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Abstract: We study energy correlations in states created by a heavy operator acting on

the vacuum in a conformal field theory. We argue that the energy correlations in such states

exhibit two characteristic regimes as functions of the angular separations between the calorime-

ters: power-like growth at small angles described by the light-ray OPE and slowly varying, or

“flat”, function at larger angles. The transition between the two regimes is controlled by the

scaling dimension of the heavy operator and the dynamics of the theory. We analyze this phe-

nomenon in detail in the planar N = 4 SYM theory both at weak and strong coupling. An

analogous transition was previously observed in QCD in the measurement of the angular energy

distribution of particles belonging to the same energetic jet. In that case it corresponds to the

transition from the light-ray OPE, perturbative regime described in terms of correlations be-

tween quarks and gluons to the flat, non-perturbative regime described in terms of correlations

between hadrons.
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1 Introduction and summary

The energy correlations are among the best studied observables both experimentally and the-

oretically [1]. They measure the flux of energy deposited in calorimeters located at different

points on the celestial sphere and carry information about the dynamics of the underlying the-

ory. A lot of activity has recently been devoted to studying the energy correlations in QCD

and in the maximally supersymmetric N = 4 SYM theory. The latter serves as a very useful

toy model that one can use to develop new techniques for computing these observables in QCD.

Moreover, it allows us to understand certain properties of the energy correlations that cannot

be explained within the conventional perturbative QCD approach.

As an example, consider the energy-energy correlation (EEC) measuring the angular distri-

bution of the energy of the particles that enter into two calorimeters separated by the relative

angle 0 ≤ θ ≤ π [2, 3]. At large total energy Q, the hadronic final states consist of collimated

beams of energetic particles, or jets. In the energy correlations, jets manifest themselves as

peaks located at small angles θ, as well as at finite θ corresponding to the angular separation

between the jets.

For a small angle θ, the EEC describes the correlation between particles belonging to the

same jet. The analysis of the experimental data shows [4] that it behaves differently at small

angles, depending on how θ compares with the non-perturbative parameter θ0 ≃ ΛQCD/Q given

by the ratio of the QCD hadronization scale and the total energy,1

Flat : EEC ∼ const, OPE : EEC ∼ 1/θ2−γ . (1.1)

In QCD, the energy correlations are flat for θ ≲ θ0 ≪ 1, and they exhibit a power-like

growth for θ0 ≲ θ ≲ 1. The scaling behavior EEC ∼ 1/θ2−γ can be derived from the light-ray

OPE applied to the energy calorimeters [5–9], and the exponent γ can be computed at weak

coupling as a power series in the QCD coupling constant.2

Such a change of behavior, from OPE to flat as θ decreases, corresponds to the transition

from the perturbative regime described in terms of correlations between quarks and gluons to

the non-perturbative regime described in terms of correlations between hadrons. To see it,

notice that the energy scale that characterizes the branching of quarks and gluons at small

1The flat region corresponds to energy correlations which are slowly-varying functions of the angle. The

OPE region corresponds to energy correlations which exhibit a simple power-like behavior controlled by the

operator product expansion (OPE) between the energy calorimeters.
2In CFT γ is the anomalous dimension of the spin-3, signature plus (continued from even spins) operator on

the stress-energy tensor Regge trajectory [5, 10, 11].



angles is determined by their relative transverse momenta Qθ. For small transverse momenta

Qθ = O(ΛQCD) the theory becomes strongly coupled. Conversely, the perturbative approach

is justified for θ ≫ ΛQCD/Q. The behavior EEC ∼ θ0 can be reproduced if one thinks about

the final state as consisting of a dense cloud of hadrons weakly interacting with one another.

Describing the transition to this regime requires control over the non-perturbative QCD.

A similar change of behavior of the energy-energy correlation at small angles also takes

place in the N = 4 SYM theory as the ’t Hooft coupling varies, but the underlying mechanism

is slightly different. This theory is conformal and it looks alike at short and large distances.

At weak coupling, the EEC in N = 4 SYM has the same power-like behavior at small angles

as in QCD. This behavior changes as one goes to the limit of strong ’t Hooft coupling constant

λ = g2YMNc ≫ 1. Increasing the value of the coupling constant, one enhances the production

of particles (gauge, gaugino and scalars) in the final state. At strong coupling, the final state

in N = 4 SYM consists of an infinite number of soft particles whose energy is distributed

homogeneously on the celestial sphere. As a consequence, for λ → ∞ the energy-energy

correlation does not depend on the angle, EEC(θ) = 1 + O(1/λ). As in the case of QCD,

the change of behavior of the EEC as a function of the angle is associated with the presence of

a large number of particles in the final state. To describe the transition in detail, one needs to

know the energy correlation in N = 4 SYM for an arbitrary ’t Hooft coupling, which is out of

reach at present.

In this paper, we point out that there exists another physical mechanism of transitioning be-

tween the two characteristic regimes (1.1). For simplicity we restrict our attention to conformal

field theory (CFT), but the basic mechanism should be applicable to theories with dimensionful

scales, such as generic four-dimensional gauge theories including QCD. Because the transition

is driven by the large number of particles produced in the final state, we can create such a final

state by exciting the vacuum with a “heavy” operator OH(x) carrying a large scaling dimension

∆H ≫ 1. Physical intuition suggests that for ∆H → ∞ the state |H(q)⟩ =
∫
d4x eiqxOH(x)|0⟩

should contain arbitrarily many soft particles which are largely uncorrelated. As a consequence,

for ∆H → ∞ the energy correlations are expected to be angle-independent, up to corrections

suppressed by a power of 1/∆H .

In order to formulate this property, it is convenient to introduce the energy flow operator

E(n) which measures the energy flux in the direction specified by a null vector nµ = (1, n⃗) with

n⃗2 = 1 [12–14]. In the rest frame of the source, for qµ = (Q, 0⃗), its expectation value in the

state |H(q)⟩ is determined by the total momentum, ⟨E(n)⟩H = Q/(4π). It does not depend on

the choice of the source operator and yields the total energy after integration over the celestial

sphere,
∫
d2n⃗ ⟨E(n)⟩H = Q.

The multi-point energy correlations are given by the expectation value of the product of

several flow operators, in the state |H(q)⟩ created by a local operator with scaling dimension

∆H ,

EE. . .E︸ ︷︷ ︸
k

C = ⟨E(n1) . . . E(nk)⟩H =

(
Q

4π

)k

⟨Ê(n1) . . . Ê(nk)⟩H , (1.2)
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where Ê(n) = E(n)/⟨E(n)⟩H is the normalized energy flow operator with ⟨Ê(n)⟩H = 1. To study

their behavior in the limit ∆H →∞, we find it convenient to apply the cumulant expansion

⟨Ê(n1) . . . Ê(nk)⟩H = 1 +
∑
i<j

⟨Ê(ni)Ê(nj)⟩c +
∑

i<j<m

⟨Ê(ni)Ê(nj)Ê(nm)⟩c + . . . , (1.3)

where ⟨. . .⟩c denotes the connected correlation. Here the terms ⟨Ê(ni)Ê(nj)⟩c depend on the

single relative angle between the ith and jth detectors; ⟨Ê(ni)Ê(nj)Ê(nm)⟩c depend on the three

relative angles between the ith, jth, and kth detectors, etc. Starting from four detectors, for k ≥
4, the expansion (1.3) involves non-linear terms, the simplest being ⟨Ê(ni)Ê(nj)⟩c⟨Ê(nm)Ê(nq)⟩c,
see e.g. [15] and Appendix A.

We conjecture that when the source becomes heavy, ∆H ≫ 1, each subsequent term in

(1.3) is further suppressed compared to the previous one, namely

⟨Ê(n1) . . . Ê(nk)⟩c = O

(
1

∆hk
H

)
, 0 < h2 < h3 < . . . , (1.4)

The values hk and the precise form of ⟨Ê(n1) . . . Ê(nk)⟩c depend on the theory and the physical

state in question. Notice that in (1.4), when taking ∆H →∞, we keep the angles between the

detectors, as well as the number of detectors, fixed.

The same property was observed before in strongly coupled gauge theories with gravity

duals [5]. As mentioned above, in this case the multi-particle final state is not generated by

considering a heavy source, but by the strongly coupled dynamics of the theory. The role of

∆H is played by the ’t Hooft coupling λ, and hk = k
2
. In contrast, we would like to emphasize

that the relation (1.4) holds in the limit of large ∆H for an arbitrary coupling (including the

free theory!).

In this paper we study the energy correlations (1.2) in planar N = 4 SYM. To define the

heavy state |H(q)⟩, we choose the operator OH(x) to be a half-BPS scalar operator of the form

OH(x) = tr[ϕK(x)]. Its scaling dimension is protected from quantum corrections, ∆H = K,

and the heavy state limit corresponds to K → ∞. Another advantage of this choice is that

the two-point correlation ⟨Ê(n1)Ê(n2)⟩c, defining the leading angular-dependent contribution

in (1.3), can be computed explicitly both at weak and strong coupling for arbitrary K ≥ 2.

