. (24), ck

ij signifies the change in Nth
ij when the kth input is changed by σk (i.e. 

by 1 standard deviation). The uncertainties in the inputs being not very large, we only consider 
changes in Nth

ij that are linear in ξk. Hence we evaluate the modified χ2 as,

χ2(ξk) =
∑
i,j

[
Nth

ij (std) + ∑npull
k=1 ck

ij ξk − Nex
ij

]2

Nex
ij

+
npull∑
k=1

ξ2
k , (25)

where the additional ξ2
k -dependent term is added due to the penalty imposed for moving the value 

of the kth input away from its standard value by σk ξk. χ2 in the case of the standard LArTPC 
detector and for a detector with change id for muons are evaluated as,

χ2
standard = χ2

μ−+μ+ + χ2
e−+e+ (26)

χ2
charge−id = χ2

μ− + χ2
μ+ + χ2

e−+e+ (27)

The χ2 with pulls, which includes the effects of all theoretical and systematic uncertainties, is 
obtained by minimizing χ2(ξk) with respect to all the pulls ξk.

χ2
pull = Minξk

[
χ2(ξk)

]
. (28)

Finally, we marginalize the χ2 over the allowed range of the oscillation parameters as mentioned 
in Table 3. For the combined analysis we add the chi-square for beam and atmospheric and 
then marginalize over the oscillation parameters. The marginalization has been performed in 
θ23, θ14, θ24, δ13, δ14 over the range specified in Table 3 for all cases unless otherwise mentioned.

5. Results and discussion

In this section, we present the results for the analysis of beam, atmospheric, and a combination 
of both data for the following cases,
14
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Table 3
The table depicts true values of all the parameters and their range of marginaliza-
tion as used in our analysis.

Parameter True Values Marginalization Range

θ12 33.47◦ N.A.

θ13 8.54◦ N.A.

θ23 45◦ 39◦ : 51◦

θ14, θ24 7◦ 0◦ : 10◦

θ14, θ24 4◦ 0◦ : 6◦

θ34 0◦,7◦,15◦ 0◦ : 17◦

�21 7.42 × 10−5 eV2 N.A.

�31(NO) 2.5 × 10−3 eV2 −(2.42 : 2.62) × 10−3 eV2

�31(IO) −2.5 × 10−3 eV2 (2.42 : 2.62) × 10−3 eV2

�41 (for AMO) 1 eV2 N.A.

�41 (for SMO) 0.0005 : 0.01 eV2 ±15% of −�41

δ13 many −180◦ : 180◦

δ14 0◦,90◦,−90◦ −180◦ : 180◦

• determination of the sign of �31 (AMO) for �41 = 1 eV2

• determination of the sign of �31 for �41 in the range of 5 × 10−4 : 0.1 eV2

• determination the sign of �41 (SMO) when it’s value lies in the range of 5 × 10−4 : 0.1 eV2

5.1. Sensitivity to the AMO for |�41| = 1 eV2

In Fig. 7, the sensitivity to the atmospheric mass ordering (AMO) is presented as a func-
tion of δtrue

13 in standard three flavor framework (black) for normal (left) and inverted (right) 
ordering. We also present the sensitivity in the presence of a sterile neutrino corresponding to 
SNO-NO (left), and SNO-IO (right) for true values of δ14 = 0◦(blue), 90◦(green), −90◦(orange), 
180◦(red). We will call −180◦ < δ13 ≤ 0◦ as the lower half plane[LHP] and 0◦ < δ13 ≤ 180◦ as 
the upper half plane[UHP] throughout this section. The important points to be noted are,

• The sensitivity decreases in the presence of a sterile neutrino compared to the three flavor 
case.

• The sensitivity for the sterile cases depends on the true values of δ14, δ13.
• For θ14, θ24 = 4◦, the sensitivity is higher than that of θ14, θ24 = 7◦ and also closer to the 

standard 3ν case. This is due to the fact that the smaller the sterile mixing angles are the 
more the sensitivity of the sterile case gets closer to the results of the standard 3ν case.

• For NO, in the LHP of true δ13 the highest sensitivity is observed for δtrue
14 = −90◦, and the 

lowest sensitivity for δtrue
14 = 90◦ whereas in the UHP, this order gets reversed.

• For IO, δtrue
14 = 0◦ (blue) shows the lowest sensitivity in the LHP of true δ13 and also the 

highest sensitivity in UHP.

