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Abstract
We use the gauge unfixing (GU) formalism framework in a two dimensional noncommutative

chiral bosons (NCCB) model to disclose new hidden symmetries. That amounts to converting

a second-class system to a first-class one without adding any extra degrees of freedom in phase

space. The NCCB model has two second-class constraints – one of them turns out as a gauge

symmetry generator while the other one, considered as a gauge-fixing condition, is disregarded

in the converted gauge-invariant system. We show that it is possible to apply a conversion

technique based on the GU formalism direct to the second-class variables present in the NCCB

model, constructing deformed gauge-invariant GU variables, a procedure which we name here

as modified GU formalism. For the canonical analysis in noncommutative phase space, we

compute the deformed Dirac brackets between all original phase space variables. We obtain two

different gauge invariant versions for the NCCB system and, in each case, a GU Hamiltonian is

derived satisfying a corresponding first-class algebra. Finally, the phase space partition function

is presented for each case allowing for a consistent functional quantization for the obtained

gauge-invariant NCCB.
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1. INTRODUCTION

In the last decades, chiral bosons (CB) field theory has drawn a lot of interest in the
physics community [1–21]. Additionaly to its own relevance, CB have been useful for
understanding strings, superstrings and supersymmetry [4–7], gravity and supergravity
theories [8–11], black holes [12], fractionary quantum Hall effect [13], Hodge theory [14]
and general aspects of field theories in the light cone [15, 16]. After the pioneering work
by Siegel [4], in which the self-dual condition first appeared as a quadratic constraint,
Floreaninin and Jackiw introduced a local Lagrangian density for chiral bosons in which
a rich canonical structure was revealed [17]. Despite its initial straightforward simplicity,
the description of CB presents some subtleties [16–21]. Among several issues, we may
mention the presence of a single second-class primary constraint with a non-trivial com-
mutation relation with itself. Therefore CB field theory is not naturally gauge invariant
in its original inception. As it is well-known, gauge invariant theories hold significant im-
portance regarding its quantum aspects [22], in particular the quantization of first-class
systems is much more easy when compared to second-class theories [23, 24]. In the case of
CB field theory, obtaining gauge invariance in a consistent form is not a simple task and
should be handled with extra care. Due to the presence of an odd number of second-class
constraints, in the Floreanini-Jackiw (FJ) description, usual conversional methods such
as standard Batalin-Fradkin-Tyutin (BFT) or direct gauge-unfixing do not work. An
alternative successful route can be found in reference [25] where, in order to restore CB
gauge invariance, a particular method employing both BFT and gauge unfixing ideas was
used. It is also worth mentioning the constraint Fourier modes expansion approach used
in [26] to allow for the introduction of BFT modes.