This computation is done most efficiently by the method based on correlation functions and

Mellin transforms, developed in [5, 16–20].

Using the explicit expression for ⟨Ê(n1)Ê(n2)⟩c, we can verify that its dependence on the

relative angle cos θ = (n⃗1 n⃗2) is a function of the scaling dimension of the source K. We find

that for K = 2, the energy-energy correlation at weak coupling in N = 4 SYM has a shape

very similar to that in perturbative QCD. Namely, it is peaked around the end points, θ = 0

and θ = π, and is flat in between. This shape corresponds to a final state containing two jets,

one per each scalar field in the definition of the source operator tr[ϕ2(x)]. As K increases,

we observe that the peak at θ = π disappears and the function flattens out for 0 < θ < π.

Moreover, ⟨Ê(n1)Ê(n2)⟩c vanishes as 1/K in the limit K → ∞. To the lowest order in the
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coupling we find, up to corrections suppressed by powers of λ and 1/K,

⟨Ê(n1)Ê(n2)⟩c =
λ

8π2K

[
3

z+
+ 2Li2(1− z)− 6 log z − 2ζ2 −

13

2
+

5

2
δ(z)

]
+ . . . , (1.5)

where z = (1 − (n⃗1n⃗2))/2 = sin2(θ/2) in the rest frame of the source and 1/z+ is the plus-

distribution. The result (1.5) is in agreement with our expectation (1.4) for ∆H = K and

hk = k − 1.

The relation (1.5) holds at weak coupling for K ≫ 1. The situation changes at strong

coupling for λ ≫ K ≫ 1. In this limit, we find that the energy-energy correlation does not

depend on K and it vanishes as 1/λ,

⟨Ê(n1)Ê(n2)⟩c =
4π2

λ
(1− 6z(1− z)) . (1.6)

The relations (1.5) and (1.6) illustrate two different mechanisms of producing slowly-varying

energy distributions. At weak coupling, the leading correction is controlled by the scaling

dimension of the source. At strong coupling, it comes from the evolution of the state and is

controlled by the coupling constant.

Below we show that at large K and finite coupling constant the energy-energy correlation

in N = 4 SYM has the following behaviour at small angles z = sin2(θ/2)≪ 1

⟨Ê(n1)Ê(n2)⟩c ∼
C

K
θ−2+γ , (1.7)

where C and γ depend on the ’t Hooft coupling. In the case of QCD we expect that the EEC

should have the same behavior in the OPE region (1.1), for θ > θ0. An important difference

compared to N = 4 SYM is that the “kinematical” large parameter K in (1.7) is replaced in

QCD by a dynamical one defined by the multiplicity of the produced hadrons within a jet.

Above we focused our discussion on energy correlations in QCD and its conformal cousin

N = 4 SYM. It is interesting to ask what happens for event shapes, or matrix elements of

light-ray operators, in a general interacting CFT when the source becomes heavy.3 We present

some evidence that the clustering structure (1.4) is valid for energy correlations in any CFT.

Let us briefly explain the reason for that. According to the state-operator correspondence, a

local operator OH(x) with scaling dimension ∆H can be associated with an energy eigenstate

Ecyl = ∆H/R in a CFT defined on a cylinder R × Sd−1, where R is the radius of the sphere.

A heavy operator with large scaling dimension ∆H ≫ 1 corresponds to a highly excited energy

eigenstate. In an interacting theory it is expected to look thermal when simple enough observ-

ables are considered [22] (the statement known as the Eigenstate Thermalization Hypothesis).

The clustering structure of energy correlations (1.4) in a heavy state is then related to the clus-

tering of correlation functions of stress-energy tensors in the thermal state as the separation

between the operators becomes large [23].

3In an upcoming work [21], event shapes in the large charge limit of CFTs with global U(1) symmetry that

admit a superfluid description are studied. The results of [21] are compatible with the proposal of the present

paper.
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The paper is organized as follows. In Section 2 we compute the multi-point energy cor-

relations ⟨E(n1) . . . E(nk)⟩H in a free theory and show that they satisfy (1.4) in the limit of

large scaling dimension of the source. In Section 3 we consider the energy-energy correlation

⟨E(n1)E(n2)⟩H in planar N = 4 SYM at weak coupling. We choose the source operator to be

the simplest half-BPS operator built out of K scalar fields and examine the dependence of the

energy correlation on K at the leading order in the coupling constant (Born level). In Section 4

we compute the one- and two-loop perturbative corrections to the energy-energy correlation for

arbitrary K and show that they verify the relation (1.4) at large K. In Section 5 we present

an approach that allows us to compute the O(1/K) correction to (1.4) directly, without going

through the details at finite K. In Section 6 we obtain the contact terms necessary to describe

the singular behavior of the energy correlations at the end points, for finite K and for K →∞.

In Section 7 we compute the same observable at strong coupling including the first stringy

correction. In Section 8 we present arguments in favor of (1.4) in a generic interacting CFT.

The paper contains several appendices and ancillary files.

2 Energy correlations in the free scalar theory

The energy correlations for a heavy source are expected to have the general form (1.4). In this

section, we show that the relations (1.4) are indeed satisfied in the free scalar theory.

We consider a free massless scalar field ϕ(x) and choose the source operator to be OK(x) =

ϕK(x). It creates the state |H(q)⟩ =
∫
d4x eiqxOK(x)|0⟩ containing K massless scalar particles

with the total momentum qµ (with q0 > 0 and q2 > 0).

Figure 1. Multi-point energy correlation ⟨E(n1) . . . E(nk)⟩ in the final state created by a heavy source.

The differential cross-section describing the probability to find K particles in a final state
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with on-shell momenta pi (with p2i = 0) is given by

dσK = (2π)4δ(4)(q −
K∑
i=1

pi)
K∏

n=1

dLIPS(pn) , (2.1)

where dLIPS(p) is the Lorentz invariant phase space measure of a particle with momentum p,

dLIPS(p) =
d4p

(2π)4
2πδ+(p

2) , (2.2)

with δ+(p
2) = δ(p2)θ(p0). The total cross-section is given by

σK(q) =

∫
dσK =

∫
d4x eiqx

K∏
n=1

∫
dLIPS(pn) e

−ipnx . (2.3)

In this representation, the phase space integral factorizes into a product of two-point Wightman

functions

D(x) = ⟨ϕ(x)ϕ̄(0)⟩ =
∫

dLIPS(p) e−ipx =
1

4π2(−x2 + i0x0)
, (2.4)

where the ‘+i0x0’ prescription ensures that the Fourier transform is different from zero for

p0 > 0. The calculation shows that

σK(q) =

∫
d4x eiqx[D(x)]K = θ(q0)θ(q2)

2π3(q2/4)K−2

(2π)2KΓ(K)Γ(K − 1)
. (2.5)

Notice that σK(q) grows as a power of q2 with the exponent being a linear function of the

weight (or scaling dimension) K of the operator OK .

Let us now examine the k−point energy correlation in the K−particle final state described
by the differential distribution (2.1). It is given by

⟨E(n1) . . . E(nk)⟩ =
K! /(K − k)!

σK(q)

∫
dσK wn1(p1) . . . wnk

(pk) , (2.6)

where the weight factor wn(p) selects the particle in the final state moving along the null

direction nµ = (1, n⃗) (with n⃗2 = 1),

wn(p) = p0δ(2)
(

p⃗

p0
− n⃗

)
. (2.7)

The combinatorial factor K! /(K − k)! in the numerator of (2.6) is due to the Bose symmetry

of the scalar particles. It counts the total number of events in which k out of K particles enter

the calorimeters. The diagrammatic representation of the relation (2.6) is shown in Figure 1.

Substituting (2.1) into (2.6) we can express ⟨E(n1) . . . E(nk)⟩ as an integral over the phase

space of the K particles. The integral over the undetected (K − k) particles gives rise to the
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total cross-section σK−k(q̂) where q̂µ = qµ −
∑k

i=1 p
µ
i is the total momentum of these particles.

Then, ⟨E(n1) . . . E(nk)⟩ is given by the integral over the phase space of the detected k particles,

⟨E(n1) . . . E(nk)⟩ =
K! /(K − k)!

σK(q)

∫
dσk wn1(p1) . . . wnk

(pk)σK−k(q̂) . (2.8)

Using (2.7), this expression can be written as a k−fold integral over the energies wi = p0i of the

detected particles,

⟨E(n1) . . . E(nk)⟩ =
cK
cK−k

∫ ∞

0

k∏
i=1

dωi ω
2
i

2q2(2π)3
θ(q̂0)θ(q̂2)(q̂2/q2)K−k−2 , (2.9)

where q̂µ = qµ −
∑k

i=1 ωin
µ
i and cK = (4π)2KK! (K − 1)! (K − 2)! .

The integral (2.9) involves the ratio of the invariant mass of the undetected particles and

the total energy,

q̂2

q2
= 1−

k∑
i=1

2(qni)

q2
ωi + 2

∑
i<j

(ninj)

q2
ωiωj . (2.10)

Notice that q̂2/q2 < 1 and, therefore, for large K the dominant contribution to the integral (2.9)

comes from the integration over the region q̂2/q2 = 1 +O(1/K), or equivalently ωi = O(1/K).