Next, in Fig. 8, the AMO sensitivity is shown as a function of true δ13 corresponding to the 
analysis of only beam (red), only atmospheric (blue) and a combination of both beam and atmo-
spheric(green) simulated data. The cases with charge identification in atmospheric only (violet) 
15
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Fig. 7. The sensitivity to the atmospheric mass ordering as a function of true δ13 for various δtrue
14 values at 1300 km 

baseline considering normal (left), inverted (right) ordering.

and combined analysis (orange) are also depicted. The representative sensitivity curves are ob-
tained for θ14, θ24 = 7◦, δ14 = 0◦ corresponding to true hierarchy considered as normal (left) and 
inverted (right). The observations from Fig. 8 are following,

• Sensitivity for atmospheric neutrinos doesn’t have significant dependence on δ13.
• Combined sensitivity of beam and atmospheric is greater than the sum of individual sensi-

tivities of these two, which demonstrates the synergy between them.
• We observe slightly higher sensitivity when we use partial charge identification for atmo-

spheric neutrinos. This also leads to higher sensitivity for combined analysis.

In Fig. 9, we present the effect of θ34 on the sensitivity to the atmospheric mass ordering. In 
this plot, the sensitivity is shown as a function of true δ13 for various combinations of true values 
of θ34, δ34. We consider for beam only analysis, θ34 = 0◦, δ34 = 0◦(green dotted), and θ34 = 7◦, 
δ34 = 90◦(red dotted) along with the sensitivity curve for standard three flavors (black). We 
also plot the sensitivity with combined beam and atmospheric analysis θ34 = 7◦,δ34 = 90◦ (red-
dashed). Other sterile parameters are fixed as δ14 = 90◦, θ14 = θ24 = 7◦. The observations are as 
follows,

• The sensitivity decreases as θ34 becomes higher.
• In the combined analysis of beam and atmospheric data, the sensitivity is higher than the 

beam analysis, compensating for the decrease due to non-zero θ34.
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Fig. 8. Atmospheric mass ordering sensitivity as a function of δtrue
13 corresponding to the analysis of only beam (red), 

only atmospheric (violet), combined atmospheric+beam (green) neutrinos for normal (left) and inverted (right) hierarchy 
with 400 kt-yr exposure of LArTPC.

Fig. 9. The sensitivity to mass ordering as a function of δtrue
13 for various θtrue

34 values for beam neutrinos with 1300 km 
baseline for normal (left), inverted (right) ordering.

5.2. Sensitivity to the AMO for |�41| = 10−4 : 10−1 eV2

In this section, we study how the sensitivity to the sign of �31 behaves with �41 where the 
latter varies in the range of 10−4 : 10−1 eV2. Note that for �41 ∼ 1 eV2, only SNO-NO, SNO-IO 
cases are cosmologically allowed. However, for �41 = 10−4 : 10−1 eV2 all the four possibilities 
depicted in Fig. 1 are admissible. In Fig. 10, the AMO sensitivity is shown as a function of δtrue

13
at various true values of �41. The upper (lower) panels correspond to the true value in SNO (SIO) 
cases, while the left (right) panels are for NO(IO). During the computation of χ2, the |�41| is 
fixed in true and test cases for this plot. The observations of significance in Fig. 10 are as follows,

• The nature of variation of sensitivity with δtrue
13 doesn’t change significantly for different true 

values of �41.
• Sensitivity gets notably reduced for �41 = 0.001 eV2(blue) for the most of values of δtrue

13
in the UHP in SNO-NO and SIO-IO case. In SNO-IO and SIO-NO cases, blue curves give 
minimum sensitivity over the full range of δ13

• However, sensitivity for �41 = 0.001 eV2 is very high in the LHP of δtrue
13 in SNO-NO, 

SIO-IO.
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Fig. 10. Sensitivity to atmospheric mass ordering as a function of δtrue
13 in SNO(top), SIO (bottom) scenarios with true 

�31 for different values of �true
41 at 1300 km baseline.

• The maximum sensitivity is observed for �41 = 0.01 eV2(violet) in SIO-NO and SIO-IO 
case over almost the full range of δtrue

13 .

We note that for the difference in the probability between the opposite AMO, the dependence 
on �41 will come from the last term in eq. (5). The probability difference for fixed values of 
θ13, θ23, θ14, θ24, δ13, δ14 and a given SMO can be expressed as,

�P st
μe = P

m,true
μe (i1�41, j1�31) − P

m,test
μe (i2�41, j2�31)

∝ 4s13s14s24s23[�P s
14 sin δ̃14 + �P c

14 cos δ̃14], (29)

where we define;

�P
s,c
14 = sin[(j1A

′−1)j1�]
(j1A

′−1)
P

s,c
14 (i1�41, j1�31)

− sin[(j2A
′−1)j2�]

(j2A
′−1)

P
s,c
14 (i2�41, j2�31) (30)

Depending upon the true value considered in a certain mass ordering, there can be four scenarios 
with i1, i2, j1, j2 signifying the sign of mass squared differences, as follows

• SNO-NO: i1 = i2 = +, j1 = + and j2 = −
• SNO-IO: i1 = i2 = +, j1 = − and j2 = +
• SIO-NO: i1 = i2 = −, j1 = + and j2 = −
• SIO-IO: i1 = i2 = −, j1 = − and j2 = +
18
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Fig. 11. Sensitivity to atmospheric mass ordering as a function of �true
41 with marginalization in �31 for θtrue

23 = 45◦ , 
δtrue

14 = 0◦ , δtrue
13 = −90◦(red), 90◦(blue) at 1300 km baseline. The violet curve shows �Ps

14 at 2.5 GeV.

