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Steven Abel 1,2,3,∗ Luca A. Nutricati 2,3,† and John Rizos 4‡

1Theoretical Physics Department, Cern, 1211 Geneva 23, Switzerland
2Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK
3Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK and

4Department of Physics, University of Ioannina GR45110 Ioannina, Greece

We explore for the first time the direct construction of string models on quantum annealers, and
investigate their efficiency and effectiveness in the model discovery process. Through a thorough
comparison with traditional methods such as simulated annealing, random scans, and genetic al-
gorithms, we highlight the potential advantages offered by quantum annealers, which in this study
promised to be roughly fifty times faster than random scans and genetic algorithm and approxi-
mately four times faster than simulated annealing.
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I. INTRODUCTION

There is continued interest in the problem of model
selection in string theory which, due to the vast num-
ber of models available, presents a fascinating “big-data”
challenge. Indeed depending on the set-up, the various
estimates of the number of available models in the param-
eter space vary from the original 10500 estimate in type
IIB flux compactifications [1, 2] to significantly larger
numbers, for example 10272,000 F-theory flux compacti-
fications on a single elliptically fibered four-fold [3]. In
fact the number of Standard Model (SM) -like compact-
ifications could itself be as large as 10700 [4].

Given this challenge attention has naturally turned to
heuristic search methods. The argument for pursuing
them is that nature itself finds solutions to problems
without any difficulty within similarly large (or indeed
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much larger) search spaces. Heuristic methods typically
attempt to mimic these natural processes. In the string
context perhaps the most successful heuristic approach to
date has proven to be the genetic algorithm (GA) [5, 6],
which mimics evolution by implementing selection and
breeding cycles on a population of would-be string solu-
tions. Such methods have been shown capable of achiev-
ing orders of magnitude speed-up over blind scans in a
string setting [7–18].

In this paper we shall consider a different class of
heuristic search method in the string context, namely
quantum adiabatic algorithms [19, 20]. Here we focus
on the particular implementation of adiabatic computing
known as Quantum Annealing (QA), in which the prob-
lem to be solved is mapped to to the minimisation of
an Ising Hamiltonian. The full Hamiltonian in quantum
annealing comprises an admixture of this Ising problem-
Hamiltonian and a trivial Hamiltonian for which the
ground state is known. The original idea behind quan-
tum annealing (and quantum adiabatic algorithms more
generally) is to begin in the ground state of the trivial
system and adiabatically replace the trivial Hamiltonian
with the problem Hamiltonian, while remaining in the
ground state throughout. Provided we can remain in the
ground state the final configuration will yield a solution
to the problem. More modern approaches have extended
this idea (for example using reverse annealing, of which
more later) however the basic principle of arranging an
interplay between a problem Hamiltonian and a trivial
Hamiltonian is universal.

Quantum annealing has been utilised in many simple
settings, notably for solving network problems, but its
application in high energy theory has up to now been
somewhat limited (see Refs. [21–35] for some examples).
In the string setting, quantum annealing has been em-
ployed in hybrid algorithms, for example most recently
in Genetic Quantum Annealing [33, 34] in which the
GA performance is improved with a quantum annealing
stage, however it has not to date been possible to imple-
ment a full string search directly on a quantum annealer
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(or indeed on a quantum computer of any kind). Never-
theless the recent study in Ref. [36] laid the foundations
for achieving this goal by showing that quantum anneal-
ers can solve the kind of discrete problems (for example
satisfying anomaly cancellation conditions) that one typ-
ically encounters in string model building.

In the present study we will break new ground by for
the first time implementing string models directly on a
quantum annealer, and using the annealer to search for
string theories with SM-like properties. The general ap-
proach we shall use is a combined technique which em-
beds the string consistency conditions (a.k.a. the GSO
conditions) themselves on the annealer, but which per-
forms certain additional phenomenological checks (such
as for example selecting only models with three gener-
ations) during a second step. In such an arrangement
the quantum annealer is essentially providing a consis-
tency filtering of models, which may then be classically
tested against other constraints. We shall see that this
approach significantly enhances the overall efficiency of
the algorithm. It can successfully be used to search pa-
rameter spaces orders of magnitude more quickly than
either a blind scan or more traditional classical heuristic
methods such as GAs.

