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Abstract

Deep learning techniques have been proven to provide excellent performance for a variety of high
energy physics applications, such as particle identification, event reconstruction and trigger operations.
Using low-level detector information in end-to-end deep learning approach allows to probe the poorly
explored regions for dark matter search. This note presents an implementation of the end-to-end deep
learning inference framework in CMS Software framework (CMSSW) for various physics objects
classifiers such as electron/photon, quark/gluon, top and tau. The inference is benchmarked on CPU
and GPUs.
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Abstract
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Deep learning techniques have been proven to provide excellent performance for a variety of 
high energy physics applications, such as particle identification, event reconstruction and 
trigger operations. Using low-level detector information in end-to-end deep learning 
approach allows to probe the poorly explored regions for dark matter search. This note 
presents an implementation of the end-to-end deep learning inference framework in CMS 
Software framework (CMSSW) for  various physics objects classifiers such as electron/photon, 
quark/gluon, top and tau. The inference is benchmarked on CPU and GPUs. 



Introduction : End-to-end deep learning

3

● Particle flow (PF) algorithm converts detector level information to physically intuitive objects 
however it comes with some information loss  due to reduction in size and complexity. 

● End-to-end deep learning algorithms can be trained from raw data before any particle processing performed. 

● An end-to-end deep learning approach has been developed for
→   Single particle reconstruction: electron, photon

           →   Jet Classification : quark, gluon, boosted top, tau
           →   Event reconstruction/classification: H→ AA→ 4γ

Electron/photon classification
obtained from CMS open data simulations 

for pp collisions at √S = 8 TeV [1]

Boosted top/QCD jet classification
obtained from CMS open data simulations 

for pp collisions at √S = 8 TeV [2]

Reconstruction of merged photons from H→ 
AA → 4γ process using end-to-end deep 

learning for pp collisions at √S = 13 TeV [3,4]

https://link.springer.com/article/10.1007/s41781-020-00038-8
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.052008
https://arxiv.org/abs/2204.12313
https://arxiv.org/abs/2209.06197


E2E inference within CMS software framework
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1. Reading detector input → Storing the extracted vectors or graphs to EDM ROOT files 
2. Extracting seed coordinates → Preparing the frames for inference 
3. Running the inference on Convolutional Neural Network (CNN) model → Storing the predictions

Pool 
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Event from Event Data Model (EDM) ROOT file 
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arrays (1D)
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level data 
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Data 

Producers

FrameProducer package:
EGFrameProducer : electrons and photon
JetFrameProducer : quarks, gluons, top jets and tau

E/Gamma tagger 
Quark/Gluon tagger

Top tagger 
Tau tagger

The E2E inference framework is developed around the Event Data Model (EDM) in C++ based CMS software framework 
(CMSSW), it consists of three packages, namely, DataFormats, FrameProducer and Taggers. 

CNN 
model



Specifications of CNN models
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Tagger No. of 
channels

Input tensor 
array size

Channels

E/Gamma 1 1×32×32 ECAL

Quark/Gluon 5 5×128×128 Track pT, d0, dz, ECAL & HCAL

Top 8 8×128×128 Track pT, d0, dz, BPIX layers, ECAL & HCAL

Tau 8 8×128×128 Track pT, d0, dz, BPIX layers, ECAL & HCAL

● SimpleNet CNN pytorch model converted to ONNX [5]. 
● The inference of untrained CNN model is obtained using the ONNX C++ API present 

in the CMSSW framework with GPU support. 

ECAL: electromagnetic calorimeter, Track pT: transverse momentum of the track, 
d0 (dz): distance of minimum approach between the track and the primary vertex in transverse (longitudinal) plane. 
HCAL: Hadronic calorimeter, BPIX layers: Barrel pixel layers. 

https://github.com/onnx/onnx


Specifications of CPU, GPU 
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Processor GPU type CPU @ GPU node HBM

Fermilab LPC GPU  Tesla P100 Intel Xeon Silver 4110 16-cores 12 GB

NERSC Perlmutter GPU Nvidia A100 AMD EPYC, 64-cores 40 GB

CPU in analysis node

Fermilab LPC CPU AMD EPYC Processor,  8 CPUs, each with 1 core



Details of inference studies
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● CPU/GPU reserved for the benchmark studies.
● Inference obtained for 1000 events with a single thread. 
● Latency and throughputs are obtained through FastTimeServices and Throughput services in 

CMS software framework.
● A warm up run was performed.
● First 300 events are dropped from the calculation to stabilize the results. 
● Measurement repeated 10 times.
● Used average of 10 measurements to benchmark latency and throughput.
● Uncertainty of 0.5-3% on measurements. 