Note that �P
s,c
14 for different cases are connected as,

�P
s,c
14 |SNO−NO = −�P

s,c
14 |SNO−IO, (31)

�P
s,c
14 |SIO−NO = −�P

s,c
14 |SIO−IO (32)

In Fig. 11, we have depicted the sensitivity to AMO as a function of |�41| with marginaliza-
tion performed only over �31 with all other parameters being fixed. The red (blue) curve refers 
to δ13 = −90◦(90◦). We also show the difference in probability term �P s

14 (30) evaluated at 2.5 
GeV by the violet curve. The understandings from Fig. 11 are as follows,

• Since we have chosen δ14 = 0◦ for δ13 = 90◦ and −90◦, the value of sin δ̃14 = sin[δ13 + δ14]
is +1, -1 respectively and cos δ̃14 = 0. For the fixed phases and mixing angles in both true 
and test cases, the difference in probability (29) between NO and IO will only depend on 
�P s

14 as,

�P st
μe = 4s13s14s24s23�P s

14 sin δ̃14 (33)

This means �P st
μe will be opposite for δ13 = 90◦ and −90◦ leading to the opposite nature of 

chi-square.
• In the case of SNO-NO, for δ13 = 90◦, we have �P st

μe ∝ �P s
14|SNO−NO. This can be seen 

from the top-left panel which shows that the nature of the blue and violet curves are similar. 
For δ13 = −90◦, �P st

μe ∝ −�P s
14|SNO−NO which is reflected in the red curve being opposite 

to the violet curve.
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Fig. 12. Sensitivity to atmospheric mass ordering as a function of �true
41 for θtrue

23 = 45◦ , δtrue
14 = 0◦ , δtrue

13 = −90◦
(red), 90◦(blue) at 1300 km baseline.

• The sensitivity for SNO-IO is just opposite in nature to SNO-NO as shown in eq. (31). 
Therefore, in the top-right panel, the red curve for δ13 = −90◦ is similar to the violet curve 
here, and the blue curve for δ13 = +90◦ is the opposite of the violet curve.

• In SIO-NO, and SIO-IO cases, we also observe similar patterns as SNO-NO and SNO-IO, 
respectively.

• The sensitivity is seemed to be almost constant for R >> 1, i.e., �41 >> �31. This can be 
understood analytically as follows. The difference in Pμe for fixed energy and phases will 
only depend on �P s

14 and can be evaluated using eq. (30) for �41 >> 1 limit as,

�P s
14 =

(
sin[(A′ − 1)�]

(A′ − 1)
+ sin[(A′ + 1)�]

(A′ + 1)

)
×

{
(
A′

2R
c23 + 2) sin[R�]2

}
, (34)

where the term in the braces is dependent on �41. For R >> 1 the term sin[R�] shows fast 
oscillation. Summing over energies, sin[R�], will give a constant value that is reflected in 
the sensitivity curves.

In Fig. 12, we depict the sensitivity to the sign of �31 as a function of true �41 for δ13 =
−90◦(red), 90◦(blue), and δ14 = 0◦ at 1300 km. For this figure, we have marginalized over the 
parameters as mentioned in Table 3. Some interesting features of sensitivity to the AMO as seen 
from Fig. 12 are as follows,
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Fig. 13. Sensitivity to sterile mass ordering as a function of �true
41 for �31 > 0 [NO](left), < 0 [IO](right) and �41 > 0

[SNO](top), < 0 [SIO](bottom) using different values of δtrue
14 , δtrue

13 at 1300 km.

• For SNO-NO (top-left panel) and SIO-IO (bottom-right panel) cases we observe a contrast-
ing nature of the sensitivity between δ13 = 90◦ and −90◦. Note that a similar contrasting 
nature has been observed in the top two panels of Fig. 5 showing the oscillogram of �Pμe. 
For instance, in SNO-NO, at �41 = 3 × 10−3 eV2 a maxima of sensitivity occurs for 
δ13 = 90◦ whereas minima occurs for δ13 = −90◦.

