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Two main frameworks for defining transverse momentum dependent (TMD) parton densities are the 
Collins-Soper-Sterman (CSS) formalism, and the Parton Branching (PB) approach. While PB-TMDs have 
an explicit dependence on a single scale which is used to evolve PB-TMDs in momentum space, TMDs 
defined in CSS formalism present a double-scale evolution in renormalization and rapidity scales, via a 
pair of coupled evolution equations. In this letter I leverage the Collins-Soper kernel determined from 
simulated Drell Yan transverse momentum spectra using PB-TMDs, and provide, for the first time, the 
transformation of TMD parton distributions from the PB framework to the CSS formalism. The evolved 
PB-TMDs in b-space are compared to the recently released, unpolarized TMD distribution ART23.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The production of colorless final states at a reference scale 
μ in high-energy hadron collisions is described by the factor-
ization [1] of perturbative short distance scattering cross-sections 
and non-perturbative long-distance parton distribution functions 
(PDFs), given μ � �QCD. When describing the transverse momen-
tum spectra of a colorless final state, additional non-perturbative 
contributions need to be considered besides the PDFs. These con-
tributions are the result of the intrinsic transverse momentum mo-
tion of the colliding partons, and also of non-perturbative compo-
nents of Sudakov form factors that resum soft radiation. Two of the 
main frameworks which account for these effects are the Collins-
Soper-Sterman (CSS) formalism based on transverse momentum 
dependent (TMD) factorization [2–4], and the Parton Branching 
(PB) approach [5,6]. In this work I examine the connection be-
tween these two seemingly unrelated formalisms and provide for 
the first time the transformation of TMDs from the PB to the CSS 
framework. In order to evolve the PB-TMDs with the CSS evolution 
equations two main ingredients are needed, the starting distribu-
tion and the non-perturbative Sudakov factor defined by the ra-
pidity anomalous dimension also called Collins-Soper (CS) kernel. 
Since the CS kernel is not an explicitly defined in the PB method I 
determine it using the method proposed in [7] from Drell-Yan (DY) 
transverse momenta spectra.
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2. The PB approach

provides an evolution equation for transverse momentum de-
pendent parton densities Aa , which has the integral form:

Aa(x,k2⊥;μ2) = Aa(x,k2⊥)�a(μ
2,μ2

0)

+
∫
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where x is the longitudinal momentum fraction of parton, k⊥
its transverse momentum, and z the transfer of the longitudi-
nal momentum from parton of flavor b to parton of flavor a. In 
addition P R

ab are the real emission part of the DGLAP splitting 
functions [8–11], and αs is the strong coupling. The no-emission 
probability �a(μ

2
2, μ

2
1), also called Sudakov form factor, between 

two scales μ1 and μ2 is defined as:
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where zM is the soft-gluon resolution scale which separates resolv-
able from non-resolvable emissions.
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The starting distribution Aa(x, k2⊥) in eq. (1) parametrizes the 
parton distribution at the starting scale μ0 and it is factorized in a 
collinear part, and in a non-perturbative (NP) transverse momen-
tum dependent function f N P as:

Aa(x,k2⊥) = fa(x,μ0) · gN P (k2⊥), (3)

where fa(x, μ0) is the integrated TMD, while the function gN P is 
the intrinsic transverse momentum distribution usually modeled
as a Gaussian function with a parametrized width. The PB method 
provides a good description of the DY transverse momentum spec-
trum in a very wide range of DY masses and center-of-mass ener-
gies as shown in [12–15]. It has also been shown to support TMD 
factorization at low transverse momentum [7], and in addition it 
can provide a good description at large transverse momentum and 
high jet multiplicity via multi-jet merging using the TMD merging 
algorithm [16,17].

In this work the PBset2 PB-TMD [18] is employed. It is worth 
noting that in the PB approach the collinear, integrated TMD den-
sity is fitted to collider data, which for the case of PBset2 corre-
sponds to HERA I+II inclusive DIS cross section measurements [19].