Changing variables as

ωi =
q2

2(K − k − 2)(qni)
εi , (2.11)

we find in the limit K →∞ with k held fixed

(q̂2/q2)K−k−2 = e−
∑

i εi

[
1− 1

K

(∑
i<j

εiεj(1− zij) +
1

2

∑
i

ε2i

)
+O(1/K2)

]
, (2.12)

where zij are dimensionless variables

zij =
q2(ninj)

2(qni)(qnj)
. (2.13)

In the rest frame of the source, for qµ = (Q, 0⃗) and ni = (1, n⃗i), these variables are related to

the relative angles between the detectors on the sphere, zij = (1− cos θij)/2.

Combining together (2.9) and (2.12) we find that the energy correlations in the large K

limit take a remarkably simple form,

⟨E(n1) . . . E(nk)⟩ =

(
k∏

m=1

(q2)2

2(qnm)3

)∫ ∞

0

k∏
i=1

dεi ε
2
i

4π
e−εi

×

[
1− 1

K

(∑
i<j

εiεj(1− zij) +
1

2

∑
i

ε2i −
3

2
k(k + 3)

)
+O(1/K2)

]
. (2.14)
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The integral in this relation describes an ensemble of k noninteracting particles whose energies

ω = εQ/(2K) are distributed according to the law dP (ε) = dε ε2e−ε. The first term in the

brackets in (2.14) is independent of the angular variables zij defined in (2.13). It describes

a homogeneous distribution of the energy on the celestial sphere. The angular dependence

comes from the second term, which is suppressed by a factor of 1/K and involves a quadratic

polynomial in the energy variables εi. To higher orders in 1/K, the coefficient of 1/Kp is given

by a polynomial in εi of degree 2p. As we show below, it contributes to the connected part of

the p−point correlations in (1.3).

The calculation of the integral in (2.14) yields

⟨E(n1) . . . E(nk)⟩ =

(
k∏

i=1

(q2)2

4π(qni)3

)[
1 +

1

K

( ∑
1≤i<j≤k

9zij − 3k(k − 1)

)
+O(1/K2)

]
. (2.15)

Switching to the normalized operators Ê(ni) on the left-hand side of (2.15), the term of order

1/K on the right-hand side is identified with the sum of the two-point connected correlations

in (1.3),

⟨Ê(ni)Ê(nj)⟩c =
1

K
(9zij − 6) +O(1/K2) . (2.16)

It is straightforward to compute the subleading terms in (2.15). Bringing them to the form

(1.3), we can determine the higher-point connected correlations, e.g.

⟨Ê(ni)Ê(nj)Ê(nm)⟩c =
1

K2

[
108(zijzim + zijzjm + zimzjm)

− 126(zij + zim + zjm) + 114
]
+O(1/K3) . (2.17)

The relations (2.16) and (2.17) take the expected form (1.4) with ∆H = K and hk = k − 1.

The relations (2.15), (2.16) and (2.17) are valid for ni ̸= nj and they do not take into

account the contribution of contact terms localized at ni = nj. The presence of such terms can

be detected as follows. By definition, ⟨E(n1) . . . E(nk)⟩ measures the energy flux on the celestial

sphere in the directions specified by the unit vectors n⃗1, . . . , n⃗k. The integral of E(n)nµ over

the unit sphere n⃗2 = 1 yields the total momentum of the final state. As a consequence, the

energy correlation has to satisfy the sum rule∫
d2nk n

µ
k ⟨E(n1) . . . E(nk)⟩ = qµ⟨E(n1) . . . E(nk−1)⟩ . (2.18)

One can check that the leading O(K0) term in (2.15) verifies this relation but this is not the case

for the O(1/K) term. The reason for this is that the integral in (2.18) receives contributions

from contact terms localized at coincident directions ni.

A contact term proportional to the product of L delta functions on the sphere, δ(n1, n2) . . . δ(n1, nL+1),

comes with the combinatorial factor
(
K
k

)
/
(

K
k−L

)
∼ 1/KL. To the leading order in 1/K, only
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the contact terms with L = 1 contribute. They are proportional to
∑

1≤i<j≤k δ
(2)(n⃗i, n⃗j). The

sum rule (2.18) allows us to fix their contribution to the energy correlation (2.15).

For instance, the contact term for the two-point connected correlation (2.16) is given by
3
2K

δ(zij). Adding it to (2.16), one can verify that the two-point correlation ⟨E(n1)E(n2)⟩ satisfies
the sum rule (2.18). A simple corollary of the sum rule (2.18) for the three-point energy

correlation is that ∫
d2nm ϵµνρσq

µnν
i n

ρ
jn

σ
m ⟨E(ni)E(nj)E(nm)⟩ = 0 . (2.19)

In distinction to (2.18), it is not sensitive to contact terms. We have checked that ⟨Ê(ni)Ê(nj)Ê(nm)⟩c
in (2.17) satisfies (2.19).

We conclude this section by reiterating our main conjecture (1.4): The connected correla-

tions in the free theory have the expected heavy weight behavior with ∆H = K and hk = k− 1

(with k = 2, 3, . . . ).

3 Energy correlations in N = 4 SYM

In the previous section, we demonstrated that the energy correlation in a final state consisting

of a large number K of free scalar particles is given by simple expressions like (2.16) and (2.17).

The question arises, how does the interaction between the particles in the final state affect this

result?

3.1 Energy-energy correlation

In order to address this question, we consider the energy correlations in a particular four-

dimensional gauge theory – the maximally supersymmetric N = 4 Yang-Mills theory with

gauge group SU(Nc). For the sake of simplicity we shall concentrate on the two-point correlation

⟨E(n1)E(n2)⟩. To create a final state with a large number of particles produced, we excite the

vacuum by acting on it with a half-BPS operator of the form

OK(x) = tr[ϕK(x)] , ϕ(x) =
6∑

I=1

Y IXI . (3.1)

It is built of six real scalar fields XI with Y I being an auxiliary null complex vector of SO(6)

defining the orientation of OK(x) in the isotopic R−space. This operator has the R−charge of
the [0, K, 0] representation of SO(6) ∼ SU(4), as well as conformal weight (or scaling dimension)

K, the latter being protected from quantum corrections by N = 4 superconformal symmetry.

It creates K scalar particles out of the vacuum. Going to the limit K →∞, we encounter the

final state discussed in the previous section.

The two-point correlation function of the operators (3.1) is protected from quantum cor-

rections and is given by the product of K free scalar propagators (2.4) multiplied by an SU(Nc)
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color factor. In the planar limit we have

⟨OK(x)ŌK(0)⟩ =
(Y Ȳ )K

(4π2)K
KNK

c

(−x2 + i0x0)K
, (3.2)

where (Y Ȳ ) =
∑6

I=1 Y
I(Y I)∗. Notice that the operators are not time ordered. To simplify the

formulae, we put (Y Ȳ ) = 1 in what follows. Then, the total cross-section for producing an

arbitrary number of particles in the final state is given by (see (A.4) in [16])

σtot(q) =

∫
d4x eiqx⟨OK(x)ŌK(0)⟩ = KNK

c σK(q) , (3.3)

where σK(q) is defined in (2.5). Like (3.2), it is protected from quantum corrections.

The relation (3.3) expresses the total cross-section as the Fourier integral of the two-point

Wightman correlation function (3.2). It is equivalent to (2.3) after inserting the sum over the

final states between the operators. In a similar manner, the energy correlations (2.6) also admit

a representation in terms of correlation functions involving two scalar operators (3.2), as well

as the energy flow operators E(ni) (for the definition see Appendix A). The latter play the role

of calorimeters detecting the particles in the final state.

For instance, the two-point energy correlation is given by

⟨E(n1)E(n2)⟩K = σ−1
tot(q)

∫
d4x eiqx⟨OK(x)E(n1)E(n2)ŌK(0)⟩ . (3.4)

Lorentz symmetry allows us to fix the form of the correlation,

⟨E(n1)E(n2)⟩K =
(q2)4

2(qn1)3(qn2)3
FK(z)

(4π)2
, (3.5)

up to an arbitrary function FK(z) of the Lorentz covariant angular separation z ≡ z12 between

the detectors (recall (2.13)),

z =
q2(n1n2)

2(qn1)(qn2)
=

1

2
(1− (n⃗1n⃗2)) =

1

2
(1− cos θ12) . (3.6)

Here θ12 is the angle between the unit vectors n⃗1 and n⃗2 in the rest frame of the source,

qµ = (Q, 0⃗). The kinematical factor on the right-hand side of (3.5) has Lorentz weight (−3)
under the independent rescaling of the detector vectors nµ

i , matching the corresponding weight

of the energy operators E(ni) on the left-hand side (see (A.1)–(A.3)). The factor (q2)4 in the

numerator corresponds to the scaling dimension (+1) of E(ni).

For K = 2 the energy correlation (3.5) has been studied both at weak and strong coupling

[5, 16–20, 24–27]. Our goal in this paper is to extend these results to K ≥ 3 and to understand

the properties of the energy correlation in the limit of large K. We show below that at large

K the function FK(z) satisfies

FK(z) = 2 +O(1/K) . (3.7)
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Substituting this relation in (3.5) we reproduce (1.4) for ∆H = K and h2 = 1.