End-to-end E/Gamma tagger inference time breakdown per event
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), EGFrames (Teal), 
Tagger time (orange), and input/output in blue for E/Gamma tagger per event in milliseconds.  Timings are obtained from 
photon gun sample with transverse momentum 50 GeV reconstructed for Run2 2018 ultra-legacy conditions without pileup 
for proton-proton collisions at √S = 13 TeV and  compared for Fermilab LPC CPU and GPU. Total time per event is reduced 
by 20% with GPU usage compared to CPU. 



End-to-end Quark/Gluon tagger inference time breakdown per event
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger 
time (orange), and input/output in blue for Quark/Gluon tagger per event in milliseconds.  Timings are obtained from the 
quantum chromodynamic (QCD) multijets events with pT  between 300-470 GeV, reconstructed for Run2 2018 ultra-legacy 
conditions without pileup for proton-proton collisions at √S = 13 TeV and  compared for Fermilab LPC CPU and GPU. Total 
time per event is reduced by 19% with GPU usage compared to CPU. 
*  Input/output time can be speedup by 5 times for future studies. 

^



End-to-end Top tagger inference time breakdown per event
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger 
time (orange), and input/output in blue for Top tagger per event in milliseconds.  Timings are obtained from the top-antitop pair 
production events, reconstructed for Run2 2018 ultra-legacy conditions without pileup for proton-proton collisions at √S = 13 
TeV and compared for Fermilab LPC CPU and GPU. Total time per event is reduced by 19% with GPU usage compared to CPU. 
Total time per event is reduced by 19% with GPU usage compared to CPU. 
 
*  Input/output time can be speedup by 5 times for future studies. 



End-to-end Tau tagger inference time breakdown per event
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Time spent by end-to-end inference framework modules such as, Event setup (gray), DetFrames (Pink), JetFrames (Teal), Tagger 
time (orange), and input/output in blue for Tau tagger per event in milliseconds.  Timings are obtained from the higgs decaying 
to tau anti-tau events, reconstructed for Run2 2018 ultra-legacy conditions without pileup for proton-proton collisions at √S = 13 
TeV and  compared for Fermilab LPC CPU and GPU. Total time per event is reduced by 6% with GPU usage compared to CPU. 

 *  Input/output time can be speedup by 5 times for future studies. 



Benchmark E2E inference throughputs on LPC GPU and CPU
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End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon, Top, and Tau taggers 
compared for Fermilab LPC GPU and CPU. The ML inference is obtained on single GPU and single CPU with single 
thread for input/output. 16%,18%,18%,11% increased throughput with GPU compared to CPU for E/Gamma, 
Quark/Gluon, Top and Tau tagger, respectively.

● E/Gamma frame is cropped in 
32x32  matrix around Egamma 
seed, therefore larger throughput. 

● JetFrame is cropped in 125x125 
matrix around jet seed.

● Uncertainty of 0.5, 2, 3, and 3% 
on E/Gamma, Quark/Gluon, Top 
and Tau throughput 
measurements, respectively 
estimated by taking the average of 
10 measurements.   



Benchmark E2E inference throughputs on LPC and Perlmutter GPUs
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● E/Gamma frame is cropped in 
32x32  matrix around Egamma 
seed, therefore larger throughput. 

● JetFrame is cropped in 125x125 
matrix around jet seed.

● Uncertainty of 0.5, 2, 3, and 3% 
on E/Gamma, Quark/Gluon, Top 
and Tau throughput 
measurements, respectively 
estimated by taking the average of 
10 measurements.   

End-to-end inference framework event throughput per second for E/Gamma, Quark/Gluon, Top, and 
Tau taggers compared for Fermilab LPC GPU and NERSC Perlmutter GPU. The ML inference is 
obtained on a single GPU and single CPU thread is used for input/output. 
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