3. The CSS factorization

provides the evolution of TMD distributions via a pair of equa-
tions:

μ2 d

dμ2
F (x,b;μ,ζ ) = γF (μ, ζ )

2
F (x,b;μ,ζ ), (4)

ζ
d

dζ
F (x,b;μ,ζ ) = −D(μ,b)F (x,b;μ,ζ ), (5)

where F is the TMD parton distribution which depends on the par-
ton longitudinal momentum fraction x and transverse distance b. 
The evolution variables μ and ζ arise from the renormalization of 
the ultraviolet divergences and from the factorization of rapidity 
divergences respectively. The function γF is the TMD anomalous 
dimension and the function D(μ, b) is the rapidity anomalous di-
mension, also called CS kernel. The solution of eqs. (4) and (5) for 
a given flavor and starting distribution F (x, b) can be expressed 
as [20].

F (x,b;μ,ζ ) = R[b; (μ, ζ ) → (μ0, ζ0)]F (x,b), (6)

where R is the evolution factor along a path in the (μ, ζ ) plane. 
Here I use the ζ -prescription [20,21], which decorrelates the TMD 
distribution and the CS kernel. Within this framework, unpolar-
ized TMD parton distributions have been determined from global 
fit analyses of vector boson production and Semi-Inclusive Deep-
Inelastic scattering data [21–26]. The parameters determined in 
these fits correspond to the starting TMD distribution and the CS 
kernel.

In contrast to the PB method, collinear non-perturbative effects 
encoded in the PDFs are not fitted in this framework. Instead, 
available PDF global fits are used like the ones provided by the 
HERA [19], NNPDF [27], CTEQ [28], and MSHT [29] collaborations. 
In [30] a systematic investigation of the role of PDF bias in TMD 
determinations was performed.

For the purpose of comparison in this work employ the recently 
released ART23 TMD distribution [26], which includes the Z- and 
W-boson production data, and uses the MSHT20 PDF [29] as base 
collinear distribution.

4. Evolution of PB-TMDs using the CS kernel

The main difference between the evolution defined in eq. (1)
compared to eqs. (4), (5) lies on the rapidity scale evolution in 
2

eq. (5). The CS kernel governs the evolution in rapidity scale, and 
contains information on long-range forces acting on quarks [31]. 
Even if not explicitly defined, the CS kernel underlying the PB 
approach can be determined from cross-sections, without any ref-
erence to the underlying TMD distributions, as shown in [7]. The 
main result of this letter is the use of the determined CS kernel 
to evolve the PB-TMD starting distribution. In this manner, the PB-
TMDs are expressed in the CSS formalism for the first time, a long 
standing problem in the TMD community. It is worth pointing out 
that this correspondance is possible in the ζ -prescription because 
in this prescription the notion of modeling of the TMD distribution, 
and the influence of the TMD evolution are disentangled [20].

In the asymptotic b → 0 limit, the operator product expansion 
(OPE) of the TMD distribution allows to construct a phenomeno-
logical anzats [21] connecting the collinear part of the TMD distri-
bution with a non-perturbative function dependent on the trans-
verse distance. The starting distribution of a parton of flavor a can 
then be written as:

Fa(x,b) =
1∫

x

dy

y

∑
b

Ca←b(
x

y
,LμOPE ,αs)

× fb(y,μOPE) f N P (x,b), (7)

where C are the matching Wilson coefficients, αs is the strong 
coupling evaluated at the OPE scale μOPE, and Lμ = ln(b2μ2/

(4 exp(−2γE ))), with γE being the Euler constant. The scale μOPE

is chosen such that it minimizes the logarithmic contribution at 
b → 0, and does not reach the Landau pole. Similar to [21] I use 
the relation:

μOPE = 2eγE

b
+ μ0, (8)

where μ0 =
√

1.4 GeV2 corresponds to the reference scale of the 
integrated TMD for the case of PBset2 [18]. This value of μ0 pro-
vided the best fit result for PBset2 [18]. The coefficient functions 
C are known up to next-to-next-to-leading-order [32–35]. For sim-
plicity I use the leading-order (LO) expression [34,36] C [0]

a←b(x) =
δabδ(1 − x) in eq. (7), which for a given flavor results in:

Fa(x,b) = fa(x,μOPE) f N P (x,b). (9)

It is worth noting that when the coefficient functions are consid-
ered at LO, the functional structure for the starting TMD distribu-
tion is equivalent to that of the PB approach given in eq. (3), where 
gN P (k2⊥) corresponds to the Hankel transformation of f N P (b).