Over and above that, in the beginning of the current century, there have been vari-
ous arguments regarding the possibility of noncommutative effects in high energy physics
[27–30]. Relating those two subjects, two extensions of CB field theory including non-
commutative features have been proposed in the literature [31, 32]. The first one allows
for noncommutativity in space-time coordinates [31] while the second one introduces non-
comutativity directly into the fields space itself [32] and has been further investigated in
reference [33]. In the present work, we shall be concerned with the latter idea, named here
for short as Noncommutative Chiral Bosons (NCCB), in which the quantum operators
algebra is deformed in terms of a controlling noncommutative parameter. The NCCB
model, introduced in [32], connects two FJ chiral bosons through that noncommutativ-
ity parameter, giving rise to nontrivial commutation relations among the fields in phase
space and, similarly to [17], is characterized as a constrained second-class system lack-
ing aparent gauge freedom. Due to the interaction between left and right propagation
modes, the original number of constraints doubles, turning more feasible to look for gauge
symmetries generated by constraint abelianization methods. In fact, a couple of recent
articles [34, 35] analyzed the canonical structure of the NCCB in the framework of the
BFT embedding method, aiming to promote the NCCB constraints to first-class. The
BFT formalism [36–38] converts second-class constraints into first-class ones by enlarging
the phase space with the introduction of auxiliary fields and has found many important
applications in the literature from which we mention a short representative sample [39–
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46]. In [34], it is shown that the direct application of the BFT embedding formalism to the
NCCB model may lead to an infinite amount of auxiliary fields in phase space. With an
alternative choice for the BFT fields symplectic structure, Majid, Vahid and Mehran have
shown in [35] that it is possible to abelianize the NCCB model in finite order, reducing
the number of auxiliary fields to only two. Nonetheless, we claim that a consistent NCCB
abelianization can be done without the need of any auxiliary fields whatsoever. That is
one of the main advantages of the gauge-unfixing (GU) method [47–55]. Building on the
original work of Mitra and Rajaraman [47], which first conjectured the interpretation of
second-class constraints in phase space as resulting from gauge-fixing conditions within a
larger gauge invariant theory, Anishetty and Vytheeswaran constructed a Lie projection
operator whose action in the second-class functions was able to reveal hidden symmetries
[48–50]. Those ideas were further elaborated to produce the improved or modified gauge-
unfixing formalism [51, 52], centered on the construction of the invariant GU variables,
and have found recent appeal in quantum field theory [53–55]. In this way, the main
goal of the present letter is to develop a gauge invariant theory for the NCCB model,
without auxiliary fields, by directly applying the modified GU formalism [51–55] to the
noncommutative fields space.

For the reader’s convenience, we have organized our presentation as follows: In the next
section, we discuss the NCCB model and analyse its constraints canonical structure with
the use of the Dirac-Bergmann formalism [56–59] computing the Dirac brackets algebra
in phase space. In Section 3, we take the opportunity to briefly review the modified GU
formalism preparing its application to the NCCB and turning the article self-contained.
In Section 4, the modified GU formalism is applied to the NCCB model and we show
that it is possible to obtain gauge invariance without the introduction of auxiliary fields.
We close in the last section with our conclusions and final remarks.

2. THE NONCOMMUTATIVE CHIRAL BOSONS MODEL

The noncommutative chiral bosons model (NCCB) in (1+1) space-time dimensions is
defined by the first-order action [32]

S[φa] =

∫

d2x

[

− 2

1 + θ2
φ̇a∆abφ

′
b − φ′

aφ
′
a

]

, (1)

where θ denotes a noncommutative parameter and ∆ab is an invertible symmetric 2 × 2
matrix given by

∆ab =
1

2

(

−1 θ

θ 1

)

.

The Latin indexes a, b run through 1, 2 and the dynamics resulting from (1) describes two
chiral bosons φ1 and φ2 coupled by the noncommutative parameter θ. In fact, the field
equations directly derived from the minimum action principle applied to S[φa] read

2
∆ab

1 + θ2
φ̇′
b + φ′′

a = 0 , (2)
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and, alternatively, can be cast into the form

φ̇′
a + 2∆abφ

′′
b = 0 . (3)

In the limit θ → 0, the left and right modes decouple and we recover the usual com-
mutative case consisting of two independent chiral bosons [17, 18]. It is interesting to
notice that the non-commutative parameter θ leads to an enhancement of the speed of
light concerning the two chiral bosons propagation. This can be seen from the fact that
the equations of motion (3) are equivalent to the pair

φ̇′
1 = φ′′

1 − θφ′′
2 ,

φ̇′
2 = −φ′′

2 − θφ′′
1 ,

(4)

which in turn, by space integration and time derivation, result in

�θφ1 = �θφ2 = 0 , (5)

where �θ denotes the θ-dependent noncommutative D’Alembertian operator defined as

�θ ≡
1

1 + θ2
∂2t − ∂2x . (6)

Thus, we see that Lorentz invariance is preserved in noncommutative space, as long as
we redefine the speed of light c as

c→ cθ ≡ c
√
1 + θ2 . (7)