II. ENCODING STRING MODELS ON A
QUANTUM ANNEALER

We begin with the formulation of the models them-
selves. As described this is done using an Ising Hamil-
tonian: hence our first and indeed most difficult task is
to encode the consistency conditions of the string the-
ory by reformulating their solution as the minimisation
of a function H(σℓ) of spin variables σℓ = ±1, where ℓ
labels the spin sites. This is the aforementioned problem-
Hamiltonian, which is quadratic in the spins,

H(σℓ) =
∑
ℓ

hℓσℓ +
∑
ℓm

Jℓmσℓσm , (1)

where each σℓ corresponds to physical Z-spins on the
machine.

The particular models we shall consider are the SO(10)
models described in Ref. [37]. The consistency conditions
for these models amount to a set of generalized GSO
(GGSO) projections determined by phases. The essential
ingredients are described in Appendix A, to which we
will continue to refer. The important aspect of these
consistency conditions for the present study is that they
can be written as a set of single qubit binary equations
fA(τi) = 0, where τi ∈ {0, 1} map directly to the GGSO
phases of 0 or π which determine the particular string
model. The binary τ variables can in turn be mapped to
annealer spins as

τi =
1

2
(1 + σi) . (2)

Thus these are arguably the string models that can most
readily be encoded in an Ising spin model. As we are

solving equations of purely single digit binaries we will
use the names of the variables themselves to stand for
the binary qubit value.

To get a broad idea of the form of the GGSO con-
straints, they partially consist of six (three for spinorial
and three for vectorial representations) systems of four
linear equations each, which can be synthesised in the
following expression:

∆IU I
i = Y I

i mod 2 , with I = 1, 2, 3 and i = s, v , (3)

where each choice of (i, I) corresponds to a linear system
of four equations (specifically i = s, v refers to spinori-
al/vectorial representations and I = 1, 2, 3 refers to the
three orbifold planes, respectively. See Appendix A for
more details). The GGSO coefficients appear as compo-
nents of the Y I

i vectors (defined in Eqs. (A7), (A13)) and
also as entries in the ∆I matrices defined in Eqs. A3, A4,
A5. Being related to phases, these coefficients take values
of 0 and 1. Finally, U I

i is a vector of four elements which
denote solutions of the (i, I) system, also with entries in
{0, 1}. We shall refer to the set of the solutions of the
system as ΞI

i : it can contain at most 24 = 16 solutions
due to the binary nature of the components of the U I

i

vectors.
Once Eq. (3) is satisfied, i.e., once we have a consis-

tent GGSO projection, we will as described in the intro-
duction further demand that a viable model must have
3 generations by imposing the following constraint (in
which i ≡ s) classically [38]:

NF =

3∑
I=1

∑
p,q,r,s∈ΞI

s

X(I)
pqrs = 3 , (4)

where X
(I)
pqrs = exp(iπχ

(I)
pqrs) and χ

(I)
pqrs are defined in

Eqs. (A8), (A9) and (A10), for I = 1, 2, 3, respectively.
We shall also require two additional properties: exis-
tence of at least one SM Higgs doublet and existence of a
top Yukawa coupling. The first requirement corresponds
to having at least one solution coming from one of the
{(v, I), I = 1, 2, 3} systems. The second requirement will
be guaranteed by a particular choice of U3

v as we shall see
in the following.

Having given an overview of the fundamental ingre-
dients and phenomenological requirements that we will
impose, let us now describe our method in detail. To
encode the GGSO constraints we adopt a technique that
is significantly different from those that have been used
to analyse this specific class of models before, e.g. in
Refs. [37–41]. Indeed the U I

i parameters are typically
scanned over along with the other variables correspond-
ing to the GGSO phases. Here by contrast we first fix
the values of U I

s and U I
v on the three orbifold planes

which allows us to then search for suitable values of the
GGSO coefficients. That is, following the discussion in
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Appendix A, we can first without loss of generality set

U1
s = U2

s = U3
v =

 0
0
0
0

 . (5)

Note that we fix U3
v to zero, which guarantees the exis-

tence of a top Yukawa coupling as we shall see. However
we are still free to fix the residual parameters in U I

i . For
this study it is convenient to compare the different meth-
ods by studying the models with

U3
s =

 0
1
0
0

 , U1
v =

 1
0
0
0

 , U2
v =

 1
1
1
1

 . (6)

Of course in a full treatment one would scan through the
212 ≈ 4000 possible choices of U3

s , U1
v , U2

v . Having fixed
these parameters, the remainder of the GGSO constraints
may be solved by quantum annealing. That is we are
required to encode and solve the following equations on
the quantum annealer:


∆3U3

s = Y 3
s

∆1U1
v = Y 1

v

∆2U2
v = Y 2

v

χ
(3)
pqrs = 0

mod 2 , (7)

where all the quantities involved can be expressed in
terms of the GGSO coefficients following the definitions
in Appendix A. Comparing Eqs. (7) with Eq. (3), one
may wonder why spinorial projectors appear only on the
third plane along with the corresponding chirality con-
straint. A similar question applies to the vectorial projec-
tors, which are only present on the first and second plane.
Indeed, it is straightforward to show that the choice in
Eq. (5) (see Appendix A for details) trivialises the cor-
responding constraints on the first and second planes for
spinorials as well as those on the third plane for vectori-
als. In a similar fashion, the chirality constraints on the
first and second planes are satisfied by the conventions
adopted in Eq. (A29).

