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Abstract

Deep learning techniques have been proven to provide excellent performance for a variety of high
energy physics applications, such as particle identification, event reconstruction and trigger operations.
Using low-level detector information in end-to-end deep learning approach allows to probe the poorly
explored regions for dark matter search. This note presents an implementation of the end-to-end deep
learning inference framework in CMS Software framework (CMSSW) for various physics objects
classifiers such as electron/photon, quark/gluon, top and tau. The inference is benchmarked on CPU
and GPUs.
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Abstract

Deep learning techniques have been proven to provide excellent performance for a variety of
high energy physics applications, such as particle identification, event reconstruction and
trigger operations. Using low-level detector information in end-to-end deep learning
approach allows to probe the poorly explored regions for dark matter search. This note
presents an implementation of the end-to-end deep learning inference framework in CMS
Software framework (CMSSW) for various physics objects classifiers such as electron/photon,
quark/gluon, top and tau. The inference is benchmarked on CPU and GPUs.



Introduction : End-to-end deep learning

in

Particle flow (PF) algorithm converts detector level information to physically intuitive objects
however it comes with some information loss due to reduction in size and complexity.

End-to-end deep learning algorithms can be trained from raw data before any particle processing performed.

An end-to-end deep learning approach has been developed for
- Single particle reconstruction: electron, photon

> Jet Classification : quark, gluon, boosted top, tau

-> Event reconstruction/classification: H> AA-> 4y

O T T I T [ 6P L1 30 CMS Simulation _m, = 0.1 GeV _
: it h . WM BPix L2 é I I T T =
Mt R Rl el J.in EEE BPix L3 o L 8
56 —_q". - S . s 5 p Track pr | £ R 10 =
T 2o L ) ECAL = 24+ 3
iy ' o - AL = I 5
112 fom 'y : "i L
~ - S —
i | = ¢ S 16 - L
168 ! L |
; 8r 107
224 ;.
5 0 [ O V) W S S T A VA s S M L L
; . . i ‘ g i i . 280 Lparad. io it 1o 1 1 1 0 8 16 24 32
0 0 8 20 160 200 240 280 320 360 0 4 N B @ 20 330 Crystal ¢ index
ip 19
Electron/photon classification Boosted top/QCD jet classification Reconstruction of merged photons from H-
obtained from CMS open data simulations obtained from CMS open data simulations AA - 4y process using end-to-end deep

for pp collisions at vS =8 TeV [1] for pp collisions at vS = 8 TeV [2] learning for pp collisions at vS = 13 TeV [3,4]


https://link.springer.com/article/10.1007/s41781-020-00038-8
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.052008
https://arxiv.org/abs/2204.12313
https://arxiv.org/abs/2209.06197

E2E inference within CMS software framework

The E2E inference framework is developed around the Event Data Model (EDM) in C++ based CMS software framework
(CMSSW), it consists of three packages, namely, DataFormats, FrameProducer and Taggers.
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Reading detector input - Storing the extracted vectors or graphs to EDM ROOT files
Extracting seed coordinates - Preparing the frames for inference
3.  Running the inference on Convolutional Neural Network (CNN) model - Storing the predictions
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Specifications of CNN models

e SimpleNet CNN pytorch model converted to ONNX [5].
e The inference of untrained CNN model is obtained using the ONNX C++ API present
in the CMSSW framework with GPU support.

Tagger No. of Input tensor Channels
channels array size
E/Gamma 1 1x32x32 ECAL
Quark/Gluon 5 5x128x128 Track p;,d,, d , ECAL & HCAL
Top 8 8x128x128 Track p;, d, d , BPIX layers, ECAL & HCAL
Tau 8 8x128x128 Track p, d, d , BPIX layers, ECAL & HCAL

ECAL: electromagnetic calorimeter, Track p_: transverse momentum of the track,
dO (dz): distance of minimum approach between the track and the primary vertex in transverse (longitudinal) plane.
HCAL: Hadronic calorimeter, BPIX layers: Barrel pixel layers.


https://github.com/onnx/onnx

Specifications of CPU, GPU

Processor GPU type CPU @ GPU node HBM
Fermilab LPC GPU Tesla P100 Intel Xeon Silver 4110 16-cores 12 GB
NERSC Perlmutter GPU Nvidia A100 AMD EPYC, 64-cores 40 GB

CPU in analysis node

Fermilab LPC CPU

AMD EPYC Processor, 8 CPUs, each with 1 core




Details of inference studies

CPU/GPU reserved for the benchmark studies.