Due to the presence of constraints, the canonical quantization of the NCCB must be
done carefuly. The action (1) actually corresponds to a singular Dirac-Bergmann system
[56–59]. To see this feature, note that the canonical momenta in phase space can be
written as

πa = − 2

1 + θ2
∆abφ

′
b . (8)

As we can see, Eq. (8) does not involve the fields time derivatives. Consequently, we have
a pair of primary constraints in phase space given by

Ωa ≡ πa +
2

1 + θ2
∆abφ

′
b , (9)

with corresponding Poisson bracket relations

{Ωa(x) , Ωb(y) } =
4

1 + θ2
∆abδ

′(x− y) . (10)

Concerning the dynamical evolution, the Legendre transformation from configuration
to phase space leads to a well defined canonical Hamiltonian within the primary con-
straints hypersurface given by

H =

∫

dx φ′
aφ

′
a (11)
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and further steps of the Dirac-Bergmann algorithm show the consistent stability of Ωa

without the need of new constraints. Hence, the constraints set (9) is complete and the
invertibility of Eq. (10) assures the second-class nature of the system. To obtain the
Dirac brackets among the phase space variables, we note that the antisymmetric inverse
of (10) can be written as

{Ωa(x) , Ωb(y) }−1 = ∆abǫ(x− y) , (12)

with ǫ(x) denoting the antisymmetric unity step function satisfying

ǫ(x) = −ǫ(−x) , (13)

and
ǫ′(x) = δ(x) . (14)

Eq. (12) represents the functional inverse of (10) in the sense of

∫

dz {Ωa(x) , Ωc(z) } {Ωc(z) , Ωb(y) }−1 = δabδ(x− y) , (15)

and
∫

dz {Ωa(x) , Ωc(z) }−1 {Ωc(z) , Ωb(y) } = δabδ(x− y) . (16)

Inserting (12) into the general DB definition

{F,G}D = {F,G} −
∫

dzdz̄ {F,Ωa(z)}{Ωa(z),Ωb(z̄)}−1{Ωb(z̄), G} , (17)

the fundamental DBs among the phase space variables can be readily computed as

{φa(x), φb(y)}D = ∆abǫ(x− y) , (18)

{φa(x), πb(y)}D =
1

2
δabδ(x− y) , (19)

and

{πa(x), πb(y)}D = − 1

1 + θ2
∆ab∂xδ(x− y) . (20)

At this point, the canonical quantization can be pursued by requiring the associated
operators to satisfy commutation relations dictated by the DB algebra above. Our main
goal in the present work, however, is to produce gauge symmetry for the NCCB model,
write down the corresponding quantum generating functional, and proceed along the lines
of the functional quantization framework. This can be done by means of the modified GU
formalism. Indeed, the second-class property shown by the constraints in Eq. (9) allows
us to directly apply that improved version of the GU formalism considering one of the
constraints as generator of gauge transformations and calculating the GU variables. In
the next section, we give a brief general review of the modified GU technique, paving the
way for its application to the NCCB in the following one.
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3. BRIEF REVIEW OF THE MODIFIED GU FORMALISM

The modified gauge unfixing formalism developed by Neto [23, 51, 52, 55] is based on
the idea of selecting one of the two second-class constraints to be the gauge symmetry
generator and the other one being discarded in a broader gauge-invariant context. Con-
sider for example a given second-class phase-space function T (Aµ, πµ) with the index µ
running through all phase space variables. Our strategy is to write a first-class function
T̃ (Aµ, πµ) obtained from the second-class function T as

T̃ (Aµ, πµ) ≡ T (Ãµ, π̃µ) , (21)

by redefining the original phase space variables

Aµ −→ Ãµ(Aµ, πµ) , (22)

πµ −→ π̃µ(Aµ, πµ) , (23)

such that

δÃµ = α
{

Ãµ, ψ
}

= 0 , (24)

and

δπ̃µ = α {π̃µ, ψ} = 0 , (25)

where α is an infinitesimal parameter and ψ is the second-class constraint chosen to be the
gauge symmetry generator. The deformed variables Ãµ, π̃µ are known as GU variables.