The first three lines in Eq. (7) correspond to four lin-
ear equations, yielding a total of 13 equations with 27
unknown GGSO coefficients. Thus, we take the corre-
sponding problem Hamiltonian to be effectively a “loss-
function” for this set of equations, which is to say that we
take it to be the sum of the squares of the 13 equations
with additional integer parameters Ki=1,...,13 to absorb

the modulo 2 operation,

H =

4∑
i=1

(
∆3

ijU
3
s,j − Y 3

s,i − 2Ki

)2
+

4∑
i=1

(∆1
ijU

1
v,j − Y 1

v,i − 2K4+i)
2

+

4∑
i=1

(∆2
ijU

2
v,j − Y 2

v,j − 2K8+i)
2

+
(
χ(3)
pqrs − 2K13

)2

, (8)

where the sum over j in each square is to be understood.
The auxiliary variables Ki=1,...,13 are encoded using bi-
nary representations and take values in [−3, 4], while ∆
and Y are binary variables in {0, 1}, which are straight-
forwardly encoded in annealer spins via Eq. (2). This
means that even for this restricted choice of U I

i the pa-
rameter space is 228 ≈ 108.

Once models have been acquired from this quantum
annealing stage, they as mentioned need to be post-
filtered classically to satisfy our additional phenomeno-
logical requirements. As discussed these conditions in-
clude the imposition of three generations, and the re-
quirement of at least one Higgs doublet. However as ex-
plained in Appendix A the third constraint, namely the
existence of a top Yukawa coupling, is already ensured
by our choice of U3

ν and by Eqs. (A27) and (A28) and is
therefore already encoded in Eq. (8). Thus, from on now
on we need focus only on the first two conditions.

Let us start by analysing the 3 generations constraint.
As already mentioned, the chirality on the first and on
the second planes is set to one thanks to the conventions
adopted in Eq. (A29). Therefore, the only chirality that
needs to be checked is that on the third plane, which
translates into the following equation (also without loss
of generality):∑

p,q,r,s∈Ξ3
s

X(3)
pqrs =

∑
p,q,r,s∈Ξ3

s

eiπχ
(3)
pqrs = 1 . (9)

As the reader may have already noticed, to ensure the
desired number of generations we must sum over all the
spinorial solutions on the third plane. However, it may
happen that the proposed solution U3

s in Eq. (6) is not
unique. In other words, since we are not imposing any
constraint on the number of solutions, nothing prevents
the system representing the spinorial projectors on the
third plane from having solutions in addition to that al-
ready designated in Eq. (6). Indeed, the Hamiltonian in
Eq. (8) does not contain a term that enforces the unique-
ness of that solution: it simply guarantees that U3

s is a
solution. Therefore, in order to ensure the fulfillment of
the generations constraint, we post-process all the candi-
date models proposed by the annealer and discard those
that have additional solutions besides the one that we
have already assigned. Similar arguments hold for the
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number of vectorials, however in this case the constraints
are less severe as we only require there to be at least one
Higgs doublet, that is we require at least one solution
coming from one of the planes.

III. RESULTS AND PERFORMANCE
COMPARISON WITH OTHER SEARCH

METHODS

In order to perform our analysis the system in Eq. (8)
was implemented on D-Wave’s Advantage_system4.1
architecture [42]: this annealer contains 5627 qubits,
connected in a Pegasus structure, but only has a total of
40279 couplings between them. For more details of the
physical realisation of the system the reader is referred
to Ref. [36]1.