In distinction with the total cross-section, the function FK(z) is not protected in N = 4

SYM and depends on the coupling constant g2YM, as well as on the rank of the gauge group Nc.

In the planar limit, for Nc →∞ with the ’t Hooft coupling constant λ = g2YMNc held fixed, it

admits a weak coupling expansion,

FK(z) = F (0)
K (z) +

∞∑
ℓ=1

(
λ

4π2

)ℓ

F (ℓ)
K (z) , (3.8)

where F (0)
K (z) refers to the Born approximation and F (ℓ)

K (z) with ℓ ≥ 1 denotes the ℓ−loop
perturbative correction.

In the Born approximation, the energy correlation (3.5) is given by (2.9) evaluated for

k = 2. Matching (3.5) with (2.15) we find that in the limit of large K the scaling function

F (0)
K (z) is given by

F (0)
K (z) = 2 +

1

K
(18z − 12 + 3δ(z)) +O(1/K2) . (3.9)

As was explained in the previous section, this relation describes an ensemble of K non-

interacting particles whose energies are distributed according to the law (2.14). Turning on

the interaction between these particles, one generates additional correlations of their energies.

They are described by the functions F (ℓ)
K (z) in (3.8) which we compute below for ℓ = 1, 2. We

will show that at large K the loop corrections scale as F (ℓ)
K (z) ∼ 1/K for ℓ ≥ 1.

3.2 Sum rules

The function F(z) satisfies nontrivial conditions that follow from the sum rules (2.18).

We recall that the integral of the energy flow operator over the celestial sphere yields the

total energy-momentum of the final state,
∫
d2nnµ⟨E(n)⟩K = qµ. Combined with (2.18), this

yields the following relations in the rest frame of the source,∫
d2n1

∫
d2n2⟨E(n1)E(n2)⟩K = Q2 ,∫

d2n1

∫
d2n2 (1− (n⃗1n⃗2))⟨E(n1)E(n2)⟩K = Q2 . (3.10)

Substituting the general expression (3.5) of ⟨E(n1)E(n2)⟩K and using (3.6), we find that FK(z)

has to satisfy the sum rules [6–8]∫ 1

0

dz zFK(z) =

∫ 1

0

dz (1− z)FK(z) = 1 . (3.11)

These relations hold for an arbitrary coupling constant λ.

Replacing FK(z) with its perturbative expansion (3.8) and matching the coefficients of the

powers of λ on both sides of (3.11) we find that the Born approximation F (0)
K (z) alone produces
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the required right-hand side of (3.11),∫ 1

0

dz zF (0)
K (z) =

∫ 1

0

dz (1− z)F (0)
K (z) = 1 . (3.12)

The sum rules for the loop corrections F (ℓ)
K (z) are∫ 1

0

dz zF (ℓ)
K (z) =

∫ 1

0

dz (1− z)F (ℓ)
K (z) = 0 , ℓ ≥ 1 . (3.13)

It is straightforward to verify that (3.9) satisfies the sum rules (3.12). Notice that the function

accompanying 1/K in (3.9) gives zero contribution to the sum rules (3.12).

3.3 Born contribution

In this subsection, we compute the Born contribution to (3.8) at finite K and study the tran-

sition from K = 2 to the large K behavior (3.9).

In the previous section, we used the conventional amplitude approach to obtain the integral

representation (2.9) for this contribution. Let us show how the same result follows from the

representation (3.4) of the energy correlations in terms of correlation functions.

The energy flow operator E(n) is given by an integral involving the stress-energy tensor of

N = 4 SYM, see (A.1) in Appendix A. The latter is bilinear in the scalar fields XI constituting

the source operators (3.1). As a consequence, the calculation of the four-point correlation

function on the right-hand side of (3.4) in the Born approximation reduces to performing Wick

contractions between the K scalar fields in the operators OK(x) (source) and ŌK(0) (sink) and

the two pairs of scalar fields in the energy flow operators E(n1) and E(n2).
4

In this way, in the planar limit the correlation function ⟨OK(x)E(n1)E(n2)ŌK(0)⟩(0) can be

factorized into a product of (K − 2) propagators connecting the source and sink and the same

correlation function evaluated for K = 2,

⟨OK(x)E(n1)E(n2)ŌK(0)⟩(0) =
1

4
K2(K − 1)[NcD(x)]K−2⟨O2(x)E(n1)E(n2)Ō2(0)⟩(0) , (3.14)

where the scalar propagator D(x) is given by (2.4) and the superscript ‘(0)’ indicates the

Born approximation. The relation (3.14) is represented diagrammatically in Figure 2. The

combinatorial K−dependent factor in (3.14) counts the number of contributing diagrams.

Substituting (3.14) into (3.4) we find that ⟨E(n1)E(n2)⟩(0)K is the convolution of the Fourier

transform of DK−2(x) and ⟨E(n1)E(n2)⟩(0)K=2. The former is given by the function σK−2 defined

in (2.5) and the latter is given in (3.22) below. This leads to

⟨E(n1)E(n2)⟩(0)K =
K2(K − 1)

(4π)2σtot(q)
NK

c

∫ ∞

0

dτ1dτ2 τ
2
1 τ

2
2 σK−2(q − n1τ1 − n2τ2) , (3.15)

4A simple example of such a calculation is shown in (A.14) in Appendix A.
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Figure 2. The correlation function (3.14) in the Born approximation and in the planar limit. Black

and grey blobs depict scalar operators and energy detectors, respectively. A thin line represents

a scalar propagator, a thick line represents a collection of scalar propagators. The total number of

scalar propagators attached to the black blobs equalsK. In the planar limit, the contributing diagrams

have the topology of a sphere with four marked points. The two types of diagrams shown on the left

and right panels differ by the number of lines separating the two energy detectors (no line on the left,

at least one line on the right).

where n1τ1 and n2τ2 are the momenta of the particles entering the calorimeters. Replacing

σK−2 with its expression (2.5) and changing the integration variables as τi = ωiq
2/(2(qni)), we

find that (3.15) takes the expected form (3.5) with

F (0)
K (z) =

1

2
(K − 3)(K − 2)2(K − 1)2K

×
∫ 1

0

dω1dω2 ω
2
1ω

2
2 (1− ω1 − ω2 + zω1ω2)

K−4 , (3.16)

where the integration is restricted to the region 1− ω1 − ω2 + zω1ω2 ≥ 0.

The result can be expressed in terms of a hypergeometric function,

F (0)
K (z) =

2(K − 2)(K − 1)

(K + 1)(K + 2)
2F1 (3, 3;K + 3|z) . (3.17)

This relation is valid for 0 < z < 1. The values of z = 0 and z = 1 correspond to the situation

where the two detectors are located, respectively, atop of each other or antipodal to each other.

In general, FK(z) contains contact terms proportional to δ(z) and δ(1 − z). We discuss them

below in Section 3.4.

For specific values of K the relation (3.17) simplifies, e.g. 5

F (0)
K=2(z) = 0 ,

F (0)
K=3(z) =

18(z − 2)

z4
− 6(z2 − 6z + 6)

log(1− z)

z5
,

F (0)
K=4(z) =

8 (10z2 − 39z + 30)

z5
+

24(1− z) (z2 − 8z + 10) log(1− z)

z6
, (3.18)

5For K = 2 the function F (0)
K=2(z) is given by a sum of contact terms, see (3.22).
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Figure 3. Born approximation of the energy-energy correlation F (0)
K (z) for several values of the source

weight K as a function of the angular separation z = (1 − cos θ12)/2, see (3.17). For finite K, it is

peaked around the end-point z = 1. It flattens out as K increases and approaches the constant value

2 for K →∞ (the curve labeled ‘asympt’).

where 0 < z < 1.

The function F (0)
K (z) is plotted in Figure 3 for several values of K. For z → 0 it approaches

a finite value,

F (0)
K (z) =

2(K − 2)(K − 1)

(K + 1)(K + 2)
+O(z) . (3.19)

For z → 1 it grows logarithmically for K = 3 and stays finite for K ≥ 4,

F (0)
K=3(z) = −6 log(1− z)− 18 +O(1− z) ,

F (0)
K≥4(z) =

2K

K − 3
+O(1− z) . (3.20)

In the large K limit we get instead

F (0)
K (z)

K≫1
= 2 +

6

K
(3z − 2) +O(1/K2) , (3.21)

in agreement with (3.9). We repeat that the z−dependence only appears at the level of the

O(1/K) corrections.

We observe that the function F (0)
K (z) flattens out as K increases and becomes constant

for K → ∞. This property is in agreement with our expectation (1.4) that the correlations

between the particles in the final state are suppressed at large K.
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3.4 Contact terms for K = 2

As was mentioned above, the relation (3.17) is valid for 0 < z < 1. One of the reasons for this

is that F (0)
K (z) is expected to contain contact terms localized at z = 0 and z = 1. The easiest

way to reveal their presence is to apply the sum rules (3.12).