Inference obtained for 1000 events with a single thread.

Latency and throughputs are obtained through FastTimeServices and Throughput services in
CMS software framework.

A warm up run was performed.

First 300 events are dropped from the calculation to stabilize the results.

Measurement repeated 10 times.

Used average of 10 measurements to benchmark latency and throughput.

Uncertainty of 0.5-3% on measurements.



End-to-end E/Gamma tagger inference time breakdown per event

CMS Simulation Preliminary 13 TeV
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), EGFrames (Teal),
Tagger time (orange), and input/output in blue for E/Gamma tagger per event in milliseconds. Timings are obtained from
photon gun sample with transverse momentum 50 GeV reconstructed for Run2 2018 ultra-legacy conditions without pileup
for proton-proton collisions at vS = 13 TeV and compared for Fermilab LPC CPU and GPU. Total time per event is reduced
by 20% with GPU usage compared to CPU.



End-to-end Quark/Gluon tagger inference time breakdown per event

CMS Simulation Preliminary 13 TeV
T 1 1 I T Ll T I T T

T U T l T T T [ T

I Quark/Gluon tagger Modules
Fermllab LPC Event Setup
ii I DetFrames
I Bl JetFrames
W Tagger Time
LPC GPU[- 1500 B Input/Output |
L L ! | . L . | L . L I : : : : . : :
0 200 400 600 800 1000

Time per event (ms)

Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger
time (orange), and input/output in blue for Quark/Gluon tagger per event in milliseconds. Timings are obtained from the
quantum chromodynamic (QCD) multijets events with IIST between 300-470 GeV, reconstructed for Run2 2018 ultra-legacy
conditions without pileup for proton-proton collisions at vS = 13 TeV and compared for Fermilab LPC CPU and GPU. Total
time per event is reduced by 19% with GPU usage compared to CPU.

* Input/output time can be speedup by 5 times for future studies.



End-to-end Top tagger inference time breakdown per event

CMS Simulation Preliminary 13 TeV
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger
time (orange), and input/output in blue for Top tagger per event in milliseconds. Timings are obtained from the top-antitop pair
production events, reconstructed for Run2 2018 ultra-legacy conditions without pileup for proton-proton collisions at vS = 13
TeV and compared for Fermilab LPC CPU and GPU. Total time per event is reduced by 19% with GPU usage compared to CPU.
Total time per event is reduced by 19% with GPU usage compared to CPU.
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* Input/output time can be speedup by 5 times for future studies.



End-to-end Tau tagger inference time breakdown per event

CMS Simulation Preliminary 13 Te
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger
time (orange), and input/output in blue for Tau tagger per event in milliseconds. Timings are obtained from the higgs decaying
to tau anti-tau events, reconstructed for Run2 2018 ultra-legacy conditions without pileup for proton-proton collisions at vS = 13
TeV and compared for Fermilab LPC CPU and GPU. Total time per event is reduced by 6% with GPU usage compared to CPU.

* Input/output time can be speedup by 5 times for future studies. 11



Benchmark E2E inference throughputs on LPC GPU and CPU

CMS Simulation Preliminary 13 TeV
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Event throughput per second

E/Gamma frame is cropped in
32x32 matrix around Egamma
seed, therefore larger throughput.

JetFrame is cropped in 125x125
matrix around jet seed.

Uncertainty of 0.5, 2, 3, and 3%
on E/Gamma, Quark/Gluon, Top
and Tau throughput
measurements, respectively
estimated by taking the average of
10 measurements.

End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon, Top, and Tau taggers
compared for Fermilab LPC GPU and CPU. The ML inference is obtained on single GPU and single CPU with single
thread for input/output. 16%,18%,18%,11% increased throughput with GPU compared to CPU for E/Gamma,
Quark/Gluon, Top and Tau tagger, respectively.
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Benchmark E2E inference throughputs on LPC and Perlmutter GPUs
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Event throughput per second

E/Gamma frame is cropped in
32x32 matrix around Egamma
seed, therefore larger throughput.

JetFrame is cropped in 125x125
matrix around jet seed.

Uncertainty of 0.5, 2, 3, and 3%
on E/Gamma, Quark/Gluon, Top
and Tau throughput
measurements, respectively
estimated by taking the average of
10 measurements.

End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon, Top, and
Tau taggers compared for Fermilab LPC GPU and NERSC Perlmutter GPU. The ML inference is

obtained on a single GPU and single CPU thread is used for input/output.
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