The crucial aspect of these systems for our discussion
is the anneal process itself. The entire Hamiltonian on
the annealer takes the form

H(t) = A(t)H(σZ
ℓ ) + B(t)

∑
ℓ

σX
ℓ , (10)

where the overall couplings A(t) and B(t) are adjusted
during the anneal, and where the second piece,

∑
ℓ σ

X
ℓ is

the trivial Hamiltonian.
The adiabatic annealing paradigm chooses A(tinit) = 0

and A(tfinal) = 1 while B(tinit) = 1 and B(tfinal) = 0.
However the quantum annealing method we use con-
sists of several iterations of reverse annealing. Reverse
annealing is a variation of the traditional quantum an-
nealing approach: instead of starting the anneal in the
groundstate of the trivial Hamiltonian, reverse annealing
allows one to begin with the Hamiltonian as pure prob-
lem Hamiltonian H(tinit) = H(σZ

ℓ ), with the qubits ini-
tialised in a specific eigenstate (most likely not its ground
state). One then adjusts the system to parametrically
approach the trivial Hamiltonian which induces a con-
trollable “hopping” of σZ

ℓ spins before then returning to
the pure problem Hamiltonian. In other words in a sin-
gle anneal iteration we take A(tinit) = A(tfinal) = 1 and
B(tinit) = B(tfinal) = 0, with non-zero values in between.
The spins are then read from the annealer and used to
initialise the next iteration.

Repeating the process and initialising each time with
the best solution (in a fashion reminiscent of elitism in a
GA), induces a kind of quantum gradient descent towards
a solution over several iterations. This can in general lead
to faster convergence and improved solutions.

To assess the different methods we first note that a
comprehensive scan of this system is possible, and this

1 It is worth mentioning that the quadratic Hamiltonian restric-
tion does not apply to implementations of adiabatic quantum
algorithms on gate quantum computers (at the expense of gate
depth), as has been implemented in the Qibo architecture [43].
We return to this point later.
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Figure 1. Comparison of the machine-time efficiency of
various techniques for finding viable models. The methods
analysed are: random scans, genetic algorithms, simulated
annealing and quantum annealing. For the first three meth-
ods “machine-time” is equivalent to CPU-time. In the latter
case it implies time on the annealer. The number of inde-
pendent GGSO coefficients is 28, yielding to a search space
of 228 ∼ 108 possible models. The superiority of the methods
using annealers is clearly evident in this case, surpassing the
other techniques. The total number of models found using
simulated annealing is 894 in approximately 6000s vs 153 and
61 models found using a genetic algorithm and a random scan,
respectively. For the quantum annealer each anneal run had
2000 reads and used auxiliary variables Ki ∈ [−3, 4]. The
dashed lines both indicate quantum annealing and are pro-
jections based on the simulated annealing data. In these two
cases the machine-time does not take into account the dead-
time required due to bottlenecks in exchanging information
with the annealer (which incurs a delay of order a second, and
which could be removed if a portion of the machine were dedi-
cated to the search). The machine time is computed based on
the anneal schedule time only, which is fixed to 160µs. The
grey line takes also into account the time required to do all
the classical checks on the models found by the annealer. The
orange line is an estimation of the performance of a quantum
annealer supposing that all the classical checks are also en-
coded in the annealer Hamiltonian.

was performed for comparison: this took about 48 hours
on a DELL PowerEdge R630 workstation with 32 GB of
memory which resulted in a total number of 1024 mod-
els, i.e., the search space of the set of models we have
described contains one viable SM-like model in 105. The
second method we considered was simulated annealing
optimised with a linear β-schedule. We also for compari-
son implemented the same system in a genetic algorithm.
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The GA was implemented with a fitness function defined
linearly by the ranking, and optimised to find the best
values for the mutation rate and for the learning rate
(i.e., the number of times breeding occurs for the fittest
individual compared to the least fit): these were found
to be 3% and 4, respectively.

To compare these four methods, we examined the
rate at which each finds acceptable models in terms of
machine-time. Apart from quantum annealing, all the
other algorithms were run on standard computers. The
results are collected in Fig. 1 where we plot number of
found SM-like theories against machine-time. The defi-
nition of machine-time on quantum annealers is compli-
cated by the fact that currently they are shared resources,
and need to handle the influx of traffic and requests from
multiple users simultaneously. This can lead to bottle-
necks, resulting in longer wait times of a few seconds for
accessing the machine or retrieving spin values after an
anneal run. Since these are external factors (and even
depend on the traffic on the machine) we have excluded
them from our definition of quantum annealing machine-
time. Indeed, these factors are the main obstruction pre-
venting the reproduction of the saturation plot in Fig. 1.
Hence the dashed quantum annealer lines are built upon
the simulated annealing data by extrapolating compara-
tive early performance. Specifically, the grey dashed line
represents a projection of the quantum annealer perfor-
mance, including the time required to perform the clas-
sical checks.