The last step for obtaining the PB-TMD in the CSS framework 
at any given set of scales (μ, ζ ) is to evolve the Hankel transform 
of eq. (3) evaluated at μOPE, using eq. (6). The path independent 
expression for the evolution factor R can be written as [20]:

R[b; (μ, ζ ) → (μ0, ζ0)] =

exp

{
−

μ∫
μ0

dμ′

μ′ (2D(μ′,b) + γV (μ′))

+D(μ,b) ln

(
μ2

ζ

)
−D(μ0,b) ln

(
μ2

0

ζ0

)}
, (10)

where γV is the anomalous dimension from the TMD vector form 
factor [21]. In order to evaluate the evolution factor R for the case 
of PB, the corresponding CS kernel D(μ, b) needs to be known. 
The CS kernel can be determined at the cross-section level from DY 
transverse momentum spectra, as has been demonstrated in [7]. Its 
determination, using DY events simulated with the CASCADE event 
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Fig. 1. (top) CS kernel D(μ, b) determined from DY transverse momentum spectra 
simulated with the PB method as proposed in [7], and (bottom) logarithm of the 
evolution factor R[b; (μ, μ2) → (μ0, μ2

0)]. The color scale indicates the correspond-
ing absolute uncertainty.

generator [37] via the PB approach is shown in Fig. 1 (top), for 
the case in which the TMD distribution PBset2 [18] is employed. I 
use DY production in pp collisions for DY masses Q = 12, 16, 20, 
24 GeV, and center-of-mass energies 

√
s = 655.2, 873.6, 1092.0, 

1310.0 GeV respectively. These values for Q and 
√

s follow the 
choices in [7] and ensure that the same ranges in longitudinal mo-
mentum fraction are probed for a maximum DY rapidity of 4. I use 
a bin size in transverse momentum of 0.05 GeV which allows to 
reach transverse distance values b ∼ 4 − 5 GeV−1.

The systematic uncertainty in the CS determination is shown in 
Fig. 1 (top) in a color scale. The uncertainty includes the propaga-
tion of statistical uncertainty of the DY spectra simulations using 
the bootstrap method, from momentum space to position space. It 
also includes the uncertainty due to the finite bin size by varying 
the central value within each bin of the DY transverse momentum 
spectra.

In order to evaluate the evolution factor defined in eq. (10) the 
scale μ0 is set to 

√
1.4 GeV2 which is the value of the reference 

scale for the case of the PBset2 parton distribution. In addition ζ0
and ζ are set to μ2

0 and μ2 respectively, which allow to elimi-
nate the logarithm terms of the exponent in eq. (10). The resulting 
evolution factor R[b; (μ, μ2) → (μ0, μ2

0)] is shown in Fig. 1 (bot-
tom), where the color scale represents the uncertainty stemming 
from the propagation of systematic uncertainty on the CS kernel 
determination.
3

Following eq. (9), the up-valence quark starting distribution 
F (x, b) for the case of PBset2 can be written as:

F (x,b) = f (x,
2eγE

b
+ μ0)

×
∞∫

0

dk⊥k⊥ J0(k⊥b)gN P (k2⊥) , (11)

where the scale of the integrated collinear distribution is set to 
μOPE as defined in ep. (8), and the integral corresponds to the 
inverse Hankel transform of the intrinsic transverse momentum 
distribution gN P , which is a Gaussian distribution for the case of 
PBset2 [18]. The resulting distribution F (x, b) is depicted in Fig. 2
(top), for the case of PBset2. The resulting uncertainty from the in-
tegrated PBset2 parametrization is available in TMDlib [38], and is 
depicted with a color scale. The TMD distribution evaluated at the 
Z boson mass F (x, b; M Z , M Z ) is obtained by evolving F (x, b) with 
the factor R[b; (M Z , M2

Z ) → (μ0, μ2
0)] resulting in the expression:

F (x,b; M Z , M Z ) = F (x,b)

× exp

{
−

M Z∫
μ0

dμ′

μ′ (2D(μ′,b) + γV (μ′))
}

. (12)

The resulting F (x, b; M Z , M Z ) is shown in Fig. 2 (bottom). The un-
certainty represented by the color scale includes the integrated 
TMD parametrization, as well as the propagation of the CS kernel 
systematic uncertainty. While at low scales the main uncertainty 
corresponds to the parametrization of the integrated TMD, at high 
scales the systematic uncertainty of the CS kernel propagated to 
the evolution factor in eq. (9) becomes dominant, especially at 
large b.