It is clear now that functions of the GU variables, in particular T̃ , will be gauge invariant
since

{

T̃ , ψ
}

=
{

Ã, ψ
} ∂T

∂Ã
+
∂T

∂π̃
{π̃, ψ} = 0 . (26)

Consequently, we can obtain a gauge invariant function from the replacement of

T (Aµ, πµ) → T (Ãµ, π̃µ) = T̃ (Aµ, πµ) . (27)

Now suppose the system has only two second class constraints Q1 and Q2. So, the
GU gauge invariant phase space variables, collectively denoted by Λ̃ ≡ (Ãµ, π̃µ), can be
constructed as a power the series in the discarded constraint Q2

Λ̃(x) = Λ(x) +

∫

dyb1(x, y)Q2(y) +

∫∫

dydzb2(x, y, z)Q2(y)Q2(z) + ... , (28)

satisfying, on the constraint surface Q2 = 0, the boundary condition

Λ̃∣
∣Q2=0

= Λ . (29)
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This assures that we recover the original second-class system when Q2 = 0. The coeffi-
cients bn in relation (28) are then determined by the GU invariant requirement

δΛ̃ = α
{

Λ̃, Q1

}

= 0 . (30)

The general equation for bn is

δΛ̃(x) = δΛ(x) + δ

∫

dyb1(x, y)Q2(y) + δ

∫∫

dydzb2(x, y, z)Q2(y)Q2(z) + ... = 0 , (31)

in which we have

δΛ(x) =

∫

dy α(y) {Λ(x), ψ(y)} , (32)

δb1(x) =

∫

dy α(y) {b1(x), ψ(y)} , (33)

δQ2(x) =

∫

dy α(y) {Q2(x), ψ(y)} . (34)

So, for the first order correction term (n = 1) we have from Eq. (31)

δΛ(x) +

∫

dyb1(x, y)δQ2(y) = 0 . (35)

From Eq. (35) we can determine the coefficient b1. For the second order correction term
(n = 2) we have

∫

dyδb1(x, y)Q2(y) + 2

∫∫

dydzb2(x, y, z)δQ2(y)Q2(z) = 0 . (36)

Then, from Eq. (36) we can determine the coefficient b2 and so on and so forth. Therefore,
from the GU variables power series defined in Eq. (28) we can derive a corresponding gauge
invariant theory.

4. DISCLOSING HIDDEN SYMMETRIES

In this section, we apply the modified GU formalism to the NCCB. As we have seen,
the NCCB has two second-class constraints given by Eq. (9). Writting them out explicitly
in terms of the components of ∆ab, we have

Ω1 = π1 −
φ′
1

1 + θ2
+

θ φ′
2

1 + θ2
, (37)

Ω2 = π2 +
θ φ′

1

1 + θ2
+

φ′
2

1 + θ2
. (38)

Then, following the ideas of the modified GU formalism, one of the two second-class
constraints will be chosen to be the gauge symmetry generator and the other one will be
discarded. Thus, two possible choices for the gauge symmetry generator for the NCCB
are possible. We consider below each of these two different cases separately.
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4.1. Case A

In this first case, we consider the constraint Ω1, Eq. (37), as the gauge symmetry
generator and discard the other second-class constraint Ω2, Eq. (38). The ε-infinitesimal
gauge transformations generated by Ω1 are given by

δφ1 =

∫

dy α(y) {φ1,Ω1(y)} = α , (39)

δφ2 =

∫

dy α(y) {φ2,Ω1(y)} = 0 , (40)

δπ1 =

∫

dy α(y) {π1,Ω1(y)} = − 1

1 + θ2
α′ , (41)