As we can see from the figure, both quantum and
simulated annealing are far more efficient than random
scans and genetic algorithms (red and green solid lines,
respectively). Modulo the above caveats, in this case
we estimate that the quantum annealing method is 1.3
times faster even than simulated annealing. The orange
dashed line is an estimate of a hypothetical pure quan-
tum annealing implementation, in which we assume that
all of the additional classical checks are instead also en-
coded on the annealer (using methods that we discuss
below), with no additional classical post-processing be-
ing required. This would result in a 4.125 times better
performance than simulated annealing.

Overall then, in this study annealing methods appear
to surpass other techniques in terms of performance, ef-
ficacy. They outshine alternative approaches and show
superior outcomes. Quantitatively, the initial model dis-
covery rate (i.e., within the first 1000s) is one model in
0.66 seconds for simulated annealing, compared to one
models in 33 seconds for the genetic algorithm and one
in 100 seconds for the random scan. Using quantum an-
nealing, the rate increases to one model in 0.50 seconds
when model checks are performed classically (the grey
line in Fig. 1) and to one model in 0.16 seconds for a
hypothetical purely quantum annealing implementation
(orange dashed line). However one caveat we should add
for completeness is that the search in this study may be
somewhat disadvantageous for the GA as the number of
SM-like models in the search space is relatively dense: as

discussed in Ref. [8] a GA becomes more effective when
the search is very difficult, say one model in 106 or more.
The future challenge then is to compare quantum an-
nealers and GAs when they are both confronted by much
harder problems such as those discussed in Refs. [16, 34].

IV. TOWARDS PURE QA MODEL BUILDING

In Fig. 1 we included a line for hypothetical purely
quantum annealing in which no classical post-processing
would need to be done. In this section we briefly consider
how such a complete implementation might be achieved.
This discussion will illustrate the potential and also the
complexity of performing pure quantum computing anal-
yses.

The first hurdle for a complete quantum implementa-
tion of the models under discussion is the fact that the
only spin Hamiltonians that can currently be considered
are quadratic Ising models. Let us suppose for this dis-
cussion that this will remain the case for the foreseeable
future. (We shall comment on alternative possibilities at
the end of this section.) The problem then is how do
we encode the higher order constraints on the annealer.
For example if we do not fix the values of U3

s , U1
v , U2

v in
advance but allow all the U parameters to be set by the
quantum annealing (in which case we are searching the
larger space of size 1012) we are then obliged to encode
the squares of Eqs. (6) in the Hamiltonian, which would
be quartic in the spins.

Thus we will need to know how to turn a higher order
polynomial of spins into a quadratic Ising Hamiltonian
on the annealer. This is done by the method of reduc-
tion, described in Refs. [36, 44]. This method involves
introducing auxilliary spins to represent pairs of spins in
the original Hamiltonian, and it works as follows.

Let us begin with the raw high order polynomial H̃(σℓ)
written as a function of binary QUBO variables using
Eq. (2). Suppose H̃ has terms involving products of
two binary variables τ1 and τ2. Now consider adding
to the polynomial H̃ a quadratic term that involves the
binary variables together with a new auxiliary variable
τ12, which is of the form

Q(τ12; τ1, τ2) = Λ(τ1τ2 − 2τ12(τ1 + τ2) + 3τ12) . (11)

Inspection shows that a sufficiently large and positive
overall coupling Λ enforces τ12 = τ1τ2 whatever the val-
ues of τ1 and τ2 happen to be. Importantly the minimum
at this point has Q = 0. Therefore we may replace the
product τ1τ2 with τ12 wherever it appears within H̃, and
the new Hamiltonian is guaranteed to have the same set
of minima as the original H̃. This process can be iter-
ated until one arrives at the desired problem-Hamiltonian
which is quadratic in spins, and which is schematically
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of the form

H = H̃(τ1, τ2, . . . , τ12, τ13, . . . , τ12,34, τ12,56 . . .)

+
∑
i>j

Q(τij ; τi, τj) +
∑

i<j,k<m

Q(τij,km; τij , τkm)

+ . . . (12)

with the constraints imposed by the Q terms ensuring
that this quadratic Hamiltonian has the same minima as
the original polynomial. Although this procedure may
seem laborious it can easily be automated to systemat-
ically reduce any higher order polynomial in spins to a
quadratic, as in the explicit examples in Ref. [36].

Thus in principle all the remaining degrees of freedom
may be put on to the annealer with the GGSO con-
straints being entirely enforced by the Hamiltonian, at
the expense of using an additional ancillary qubit for ev-
ery term in the Hamiltonian that requires reducing.