As depicted in Fig. 2, when the scale of the process increases 
the TMD becomes narrower as a function of b. This can be better 
observed in Fig. 3 (top) where the TMD at fixed x = 0, 3, and as a 
function of b is shown, evaluated at the scales μ = 2, 10, 100 GeV. 
This implies that the corresponding TMD in momentum space will 
have a stronger tail as a result of the evolution to higher scales. 
The uncertainty corresponding to the propagation of the CS kernel 
systematic uncertainty and integrated TMD parametrization is rep-
resented as a dark violet band in Fig. 3 (top). As the impact of the 
evolution factor in eq. (10) increases with increasing scale, the re-
sulting uncertainty on the evolved TMD distribution also increases. 
In addition, Fig. 3 (top) also shows the uncertainty corresponding 
to the variation of the width of the Gaussian intrinsic transverse 
momentum distribution of PBset2 as a light violet band. The Gaus-
sian width was varied between 0.3 and 0.5 GeV, based on the 
analysis of low transverse momentum DY data, which was per-
formed in [13] using PBset2. At low scales, where the effect of 
evolution is small, the dominant uncertainty corresponds to the 
parametrization of the intrinsic transverse momentum distribution.

In Fig. 3 (bottom) the recently published ART23 TMD distri-
bution [26] evaluated at μ = 2, 10, 100 GeV and shown in red 
color, is compared to PBset2 shown in blue color. The uncertainty 
band corresponding to the PBset2 distribution includes the propa-
gation of the CS kernel systematic uncertainty, the integrated TMD 
parametrization, and the intrinsic transverse momentum Gaussian 
width variation. For the case of ART23 the band represents the 
envelope of its 1000 replicas and corresponds to the total uncer-
tainty which includes experimental uncertainties and collinear PDF 
bias [26]. It is worth pointing out that the reason why the uncer-
tainty on PBset2 is significantly lower than that corresponding to 
ART23 is that PBset2 does not suffer from collinear PDF bias. This 
is due to the fact that the collinear PDF corresponds in this case 



A. Bermudez Martinez Physics Letters B 845 (2023) 138182
Fig. 2. (top) up-valence quark starting TMD distribution, and (bottom) TMD evalu-
ated at μ = M Z . The color scale indicates the corresponding relative uncertainty.

to the integrated PBset2. As discussed in [26] the uncertainty band 
for ART23 would be an order of magnitude smaller if PDF bias 
was to be neglected. At low b one can observe a significant differ-
ence between the TMDs, which is explained by the different order 
of the matching coefficients used in eq. (7), which for the case of 
ART23 corresponds to N3LO. At μ = 2 GeV the choice of the start-
ing distribution plays a role, in the case of ART23 the parametrized 
non-perturbative function in eq. (7) is dependent not only on b but 
also on x. Due to the evolution, the effect of the different starting 
distributions decreases at larger scales and a better agreement be-
tween the TMDs is observed.

5. Conclusions

I have performed the first transformation of PB-TMDs to the CSS 
framework. I used the underlying CS kernel determined from sim-
ulated DY transverse momentum spectra to perform the evolution 
of the TMDs in b-space. The results include the effect of uncertain-
ties from the parametrization of the collinear integrated TMDs and 
from the propagation of the systematic uncertainties arising from 
the CS kernel determination. I have shown the first comparison of 
TMDs obtained from the different frameworks, PBset2 and ART23. 
The results open the door for the usage of PB-TMDs in CSS calcula-
tions, and also for the simulation of fully exclusive collision events 
using CSS TMDs within the PB Monte Carlo framework. This work 
also allows to look in more detail the systematic effects of collinear 
distributions in TMD fits, given that in the PB framework TMDs are 
obtained through fits of the integrated distributions, while in the 
4

Fig. 3. up-valence quark TMD at x = 0.3, evaluated at the scales μ = 2, 10, 100 GeV. 
(top) PBset2 TMD distribution is shown. The dark violet band includes the propa-
gation of the CS kernel systematic uncertainty and integrated TMD parametrization 
uncertainty, while the light violet band includes the variation of the width of the 
Gaussian intrinsic transverse momentum distribution. Distributions are scaled for 
better comparison. (bottom) PBset2 TMD distribution is compared to the ART23 
TMD set [26]. The bands correspond to the respective total uncertainties. Distri-
butions are scaled for better comparison.

CSS formalism the non-perturbative b-dependent part is fitted in-
stead.
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