For K = 2 the naive answer F (0)
K=2(z) = 0 in (3.18) does not satisfy the sum rules (3.12). In

reality, in this case the final state consists of two particles that move back-to-back in the rest

frame of the source. As a consequence, the energy-energy correlation is different from zero only

if the two calorimeters are atop of each other on the celestial sphere (z = 0) or antipodal (z = 1).

This means that it is given by the sum of two contact terms, F (0)
K=2(z) = C1δ(z) + C2δ(1− z),

with coefficients that can be determined from the sum rules (3.12),

F (0)
K=2(z) = δ(z) + δ(1− z) . (3.22)

Substituting this relation into (3.5), one reproduces the known expression for the energy cor-

relation ⟨E(n1)E(n2)⟩K=2 in the Born approximation.

For K ≥ 3 we use (3.17) to get∫ 1−ϵ

ϵ

dz zF (0)
K (z) = 1 +O(ϵ) ,∫ 1−ϵ

ϵ

dz (1− z)F (0)
K (z) = 1− 3

K + 1
+O(ϵ) , (3.23)

where a small parameter ϵ > 0 was introduced to exclude the contribution of the end-points

z = 0 and z = 1. In close analogy with the case K = 2, the latter is expected to be given by

a sum of contact terms δ(z) and δ(1 − z). Comparing (3.23) with (3.12), we observe that the

contact terms should contribute zero to the first sum rule in (3.12) and 3/(K+1) to the second

sum rule. Put together, these conditions fix the coefficients of the contact terms.

The resulting expression for the function F (0)
K (z) is

F (0)
K≥3(z) =

2(K − 1)(K − 2)

(K + 1)(K + 2)
2F1 (3, 3; 3 +K|z) + 3δ(z)

K + 1
. (3.24)

As compared with (3.17), it is valid for 0 ≤ z ≤ 1. At large K the contact term in (3.24) agrees

with (3.9). Combined with (3.5), the relation (3.24) yields the expression for the energy-energy

correlation in planar N = 4 SYM, to the lowest order in the coupling constant.

For finite K, the function (3.24) is peaked around the end-point z = 1 indicating that,

like in the two-jet final state, the most of the energy in the final state is deposited at the

calorimeters located at two antipodal points on the celestial sphere. Going to the limit K →∞
we find that, in agreement with (1.4), the energy-energy correlation ceases to depend on the

angular separation of the calorimeters. This means that the jets disappear and the energy is

homogeneously distributed on the celestial sphere.
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Figure 4. Diagrammatic representation of the relation (4.1). The heavy operator creates K particles.

Two detected particles interact with (ℓ− 1) particles, the remaining (K − ℓ− 1) undetected particles

propagate freely from the source to the sink.

4 Energy correlations at weak coupling

In this section, we study the corrections to the energy correlation (3.5) in the planar N = 4

SYM theory due to the interaction between the particles in the final state. At weak coupling,

the Feynman diagrams contributing to (3.5) can be obtained from those shown in Figure 2 by

adding interaction vertices. In the planar limit, the interaction can only occur between adjacent

scalar particles. Depending on the choice of these particles we can distinguish three cases of

interaction between: (i) undetected particles, (ii) one detected particle and undetected ones, and

(iii) two detected and undetected particles. The first and the second class of diagrams constitute

the total cross-section (2.5) and the single energy correlation ⟨E(n)⟩. Because both quantities

are protected from quantum corrections in N = 4 SYM, the above mentioned diagrams do not

contribute to the unprotected energy correlations (3.5). We are therefore left with the Feynman

diagrams in which two detected particles interact among themselves and with other undetected

particles. To the first few orders in the ’t Hooft coupling constant, examples of such diagrams

are shown in Figure 4.

As follows from the form of these diagrams, at order O(λℓ) the interaction can affect (ℓ+1)

particles at most. At order O(λ) the two detected particles can only interact with each other.

At order O(λ2) there is an additional possibility for them to interact with one undetected

particle (spectator). At order O(λℓ) the number of spectators cannot exceed (ℓ− 1).

For ℓ < K the number of interacting particles ℓ + 1 is smaller or equal to the num-

ber K of particles produced (this is equivalent to the absence of wrapping corrections to

the energy correlation (3.4)). The remaining (K − ℓ − 1) particles propagate freely from the

source to the sink. In close analogy with (3.14), their contribution to the correlation function
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⟨OK(x)E(n1)E(n2)ŌK(0)⟩ is just a power of the free scalar propagator,

⟨OK(x)E(n1)E(n2)ŌK(0)⟩(ℓ) =
K2

(ℓ+ 1)2
[NcD(x)]K−ℓ−1⟨Oℓ+1(x)E(n1)E(n2)Ōℓ+1(0)⟩(ℓ). (4.1)

The combinatorial factor on the right-hand side gives the ratio of the number of Wick contrac-

tions of scalars in the two correlators in the planar limit. We would like to emphasize that the

relation (4.1) is only valid for ℓ ≤ K − 1. In particular, in the limit K → ∞ it holds to any

given order of the weak coupling expansion.

At one and two loops the relation (4.1) reads

⟨OK(x)E(n1)E(n2)ŌK(0)⟩(1) =
K2

4
[NcD(x)]K−2⟨O2(x)E(n1)E(n2)Ō2(0)⟩(1) , (4.2)

⟨OK(x)E(n1)E(n2)ŌK(0)⟩(2) =
K2

9
[NcD(x)]K−3⟨O3(x)E(n1)E(n2)Ō3(0)⟩(2) . (4.3)

Notice that the first relation holds for K ≥ 2 and the second one for K ≥ 3.

Comparing the last two relations with (3.14) we observe an important difference. At large

K the expression on the right-hand side of (4.2) and (4.3) is suppressed by a factor of 1/K

as compared with (3.14). The reason for this is that the leading O(K3) contribution to the

Born level result (3.14) comes from the diagrams shown in Figure 2 on the right panel. These

diagrams do not contribute to (4.1) in the planar limit as explained above. In application to

the energy correlation (3.4), (3.5) this implies that the loop corrections to the scaling function

FK(z) are suppressed by a factor of 1/K as compared to the Born contribution (3.9).

4.1 Recurrence relation for the perturbative corrections

The relations (4.2) and (4.3) can be used to compute the correction to the energy correlation

(3.8) at one and two loops. Let us introduce the auxiliary functions

G
(0
K(q) =

∫
d4x eiqx[D(x)]K−2N−2

c ⟨O2(x)E(n1)E(n2)Ō2(0)⟩(0) ,

G
(ℓ)
K (q) =

∫
d4x eiqx[D(x)]K−ℓ−1N−ℓ−1

c ⟨Oℓ+1(x)E(n1)E(n2)Ōℓ+1(0)⟩(ℓ) , (4.4)

where ℓ = 1, 2 and the scalar propagator D(x) is given by (2.4). They satisfy the differential

equation

2q G
(ℓ)
K (q) = G

(ℓ)
K−1(q) . (4.5)

Below we show that it yields a recurrence relation for the functions F (ℓ)
K (z) (for ℓ fixed) that

allows us to efficiently determine the loop corrections to the energy correlation (3.8).

We combine equations (3.14) and (4.1) together with (3.4) and (3.5) to get

F (0)
K (z) = π2(K − 1)K

(n1n2)
3

z3
G

(0)
K (q)

q2σK(q2)
,

F (ℓ)
K (z) = 4π2K

(n1n2)
3

(ℓ+ 1)2z3
G

(ℓ)
K (q)

q2σK(q2)
, (4.6)
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where σK(q
2) is given by (2.5). Next, the relation (4.5) leads to differential equations for the

functions F (0)
K (z) and F (ℓ)

K (z),

[D−K(K − 1)]F (0)
K (z) +K(K − 1)F (0)

K−1(z) = 0 , (4.7)

[D−K(K − 1)]F (ℓ)
K (z) +K(K − 2)F (ℓ)

K−1(z) = 0 , (4.8)

where ℓ ≥ 1 and D is the second-order differential operator

D =
1

z

d

dz
(1− z)

d

dz
z3 . (4.9)

The relations (4.7) and (4.8) are valid for K ≥ 3 and K ≥ 2 + ℓ, respectively.

One can check that the Born approximation result (3.17) verifies (4.7). In fact, we could

have obtained (3.17) (up to an overall normalization) by solving the recurrence relation (4.7)

starting from F (0)
K=2(z) = 0 (up to contact terms) and requiring F (0)

K (z) to be regular as z → 0.

4.2 One-loop correction

In this subsection we show that the recurrence relation (4.8) can be effectively used to compute

the energy correlation function F (1)
K (z) at one loop. The starting point of the recurrence is the

one-loop expression for this function at K = 2 [17] 6

F (1)
K=2(z) = −

log(1− z)

z2(1− z)
, (4.10)

that is valid for 0 < z < 1.