• However, the nature of the sensitivity curves for δ13 = 90◦ and −90◦ is similar in SNO-IO 
(top-right panel) and SIO-NO (bottom-left panel) cases. This behavior was also observed in 
�Pμe oscillogram in the bottom panels of Fig. 5 for SNO-IO case.

• In all the cases the minima and maxima are observed in the range of 0.001 − 0.01 eV2. 
Beyond that, the sensitivity is relatively flat with �41.

5.3. Sensitivity to the sign of �41 (SMO)

In this section, we present the sensitivity of the sign of �41 considering its values in the range 
of [5 × 10−4 : 10−1] eV2 for which all four possibilities depicted in Fig. 1 will be viable. In 
Fig. 13, the sensitivity of the sign of sterile mass squared differences are depicted as a function 
of the true value of �41 for various true values of δ13, δ14[56]. The salient features of the Fig. 13
are as follows,

• The sensitivity curves for SNO-NO and SIO-IO show two prominent maxima around true 
values of �41 = 1 × 10−3 eV2, 5 × 10−3 eV2 cases. There is a dip in sensitivity when true 
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Fig. 14. Sensitivity to sterile mass hierarchy as a function of �true
41 using combined beam and atmospheric neutrinos at 

1300 km baseline.

�41 is around 2.5 × 10−3 eV2 due to its proximity to atmospheric mass squared difference 
as discussed in ref. [42].

• In the case of SNO-IO and SIO-NO, the maxima occurs around �41 = 2.5 × 10−3 eV2, i.e.,
when the sterile mass squared difference is close to the atmospheric mass squared difference 
�31.

• The SNO-IO and SIO-IO cases provide relatively higher sensitivity than the SNO-NO and 
SIO-IO cases.

• The features of sensitivity in SNO-NO can be qualitatively understood from the plot of prob-
ability difference in top panels of Fig. 6.

In Fig. 14, we have used the simulated data from atmospheric neutrino analysis to perform a 
combined analysis of beam and atmospheric neutrinos and get the sensitivity of the sterile mass 
ordering as a function of the true value of �41 for the true value of phases δ13 = −90◦(left), 
δ14 = 90◦(right). In these four panels, it is observed that the sensitivity to SMO is bettered in 
combined analysis than the beam neutrinos. The nature of the sensitivity is almost similar for 
beam and atmospheric analysis. This can be understood from the similar profile of difference in 
probabilities �Pμe, �Pμμ at 1300 km and 7000 km as shown in Fig. 5. The combined sensitivity 
is above 3σ for most of the parameter space up to �41 = 10−2 eV2. For the values of �41 greater 
than that, even with the addition of atmospheric neutrinos, we get a fixed sensitivity of 1.5σ −2σ .
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6. Conclusions

Our work focuses on the effect of an additional light sterile neutrino with a mass squared 
difference in the range of 10−4 : 1 eV2 on the determination of atmospheric mass ordering and 
sterile mass ordering. For our study, we use a liquid argon detector for a) beam neutrinos (baseline 
1300 km), and b) atmospheric neutrinos.

The main new aspect of our study is to do a combined analysis of beam and atmospheric 
neutrinos to determine the sign of �31 and �41 when the latter is varied in the range 10−4 − 1
eV2. We also study in detail the impact of various sterile parameters.

The sensitivity to the sign of �31(AMO) for �41 = 1 eV2 gets diminished w.r.t. the 3ν case in 
the presence of a sterile neutrino. The decrement in the sensitivity is higher for larger values of 
θ14, θ24. The values of χ2 also depend on δ13, δ14. The sensitivity to AMO decreases further in 
the presence of a non-zero θ34. However, with the combined analysis of beam and atmospheric 
neutrino, we are able to recover the sensitivity over 10σ , irrespective of the choice of true values 
of δ13, δ14. The presence of a light sterile neutrino gives the possibility of both positive and 
negative values of �41. Our study also demonstrates for the first time the dependence of the 
atmospheric mass ordering sensitivity on the absolute value of �41 as well as the on the nature 
of the 3+1 mass spectrum (SNO-NO, SNO-IO, SIO-NO, SIO-IO).

We also study the sensitivity to the sign of �41 (SMO) for the �41 = 5 × 10−4 : 0.1 eV2

in different scenarios of the 3+1 mass spectrum. The sensitivity gets reduced when �41 is in 
the proximity of �31 for the SNO-NO and SIO-IO cases, whereas in the SNO-IO and SIO-NO 
cases, the sensitivity gets enhanced. The addition of atmospheric neutrinos boosts the sensitivity 
over 3σ for �41 < 10−2 eV2. However, for higher values of �41, the sensitivity falls off to 
∼ 1.5σ − 2σ for the combined analysis.
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