δπ2 =

∫

dy α(y) {π2,Ω1(y)} =
θ

1 + θ2
α′ , (42)

while the constraint Ω2 transforms under Ω1 as

δΩ2 =

∫

dy α(y) {Ω2,Ω1(y)} =
2θ

1 + θ2
α′ . (43)

Since the fields φ1, π1 and π2 are not naturally gauge invariant under Ω1, following the
improved GU approach, we need to construct their GU invariant combinations in terms
of a power series in Ω2. For instance, the first gauge invariant GU variable φ̃1 can be
written as

φ̃1(x) = φ1(x) +

∫

dyb1(x, y) Ω2(y) +

∫

dydzb2(x, y, z) Ω2(y)Ω2(z) + ... , (44)

with the correction coefficient functions bn to be calculated from the invariant condition
δφ̃1 = 0. For the linear correction term (n = 1), we have

δφ1 +

∫

dyb1(x, y)δΩ2(y) = 0 , (45)

and, plugging Eqs. (39) and (43) into (45), we obtain

b1(x, y) = −1 + θ2

2θ
ǫ(x− y) . (46)

For the quadratic term we have b2 = 0 and thus, for n ≥ 2, all the remaining correction
coefficient functions bn are null. Taking this into consideration and inserting Eq. (46) in

(44), we obtain the final expression for the first gauge-invariant GU variable φ̃1 as

φ̃1(x) = φ1(x)−
1 + θ2

2θ

∫

dyǫ(x− y)Ω2(y) . (47)
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Repeating this same iterative process, in a similar fashion, we can derive the remaining
gauge-invariant GU variables in phase space as

φ̃2 = φ2 , (48)

π̃1 = π1 +
1

2θ
Ω2 , (49)

π̃2 = π2 −
1

2
Ω2 . (50)

Differentiating with respect to space, from Eqs. (47) and (48), we have the further useful
relations

φ̃′
1 = φ′

1 −
1 + θ2

2θ
Ω2 , (51)

φ̃′
2 = φ′

2 . (52)

By construction, as seen in the previous section, any function of the GU variables is
automatically gauge-invariant. In particular, the gauge-invariant GU Hamiltonian can be
directly obtained from Eq. (11) as

H̃ =

∫

dx

[

(

φ′
1 −

1 + θ2

2θ
Ω2

)2

+ φ′
2φ

′
2

]

, (53)

and satisfies the gauge-invariant condition {H̃,Ω1} = 0. Due to its gauge invariance, the
GU Hamiltonian can be used to obtain the phase space partition function in the functional
quantization approach [60] as

Z =

∫

Dφ1Dπ1Dφ2Dπ2 δ(Ω1)δ(Γ1) det|{Ω1,Γ1}|eiS , (54)

where Γ1 denotes a suitable gauge-fixing condition and

S =

∫

d2x
(

π1φ̇1 + π2φ̇2 − H̃
)

. (55)

Concerning gauge achievability, the gauge fixing function Γ1 must be chosen in such a way
that the determinant in the integration measure in (54) does not vanish. This concludes
the functional quantization of the gauge-invariant description of the NCCB, with gauge
transformations generated by Ω1.

4.2. Case B

Next, we consider the other possible choice for the gauge symmetry generator. Let
now Ω2 generate the gauge symmetries, certainly different from the ones in case A, while

9



the constraint Ω1 is discarded. The infinitesimal gauge transformations generated by Ω2

read

δφ1 = 0 , (56)

δφ2 =

∫

dy α(y) {φ2,Ω2(y)} = α , (57)

δπ1 =

∫

dy α(y) {π1,Ω2(y)} =
θ

1 + θ2
α′ , (58)

δπ2 =

∫

dy α(y) {π2,Ω2(y)} =
1

1 + θ2
α′ , (59)

δΩ1 =

∫

dy α(y) {Ω1,Ω2(y)} =
2θ

1 + θ2
α′ . (60)

Eq. (56) shows that φ1 is already gauge invariant under transformations generated by Ω2,
thus

φ̃1 = φ1 .