Boundary conditions

The solutions to the second-order differential equations (4.8) are defined up to the zero modes

of the operator (D−K(K − 1)),

F (1)
K → F

(1)
K + c1 z

K−3
2F1

(
K,K

2K

∣∣∣z)+ c2 z
−2−K

2F1

(
1−K, 1−K

2− 2K

∣∣∣z) . (4.11)

This freedom can be fixed by imposing boundary conditions. Notice that the last term on the

right-hand side of (4.11) grows as z−K−3 for z → 0, thus producing a divergent contribution to

the sum rules (3.13). To avoid it, we put c2 = 0.

According to (4.10), the function F (1)
K=2(z) behaves as O(1/z) at small z. Examining the

differential equation (4.8) for K = 3, 4, . . . , one finds that its solution has to have the following

asymptotic behavior at small z,

F (1)
K (z) =

aK
z

+ bK log z +O(z0) . (4.12)

For K = 2 we find from (4.10) that a2 = 1 and b2 = 0.

6This result has been obtained by the Mellin method which we review in Section 5.
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To fix the coefficient c1 in (4.11) we examine the behavior of the function F (1)
K (z) around

z = 1. In the Born approximation, we deduce from (3.20) that F (0)
K (z) grows logarithmically

for K = 3 and it approaches a finite value for K ≥ 4. Requiring F (1)
K (z) to stay finite for K ≥ 4

as z → 1 implies c1 = 0. This condition can be derived from the sum rules (3.13) as follows.

Multiplying (4.8) by z and integrating by parts, we obtain∫ 1−ϵ

0

dz ∂z[(1− z)∂z(z
3F (1)

K (z))] = [(1− z)∂z(z
3F (1)

K (z))]
∣∣∣
z=1−ϵ

= O(ϵ) . (4.13)

The boundary term at z = 0 vanishes due to (4.12). This derivation relies on the sum rules

(3.13), i.e. we assume that for any K ≥ 3 the relation
∫ 1−ϵ

0
dz zF (1)

K (z) = O(ϵ) holds. As we

show below, it is satisfied for K ≥ 4 only. We therefore deduce from (4.13) that F (1)
K (z) should

stay finite at z → 1 and K ≥ 4. This leads to c1 = 0 because the term proportional to c1 in

(4.11) grows logarithmically as z → 1.

For K = 3 one can check using (4.10) that
∫ 1−ϵ

0
dz zF (1)

2 (z) = 1
2
log2 ϵ as ϵ → 0. In this

case, in order to satisfy the sum rule (3.13), one has to add to (4.10) a contact term localized

at z = 1. As a result, for K = 3 the right-hand side of (4.13) scales as 3
2
log2 ϵ leading to

F (1)
K=3(z) =

1
2
log3(1 − z) at z → 1. The term proportional to c1 in (4.11) yields a subleading

contribution in this limit. To fix the coefficient c1 we can use the sum rule (3.13). 7

We can now turn to solving the differential equation (4.8) supplemented with the boundary

conditions specified above. Our strategy is as follows: we first solve explicitly the differential

equation for F (1)
K=3(z). Based on the form of F (1)

K=3(z) we then work out the general form of

the solution for K ≥ 4. Finally, we combine all F (1)
K (z) into a two-variable generating function

and provide a closed-form expression for it. In this way we determine the one-loop energy

correlation F (1)
K (z) for any weight K.

Solution for K = 3

Solving the differential equation (4.8) for K = 3, we replace F (1)
K=2(z) with its expression (4.10)

and pick the solution that satisfies (4.12). The resulting expression for F (1)
K=3(z) is given by

a linear combination of special functions of different transcendental weights accompanied by

seven polynomials of z,

F (1)
3 (z) =

1

z5

[
c
[3]
1 (z)L(z) + c

[3]
2 (z)Li2(z) + c

[3]
3 (z) log(z) log(1− z)

+ c
[3]
4 (z) log2(1− z) + c

[3]
5 (z) log(1− z) + c

[3]
6 (z) log(z) + c

[3]
7 (z)

]
. (4.14)

Here the function L(z) contains only terms of the maximal logarithmic weight 3: 8

L(z) := Li3(1− z) +
1

2
Li2(z) log(1− z)− 1

12
log3(1− z) +

1

2
log2(1− z) log(z)

− ζ2 log(1− z)− ζ3 . (4.15)

7For K > 3 the sum rule (3.13) leads to c1 = 0.
8The terms in the second line are not included in the polynomials c

[3]
5 and c

[3]
7 in order to keep their coefficients

rational.
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The coefficients c
[3]
m (z) (with m = 1, . . . , 7) are polynomials of degree 2:

c
[3]
1 = −6

(
z2 − 6z + 6

)
, c

[3]
2 = 18(3− 2z) ,

c
[3]
3 = 9

(
z2 − 6z + 6

)
, c

[3]
4 = −9(z − 3)(z − 1) ,

c
[3]
5 = 9(z − 1)(4z − 9) , c

[3]
6 = 27(2− z)z,

c
[3]
7 = 9(3− 2z)z . (4.16)

The coefficients c
[3]
5 and c

[3]
7 depend linearly on the zero-mode coefficient c1 in (4.11). As

explained above, its value is fixed by the sum rule
∫ 1

0
dz zF (1)

3 (z) = 0.

The function F (1)
3 (z) is plotted in Figure 5. For z → 0 it has the asymptotic behavior

F (1)
K=3(z) =

3

4z
− 3

10
log(z) +

24

25
+O (z) , (4.17)

in agreement with (4.12). For z → 1 we find

F (1)
K=3(z) =

1

2
log3(1− z) +

1

2
π2 log(1− z) + 6ζ(3) + 3π2 + 9 +O(1− z) . (4.18)

As expected, this function grows as a power of log(1− z).

It is straightforward to verify that the function (4.14) does not satisfy the second sum rule

in (3.13),
∫ 1

0
dz (1− z)F (1)

3 (z) ̸= 0. Like what happens in the Born approximation (3.23), this

indicates that F (1)
3 (z) should contain a contact term ∼ δ(z). It is needed to regularize the

contribution of the pole in (4.17) to
∫ 1

0
dz (1− z)F (1)

3 (z). More details about the contact terms

can be found in Section 6.

General solution for K ≥ 4

The solution of the recurrence relation (4.8) for any K ≥ 4 takes the same form as (4.14),

F (1)
K (z) =

1

zK+2

[
c
[K]
1 (z)L(z) + c

[K]
2 (z)Li2(z) + c

[K]
3 (z) log(z) log(1− z)

+ c
[K]
4 (z) log2(1− z) + c

[K]
5 (z) log(1− z) + c

[K]
6 (z) log(z) + c

[K]
7 (z)

]
, (4.19)

where c
[K]
m (z) (with m = 1, . . . , 7) are polynomials of degree K − 1. They are determined

recursively by solving (4.8) and requiring F (1)
K (z) to be finite for z → 1 and to satisfy (4.12) for

z → 0. In particular, the polynomial c
[K]
1 (z) has a simple closed form,

c
[K]
1 (z) = −K(K − 2) (z − 1)K−3 [K(K + 1)− 4Kz + 2z2

]
. (4.20)

Instead of presenting explicit formulas for the remaining polynomials at each weight K, in the

next subsection we provide a generating function for all F (1)
K (z).

The functions F (1)
K (z) are plotted in Figure 5 for several values of the weight K. For small

z they behave as

F (1)
K (z) =

3

K + 1
z−1 − 6(K − 2)

(K + 1)(K + 2)
log z +O(z0) , (4.21)
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Figure 5. The one-loop correction (K + 1) zF (1)
K (z) for several values of the weight K. The limiting

curve for K → ∞ is labeled ‘asympt’, see (4.27). Owing to the normalization prefactor, all plots

originate from 3 at z = 0, see (4.21). For z → 1, the one-loop correction has a pole at K = 2, a

logarithmic singularity at K = 3 and it is finite for K ≥ 4, see (4.10), (4.18) and (4.22). Its value at

z = 1 decreases with K and approaches −7
2 −

π2

3 ≈ −6.7899 in the limit K →∞, see (4.29).

in agreement with (4.12). For K = 2 and K = 3, they also agree with (4.10) and (4.17),

respectively. For z → 1, we find

F (1)
K (z = 1) =− 9

(K − 3)2
+

6

K − 2
+

24ζ2 − 15− 12H
(2)
K−4

12(K − 1)
−

24ζ2 + 33− 12H
(2)
K−4

4(K − 3)
, (4.22)

where H
(2)
K−4 =

∑K−4
p=1 p−2 is the generalized harmonic number of order two. The relation (4.22)

is valid for K ≥ 4.

Generating function

It is convenient to introduce an auxiliary variable t and combine the one-loop functions F (1)
K (z)

of all weights K in the generating function

G(z, t) :=
∑
K≥2

tKF (1)
K (z) . (4.23)
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Replacing F (1)
K (z) with its expression (4.19), we find that each of the seven polynomials c

[K]
m (z)

(with m = 1, . . . , 7) gives rise to a function

Gm(z, t) :=
1

z2

∑
K≥3

(
t

z

)K

c[K]
m (z) , m = 1, . . . , 7 . (4.24)

Then the generating function (4.23) takes the form

G(z, t) =G1(z, t)L(z) +G2(z, t) Li2(z) +G3(z, t) log(z) log(1− z) +G4(z, t) log
2(1− z)

+G5(z, t) log(1− z) +G6(z, t) log(z) +G7(z, t) + t2F (1)
K=2 . (4.25)

We have found closed-form expressions for the functions Gm(z, t). They are given by linear

combinations of classical polylogarithms of weights up to three, decorated with rational terms.