There remains the problem of incorporating phe-
nomenological counting constraints. That is, suppose
that the annealer with this larger system has found a
solution to Eqs. (7) having thereby determined a set of
U ’s and ∆’s. We are required to include something in the
Hamiltonian which will now implement the three genera-
tions check in Eq. (4) which previously we did classically.
This requires the introduction of “counting” qubits and
it can be achieved as follows.

We are required to impose Eq. (4) which boils down
to imposing #(χ = even) = 3 +#(χ = odd), or in other
words

3∑
I=1

∑
p,q,r,s∈ΞI

s

(
2 χpqrs − 1

)
= − 3 , (13)

where χ ≡ χ mod(2). Note that the quantity on the
left is actually just given by the sum of the σ qubits
corresponding to the binary χ variable. This is sufficient
to ensure that even if we have cancelling positive and
negative chiralities the nett number of generations is 3.

In these equations the χpqrs are functions of the
p, q, r, s as in Eqs.(A8),(A9),(A10), so they are also poly-
nomial objects in spins. However each χ can be mapped
to a single ancillary binary qubit χ by adding the terms

H ⊃ (χ+ 2Kχ − χ)2 (14)

for every χ, where here χ is another ancillary binary qubit
and Kχ is as before a binary encoded integer, Kχ ∈ Z.
Thus χ = χ is enforced at the minimum. Of course given
that the χpqrs in Eqs. (A8),(A9),(A10) are not linear in
spins, Eq. (14) will also require reduction. Finally to
impose the three generation constraint in Eq. (13) we
then add to the quadratic Hamiltonian the term

H ⊃

 3∑
I=1

∑
p,q,r,s∈ΞI

s

(
2χpqrs − 1

)
+ 3

2

(15)

which is quadratic and therefore requires no further re-
duction.

In principle therefore all the consistency conditions
may be straightforwardly implemented on the annealer
in this fashion. Currently the limiting factor is the size
of the architecture and the relatively large number of an-
cillary qubits that would be generated by this method.
Therefore one might also contemplate an alternative ap-
proach which is to implement annealing on a quantum
gate computer. In such an approach the Hamiltonian
is “Trotterized” in order to evolve the system in small
time-steps on a universal gate quantum computer [43].
Thus in principle spin Hamiltonians of high order are al-
lowed and no reduction would be required in order to
implement all the consistency conditions. Currently no
such system of large enough physical size is available to
encode the system under discussion, and unfortunately
one cannot simulate more than approximately 30 qubits.
However this approach would be a promising avenue to
explore once universal gate machines of sufficient size be-
come available.

V. CONCLUSIONS

In this study, we have employed quantum annealing to
construct string models, focusing on their efficiency and
effectiveness in the model discovery process. By compar-
ing quantum annealing with other established methods
such as simulated annealing, random scans, and genetic
algorithms, we have gained valuable insights into the pos-
sible advantages of using quantum annealers for this pur-
pose.

We should add that annealers are possibly most ad-
vantageous when the search space consists of relatively
dense regions of SM-like models (in this study one model
in 105), a situation in which genetic algorithms do not
usually lead to significant improvement with respect to
alternative methods such as random scans. By contrast,
genetic algorithms are known to excel in scenarios with
more challenging searches, where the exploration of
extremely large solution spaces is required. Therefore, it
would be interesting in future investigations to compare
these methods in more difficult problem domains in
order to provide a comprehensive assessment of their
respective strengths and weaknesses.
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Appendix A: Construction of SO(10) models

In this article we focus on heterotic string models de-
fined in the free fermionic formulation using the basis
b = {β1, . . . , β12}, where

β1 = 1 = {ψµ, x1,...,6, y1,...,6, ω1,...,6;

ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, ϕ̄1,...,4, ϕ̄5,...,8} ,
β2 = S = {ψµ, x1,...,6} ,

β2+i = ei = {yiωi; ȳi, ω̄i} , i = 1, . . . , 6 , (A1)

β9 = b1 = {x34, x56, y3,4, y5,6; ȳ3,4, ȳ5,6, ψ̄1,...,5, η̄1} ,
β10 = b2 = {x12, x56, y1,2, y5,6; ȳ1,2, ȳ5,6, ψ̄1,...,5, η̄2} ,
β11 = z1 = {ϕ̄1,2,3,4} ,
β12 = z2 = {ϕ̄5,6,7,8} ,

and a set of phases c
[
β1

β1

]
= ±1, c

[
βi

βj

]
= ±1, i > j =

1, . . . , 6. The basis vectors βi describe the parallel trans-
portation properties of the fermionic coordinates along
the world-sheet torus while the phases link to generalised
GSO projections (GGSO). Following the standard nota-
tion, included fermions are periodic, while all rest are
anti-periodic. For c