The gauge invariant field φ̃2 is constructed as

φ̃2 = φ2 +

∫

dyc1(x, y) Ω1(y) +

∫

dydzc2(x, y, z) Ω1(y)Ω1(z) + ... . (61)

Now, imposing the gauge-invariant condition δφ̃2 = 0, the correction terms cn can be
obtained. For the linear correction term (n = 1), we have

δφ2(x) +

∫

dyc1(x, y)δΩ1(y) = 0 . (62)

Using Eqs. (57) and (60) we find

c1(x, y) = −1 + θ2

2θ
ǫ(x− y) . (63)

It is easy to see that the variation of c1 leads to c2 = 0. Then, for n ≥ 2, all correction
terms cn are null. Therefore, by putting Eq. (63) into Eq. (61), the GU variable φ̃2

acquires the form

φ̃2 = φ2 −
1 + θ2

2θ

∫

dyǫ(x− y)Ω1(y) .

The remaining GU variables can be obtained by the same iterative process. Proceeding
this way and putting all GU variables together we have

φ̃1 = φ1 , (64)

φ̃2 = φ2 −
1 + θ2

2θ

∫

dyǫ(x− y)Ω1(y) , (65)

π̃1 = π1 −
1

2
Ω1 , (66)

π̃2 = π2 −
1

2θ
Ω1 . (67)
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From Eqs. (64) and (65), it immediately follows

φ̃′
1 = φ′

1 (68)

φ̃′
2 = φ′

2 −
1 + θ2

2θ
Ω1 . (69)

Now we are able to write the gauge invariant version of the Hamiltonian (11). Substituting
Eqs. (68) and (69) into (11) we have

H̃ =

∫

dx

[

(

φ′
2 −

1 + θ2

2θ
Ω1

)2

+ φ′
1φ

′
1

]

. (70)

By construction, the GU Hamiltonian, H̃ , satisfies the condition {H̃,Ω2} = 0.
As was done in case A, given the gauge invariant Hamiltonian, we can derive the phase

space partition function

Z =

∫

Dφ1Dπ1Dφ2Dπ2 δ(Ω2)δ(Γ2) det|{Ω2,Γ2}|eiS , (71)

where

S =

∫

d2x
(

π1φ̇1 + π2φ̇2 − H̃
)

, (72)

with the Hamiltonian density H̃ given by Eq. (70). The gauge fixing condition Γ2 is
chosen so that the determinant appearing in the functional measure is nonvanishing. In
both cases A and B, we were able to obtain a gauge-invariant version for the NCCB
model.

5. CONCLUSIONS

In this work, we have converted the NCCB model into a first-class constrained system
using a modified GU formalism, whose convenience lies on the freedom of choice of the
gauge symmetry generator and on the redefinition of the phase space itself without using
any extra variables. One of the constraints becomes the generator of gauge symmetries
and the other one is discarded. Such ambiguity allowed us to obtain two gauge invariant
systems consistent with the original second-class one, which can be recovered back in a
straightforward manner by setting the discarded constraint equal to zero. In case A, the
constraint Ω1, Eq. (37), was chosen in order to be the gauge symmetries generator, while in
case B the constraint Ω2, Eq. (38), was selected to be the generator of gauge symmetries.
We can note that the canonical structure acquired from the modified GU formalism, for
both cases, is similar to those obtained from other approaches. It is worth mentioning
the non-local form derived for the fields φ̃1, in case A, and φ̃2, in case B, characterized
by the presence of the antisymmetric step function ǫ(x − y) in their expressions, since
non-locality can also be generated from noncommutative field theories. Here, we can
state that the GU variables are dictating the rules for obtaining a gauge theory from a
second-class constrained system. Thus, as has become clear throughout our work, once
GU variables are computed the corresponding gauge theory is obtained consistently and
in a very simple way.
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