More precisely, G1, which resulted from the summation of the polynomials (4.20), is a rational

function; G2, G3, G4 contain logarithms and rational terms; G5, G6 contain dilogarithms, log-

arithms and rational terms; and G7 is the most complicated function containing tri-logarithms,

dilogarithms, logarithms and rational terms. The arguments of the polylogarithms depend both

on z and t in such a way that the generating function G(z, t) is given by 2dHPL functions [28].

We provide an explicit expression for G(z, t) in the ancillary file.

We can apply the generating function (4.25) to show that F (1)
K (z) behaves as O(1/K) at

large K,

F (1)
K (z) =

1

K
φ(1)(z) +O(1/K2) . (4.26)

Combining this relation with (4.23), we expect that G(z, t) should scale as − log(1− t)φ(1)(z)

for t → 1. Indeed, examining the generating function G(z, t) for t → 1 we reproduce the

expected behavior and identify the function

φ(1)(z) =
3

z
+ 2Li2(1− z)− 6 log(z)− 2ζ2 −

13

2
. (4.27)

We therefore conclude that, as announced earlier, the one-loop correction to the energy correla-

tion (3.8) is suppressed at large K by a factor of 1/K, as compared with the Born contribution

(3.9).

For z → 0 the relation (4.26) takes the expected form (4.12) with aK = 3/K + O(1/K2)

and bK = −6/K +O(1/K2),

F (1)
K (z) =

1

K

(
3

z
− 6 log z +O(z0)

)
. (4.28)

It also agrees with (4.21). For z → 1 we have, in agreement with (4.22),

F (1)
K (z) =

1

K

(
−7

2
− 2ζ2 +O (z − 1)

)
. (4.29)

In the previous relations we keep only the leading term at large K.
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4.3 Two-loop correction

The two-loop corrections F (2)
K (z) satisfy the recurrence differential equations (4.8). These equa-

tions are valid for K ≥ 4 and they allow us to express F (2)
K (z) for arbitrary K ≥ 4 in terms of

F (2)
K=3(z). The latter can be determined by extending the relation (4.8) to the case K = 3 with

a properly defined inhomogeneous term F (2)
aux(z).

Two-loop solution of the recurrence relation

Below we show that F (2)
K (z) can be expanded over a basis of polylogarithm functions L(w)

i (
√
z),

namely

zK+2F (2)
K (z) =

5∑
w=0

lw∑
i=1

a
(w)
i,K(z)L

(w)
i (
√
z) +

√
z bK(z)L(2)

1 (
√
z)

+ δK,3 z
2
[
−6zL(3)

3 (
√
z) + 6zL(2)

3 (
√
z) + 6

√
z L(2)

1 (
√
z)
]
. (4.30)

Here a
(w)
i,K(z) and bK(z) are polynomials in z of degree (K − 1) and (K − 2), respectively, with

rational K-dependent coefficients. The second line in (4.30) is relevant only for K = 3.

The functions L(w)
i (
√
z) are pure polylogarithms of transcendental weight w. They are given

by multi-linear combinations (with rational coefficients) of harmonic polylogarithms (HPL) [29]

with argument
√
z and zeta-values ζ2, ζ3, ζ5, which are graded by the transcendental weight.

The functions L(w)
i (
√
z) do not depend on K. At weight w we employ lw linearly independent

polylogarithmic combinations, L(w)
i with i = 1, . . . , lw, in the expression (4.30). The counting

is as follows:

l0 = 1 , l1 = 2 , l2 = 5 , l3 = 8 , l4 = 5 , l5 = 3 . (4.31)

In total, the ansatz (4.30) contains
∑5

w=0 lw = 24 polylogarithmic functions L(w)
i (
√
z). They

take the following form

• Weight-zero function L(0)
1 ≡ 1;

• Weight-one functions

{L(1)
i=1,2} = {H−1 −H1, 2H0} = {log(1− z), log(z)} ; (4.32)

• Weight-two functions

{L(2)
i=1,...,5} = {2H−1,0 + 2H1,0, −H−1,−1 +H−1,1 +H1,−1 − 4H1,0 −H1,1,

H1,1 −H1,−1 + 2H0,1 − 2H0,−1 −H−1,1 +H−1,−1 + ζ2,

H0,0 +H1,0, ζ2} . (4.33)
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Here we omit the arguments of the HPLs for the sake of brevity, Ha,b,... ≡ Ha,b,...(
√
z) [29].

The remaining higher-weight combinations L(w)
i have a similar form. They are defined in the

ancillary file.

The polylogarithmic combinations of HPLs of transcendental weights up to four, L(w)
i with

0 ≤ w ≤ 4, can be expressed as classical polylogarithms. However, this does not apply to the

weight-five combinations L(5)
i , so we prefer to present all weights using the same HPL notations.

Solution procedure

In this subsection we present some details of the derivation of (4.30). Namely, we first compute

F (2)
K=3(z) and then apply (4.8) for ℓ = 2 and K ≥ 4 to obtain F (2)

K (z).

Before we turn to the computation of F (2)
K=3(z), let us examine the function F (2)

K=2(z) which

defines the two-loop correction to the energy correlation (3.4) for K = 2. It was computed in

[18] using the Mellin approach summarized in Section 5.1 and Appendix C. As shown there,

the function F (2)
K=2(z) admits a Mellin integral representation (B.16). The result of the Mellin

integration in (B.16) can be expanded over the basis of special functions L(w)
i ≡ L(w)

i (
√
z)

defined above,

z3F (2)
K=2(z) = 2z(1 +

√
z)L(2)

1 + 2zL(2)
2 + 2z2L(2)

3

+
z

(1− z)

[(
4 +

13z

2

)
L(3)

1 − zL(3)
2 + z(1 + 2z)L(3)

3 + L(3)
4 + zL(3)

5

]
. (4.34)

To find the function F (2)
K=3, we have to solve the differential equation (4.8) for K = 3. This

may seem contradictory, since earlier we declared that at two loops equation (4.8) is valid only

for K ≥ 4. In reality, we can extend its validity to K = 3 by making the following observation.

As explained in Appendix B, the correlator (B.5) takes a factorized form for all K ≥ 3 with

the common function F
(2)
K≥3 given in (B.9). As compared with the function F

(2)
K=2 that defines

the correlator for K = 2, it is given by a different linear combination of the same two-loop

conformal integrals. We recall that the factorized form (B.5) is at the origin of the differential

recursion (4.8) (see (4.4) and (4.5)). However, in the case at hand the starting point of the

recursion is not the ‘physical’ F (2)
K=2(z) from (4.34) but a different ‘auxiliary’ function F (2)

aux(z)

that is defined below in (5.19).

In this way we arrive at the differential equation

(D− 6)F (2)
K=3(z) + 3F (2)

aux(z) = 0 . (4.35)

This is a particular case of the general recursion (4.8), specified to ℓ = 2 and K = 3, but with

a different inhomogeneous term F (2)
aux(z), not to be confused with F (2)

K=2(z). In other words, we

have extended the relation (4.8), initially derived for K ≥ 4, to the case K = 3.

To find the explicit expression for F (2)
aux(z) we need to repeat the Mellin integration in (B.16)

with a different linear combination of the same Mellin amplitudes, see (B.18). The result has

an expansion in the basis of polylogarithmic functions L(w)
i (
√
z), similar to (4.34):

z3F (2)
aux(z) =(1 +

√
z)L(2)

1 + L(2)
2 + zL(2)

3 +
1

(1− z)

[
L(3)

1 + zL(3)
2 + z2L(3)

3

]
. (4.36)
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At two loops, the differential equations (4.35) and (4.8) can be solved recursively for K =

3, 4, . . . in the same manner as in the one-loop case. The general solution takes the form (4.30).

The polynomials a
(w)
i,K(z) and bK(z) in (4.30) can be found by substituting the ansatz (4.30)

into (4.35) and (4.8) and by taking into account that the polylogarithmic functions L(w)
i (
√
z)

satisfy the differential equations

d

dz
L(w)

i (
√
z) =

lw−1∑
j=1

[
c
(w)02

i,j

z
+

c
(w)0
i,j√
z

+
c
(w)−
i,j√
z − 1

+
c
(w)+
i,j√
z + 1

]
L(w−1)

j (
√
z), (4.37)

where c
(w)
i,j are rational coefficients. Since the functions L(w)

i (
√
z) are linearly independent, the

relations (4.37) lead to recurrence relations for the coefficients of the polynomials a
(w)
i,K(z) and

bK(z).