[
S
ei

]
= c

[
s
za

]
= −1, i = 1, . . . , 6, a =

1, 2 and generic choice of the remaining GGSO phases,
the above basis describes a N = 1 supersymmetric model
possessing SO(10)×U(1)3×SO(8)2 gauge symmetry.
SO(10) spinorials arise from the sectors SI

P⃗ I
s

= S +

bI + P⃗ I
s ·E⃗, I = 1, 2, 3 where P 1

s = (0, 0, p1s, q
1
s , r

1
s , s

1
s),

P 2
s = (p2s, q

2
s , 0, 0, r

2
s , s

2
s), P 3

s = (p3s, q
3
s , r

3
s , s

3
s, 0, 0) and

E⃗ = (e1, e2, e3, e4, e5, e6). Here, b3 = b1+b2+x with x =

1+ S +
∑6

i=1 ei +
∑2

a=1 za. Similarly, SO(10) vectorials
come from the sectors VI

P⃗ I
v

= S+bI+x+P⃗
I
v ·E⃗, I = 1, 2, 3

where P 1
v = (0, 0, p1v, q

1
v , r

1
v, s

1
v), P 2

s = (p2v, q
2
v , 0, 0, r

2
v, s

2
v),

P 3
v = (p3v, q

3
v , r

3
v, s

3
v, 0, 0).

Utilising ei ∩ S1
P⃗ 1

s

= ∅, i = 1, 2 , ei ∩ S2
P⃗ 1

s

= ∅, i = 3, 4 ,

ei ∩ S3
P⃗ 1

s

= ∅, i = 5, 6 and za ∩ SI
P⃗ 1

s

= ∅, a = 1, 2, I =

1, 2, 3 the spinorial projectors can be recast in the form

∆IU I
s = Y I

s , I = 1, 2, 3 , (A2)

where

∆1 =

 (e1|e3) (e1|e4) (e1|e5) (e1|e6)
(e2|e3) (e2|e4) (e2|e5) (e2|e6)
(z1|e3) (z1|e4) (z1|e5) (z1|e6)
(z2|e3) (z2|e4) (z2|e5) (z2|e6)

 , (A3)

∆2 =

 (e3|e1) (e3|e2) (e3|e5) (e3|e6)
(e4|e1) (e4|e2) (e4|e5) (e4|e6)
(z1|e1) (z1|e2) (z1|e5) (z1|e6)
(z2|e1) (z2|e2) (z2|e5) (z2|e6)

 , (A4)

∆3 =

 (e5|e1) (e5|e2) (e5|e3) (e5|e4)
(e6|e1) (e6|e2) (e6|e3) (e6|e4)
(z1|e1) (z1|e2) (z1|e3) (z1|e4)
(z2|e1) (z2|e2) (z2|e3) (z2|e4)

 , (A5)

and

U1
s =

 p1s
q1s
r1s
s1s

 , U2
s =

 p2s
q2s
r2s
s2s

 , U3
s =

 p3s
q3s
r3s
s3s

 (A6)

and

Y 1
s =

 (e1|b1)
(e2|b1)
(z1|b1)
(z2|b1)

 , Y 2
s =

 (e3|b2)
(e4|b2)
(z1|b2)
(z2|b2)

 , Y 3
s =

 (e5|b3)
(e6|b3)
(z1|b3)
(z2|b3)


(A7)

For the surviving spinorials we calculate chiralities using
the formulae [38] , X(I)

pqrs = exp(iπχ
(I)
pqrs), with

χ(1)
pqrs = α0 + (1− r)(e5|b1) + (1− s)(e6|b1)

+ p(e3|b2) + q(e4|b2) + r(e5|b2) + s(e6|b2)
+ p(1− r)(e3|e5) + p(1− s)(e3|e6)
+ q(1− r)(e4|e5) + q(1− s)(e4|e6)
+ (r + s)(e5|e6) , (A8)

χ(2)
pqrs = α0 + (1− r)(e5|b2) + (1− s)(e6|b2)

+ p(e1|b1) + q(e2|b1) + r(e5|b1) + s(e6|b1)
+ p(1− r)(e1|e5) + q(1− r)(e2|e5)
+ p(1− s)(e1|e6) + q(1− s)(e2|e6)
+ (r + s)(e5|e6) , (A9)

χ(3)
pqrs = α0 + (1− p)(e1|b1) + (1− q)(e2|b1)

+ (1− r)(e3|b2) + (1− s)(e4|b2)
+ (1− r)(1− p)(e1|e3) + (1− r)(1− q)(e2|e3)
+ (1− s)(1− p)(e1|e4) + (1− s)(1− q)(e2|e4)
+ (1− r) [(e3|e5) + (e3|e6)] + (1− s) [(e4|e5) + (e4|e6)]
+ (1− r) [(e3|z1) + (e3|z2)] + (1− s) [(e4|z1) + (e4|z2)]
+ (e5|b1) + (e6|b1) + (z1|b1) + (z2|b1) , (A10)

where we can set α0 = 0 as it depends on conventions,
eiπα0 = −ch(ψµ)c

[
1
S

]
c
[
S
b1

]
c
[
S
b2

]
c
[
b1
b2

]
.

Similarly, vectorial projectors can be recast in the form

∆IU I
v = Y I

v , I = 1, 2, 3 , (A11)

where

U1
v =

 p1v
q1v
r1v
s1v

 , U2
v =

 p2v
q2v
r2v
s2v

 , U3
v =

 p3v
q3v
r3v
s3v

 , (A12)

and

Y 1
v =

 (e1|bx1)
(e2|bx1)
(z1|bx1)
(z2|bx1)

 , Y 2
v =

 (e3|bx2)
(e4|bx2)
(z1|bx2)
(z2|bx2)

 , Y 3
v =

 (e5|bx3)
(e6|bx3)
(z1|bx3)
(z2|bx3)

 ,

(A13)
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with bxi = bi + x. The GGSO associated coefficients in
Y 3
s , Y

I
v , i = 1, 2, 3 can be reduced as follows

(ei|b3) = (ei|b1) + (e3|b2) + (ei|x) (A14)
(za|b3) = (za|b1) + (za|b2) + (za|x) (A15)

(ei|bI + x) = (ei|bI) + (ei|x) , I = 1, 2 (A16)
(za|bI + x) = (za|bI) + (za|x) , I = 1, 2 (A17)
(ei|b3 + x) = (ei|b1) + (ei|b2) , (A18)
(za|b3 + x) = (za|b1) + (za|b2) , (A19)

with

(ei|x) =
6∑

j=1
j ̸=i

(ei|ej) + (ei|z1) + (ei|z2) , (A20)

(za|x) = 1 +

6∑
j=1

(za|ej) + (z1|z2) . (A21)

In the notation employed here

c

[
α

β

]
= eiπ(α|β) . (A22)

Moreover,

(ei|ej) = (ej |ei) , (ei|za) = (za|ei) , (A23)
(z1|z2) = (z2|z1) , (ei|bk) = (bk|ei) . (A24)

For a given set of spin structure coefficients c
[
βi

βj

]
the

solutions U I
s , U

I
v , I = 1, 2, 3 of (A2), (A11) determine the

number of surviving spinorials/vectorials. Without loss
of generality, we can assume that one spinorial comes
from the S + b1 sector, that is we have a solution with
p1s = q1s = r1s = s1s = 0. This amounts to setting

(e1|b1) = (e2|b1) = (z1|b1) = (z2|b1) = 0 (A25)

as dictated by the relevant equation of (A2), i.e ∆1U1
s =

Y 1
s . Furthermore, we can also assume that the second

spinorial arises from S + b2, i.e. that p2s = q2s = r2s =
s2s = 0 is a solution of ∆2U2

s = Y 2
s , which then implies

(e3|b2) = (e4|b2) = (z1|b2) = (z2|b2) = 0 . (A26)

The existence of a coupling of the form 16× 16× 10 at
the trilinear effective superpotential (top mass Yukawa
coupling) requires at least one vectorial coming from S+
b1 + b2 + x, that is Eq. (A11) has a solution with p3v =
q3v = r3v = s3v = 0 [45]. Consequently, we also set

(e5|b1) = (e5|b2) , (e6|b1) = (e6|b2) , (A27)
(z1|b1) = (z1|b2) , (z2|b1) = (z2|b2) . (A28)

Finally additional constraints come from adjusting spino-
rial chiralities, in order to satisfy the chirality constraints
on the first and second plane – i.e. to solve the equivalent
of Eq. (9) for Eqs. (A8) and (A9). These conditions are

(e5|b1) = (e6|b1) , (e5|b2) = (e6|b2) . (A29)
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