The two boundary conditions needed to fix the solution of the second-order differential

equations are the absence of z−2−K singularities at z → 0, and the finiteness of F (2)
K≥4(z) at

z → 1. 9 For K = 3, the function F (2)
K=3(z) has a logarithmic singularity at z = 1 (see (4.42)

below). As before, we use the first sum rule in (3.13) to fix the remaining freedom in the

solution for F (2)
K=3(z). The sum rule requires the evaluation of integrals involving HPLs. In

Section 6.3, we describe a semi-numerical implementation of the sum rules for the two-loop

energy correlation (4.30) that yields exact values of the remaining unknown.

We have solved explicitly the recurrence relations for the polynomials a
(w)
i,K(z) and bK(z), up

to K = 100. In the anciliary file we provide a Mathematica code that constructs the solutions

recursively. The procedure is completely algebraic and it only requires solving a system of

linear equations with rational coefficients at the K-th step. Its solution is then fed in the linear

system of the (K + 1)-th step, etc.

Unlike the one-loop case, we have not attempted to find a closed-form expression for F (2)
K (z)

for arbitrary K. Instead, we used the obtained solutions for several small values of K to deduce

the asymptotic behavior of F (2)
K (z) as z → 0 for any K,

F (2)
K (z) =

3

K + 1

log(z)

z
+

c
(2)
1/z,K

K + 1

1

z
+O(log z) , (4.38)

where

c
(2)
1/z,K = −3

2
ζ3 + 3ζ2 −

7

2
− 3

K − 1
− 3

K
− 3

K + 1
. (4.39)

The expression on the right-hand side of (4.38) contains a pole at z = 0. To make F (2)
K (z)

integrable at the origin, one has to add to (4.38) the contact terms localized at z = 0. These

terms are derived in Section 6.3 for any K. The two-loop EEC F (2)
K=2, calculated in [18], has a

similar asymptotic behavior at z → 0, see (6.12).

9Let us note that in order to impose the boundary conditions it is sufficient to work out only the leading

terms in the expansions z ∼ 0 and z ∼ 1 of the HPL combinations L(w)
i , and they do not depend on K. Then

fixing the boundary conditions is completely algebraic.
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As compared with the one-loop result (4.21), the two-loop correction (4.38) is enhanced

at small z by a factor of log z. Adding together (4.21) and (4.38), we keep the most singular

terms at each loop order to get

aF (1)
K (z) + a2F (2)

K (z) + · · · = 3

K + 1

[
a

z
+

a2

z
log z + . . .

]
, (4.40)

where a = λ/(4π2). This relation is in agreement with the expected small z behavior of the

energy correlation

FK(z) ∼ z−1+γ(λ)/2 , (4.41)

which follows from the operator product expansion on the celestial sphere (see (8.7) below).

Here γ(λ) = λ/(2π2)+O(λ2) does not depend onK and coincides with the anomalous dimension

of the twist-two operators of spin 3.

For z → 1, the two-loop correction to the energy correlation F (2)
K (z) approaches a finite

value for K ≥ 4. At large K it decreases as O(1/K), see (5.10) and (5.24) below. For K = 3,

the function F (2)
K=3(z) grows for z → 1 as a power of log(1− z),

F (2)
K=3(z) =−

3

160
log5(1− z)− ζ2

2
log3(1− z) +

3ζ3
2

log2(1− z)− 33

4
ζ4 log(1− z)

+ 57ζ5 − 72ζ2ζ3 −
513

4
ζ4 −

216

2
ζ3 + 270ζ2 log(2)− 45ζ2 + 3 +O(1− z) . (4.42)

For K = 2, the function F (2)
K=2(z) has a stronger singularity at z → 1, namely it grows as

O(log3(1− z)/(1− z)) at the end point, see (6.12).

The functions (K + 1) zF (2)
K (z) are plotted in Figure 6 for several values of K. The

additional factor of (K + 1)z is inserted to soften the singularity at z = 0, see (4.38), and

to ensure that the function stays finite as K → ∞. As follows from (3.13), the integral of

(K + 1)zF (2)
K (z) over the interval 0 < z < 1 has to vanish. This explains why the functions

shown in Figure 6 change sign at some value of z for K ≥ 3. For K = 2 the function takes

negative values for 0 < z < 1 and its integral vanishes after one takes into account the contact

term proportional to δ(1− z). We recall that such contact terms are absent for K ≥ 3.

We observe that, in agreement with (4.41), the curves in Figure 6 look alike for small z.

The situation is different for finite z, the functions (K+1)F (2)
K (z) become more and more flat as

K increases. We have observed the same pattern at one loop. We recall that the z−dependence
describes the angular distribution of the energy on the celestial sphere. The flattening of the

z−dependence of the energy correlation at largeK implies that the energy distribution becomes

more homogeneous.

5 Heavy sources at weak coupling

In the previous section, we computed the energy correlations at weak coupling for an arbitrary

weight K of the source operators and then examined their asymptotic behavior at large K. In
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Figure 6. The two-loop correction to the energy correlation (K+1) zF (2)
K (z) for several values of the

weightK of the source. The limiting curve forK →∞ is labeled ‘asympt’. Owing to the normalization

prefactor, all plots scale as 3 log z + O(z0) at z → 0, see (4.38). For z → 1 the two-loop correction

develops a pole at K = 2, scales as a power of log(1− z) at K = 3 (see (4.42)) and approaches a finite

value for K ≥ 4. The latter decreases with K and is given by 49
144 + 181

180ζ2 +
85
6 ζ3 +

7
4ζ4 ≈ 20.9176 in

the limit K →∞, see (5.24) below.

this section, we present another approach that allows us to obtain this asymptotic behavior

directly, without going through the details at finite K. It is based on the method developed

in [16–18, 20] for the calculation of event shapes with sources of weight K = 2. The main

advantage of this method is that it is applicable to the energy correlations (3.4) for an arbitrary

coupling constant.

5.1 Mellin approach

The energy flow operator E(n) in (3.4) is given by the stress-energy tensor integrated along the

light-ray defined by the null vector nµ (see (A.1)). As a consequence, the energy correlation

(3.4) is related to the four-point function ⟨OK(1)T (2)T (3)OK(4)⟩ involving two heavy source

operators and two stress-energy tensors. In the maximally supersymmetric N = 4 SYM theory,

the stress-energy tensor belongs to the same supermultiplet as the simplest half-BPS operator

(3.1) of weight K = 2.

The N = 4 superconformal Ward identities relate the above mentioned four-point correla-

tion function to that of four half-BPS operators ⟨OK(1)O2(2)O2(3)OK(4)⟩. The properties of
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these correlators are summarized in Appendix B. In particular, for an arbitrary coupling con-

stant they are expressed in terms of a single function ΦK(u, v) depending on the two conformal

cross-ratios10

u =
x2
12x

2
34

x2
14x

2
23

, v =
x2
13x

2
24

x2
14x

2
23

. (5.1)

It proves convenient to use the Mellin representation for this function,

ΦK(u, v) =

∫
dj1dj2
(2πi)2

MK(j1, j2)u
j1vj2 , (5.2)

where the integration contours run parallel to the imaginary axis to the left of the origin,

Re ji = −δ with 0 < δ < 1. The Mellin amplitude MK(j1, j2) depends on the coupling

constant. The expansion coefficients M
(ℓ)
K of MK(j1, j2) at weak coupling in the planar limit,

MK(j1, j2) =
∑
ℓ≥0

(
λ

4π2

)ℓ

M
(ℓ)
K (j1, j2) , (5.3)

are not all independent. As we have already discussed in the beginning of Section 4, and provide

more details in Appendix B (see (B.15)), the ℓ-loop perturbative corrections with K ≥ ℓ + 1

are all the same,

M
(ℓ)
K=ℓ+1 = M

(ℓ)
K=ℓ+i , i ≥ 2. (5.4)

Applying the N = 4 superconformal Ward identities, one can express the correlation func-

tion in (3.4) in terms of the function (5.2) or equivalently the Mellin amplitude MK(j1, j2). The

result is (see [19, 25] for details)

⟨OK(x)E(n1)E(n2)ŌK(0)⟩ =
8

(n1n2)3
1

(x2)K+1

d2

dγ2
(1− γ)2γ2 d2

dγ2
GK(γ) , (5.5)

where the function GK(γ) is given by a Mellin integral involving the same amplitude MK(j1, j2)

as in (5.2),

GK(γ) = −
1

16π3

∫
dj1dj2
(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
MK(j1, j2) γ

j1+j2−1 , (5.6)

and γ is a dimensionless Lorentz scalar variable invariant under the independent rescaling of

the null vectors ni,

γ =
2(xn1)(xn2)

x2(n1n2)
. (5.7)

The differential operator acting on GK(γ) in (5.5) stems from the relation between the correla-

tors with different spins mentioned in the beginning of this subsection.

10This choice of cross-ratios is convenient for the Mellin procedure described in Appendix C.
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Substituting (5.5) into (3.4) and going through the calculation we can obtain the expression

for the energy correlation ⟨E(n1)E(n2)⟩K . It takes the expected form (3.5) with the function

FK(z) given by the double Mellin integral

FK(z) =

∫
dj1dj2
(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
MK(j1, j2)KK(j1 + j2, z) . (5.8)

Here the Mellin amplitude MK(j1, j2) defines the four-point correlation function (5.2) and

depends on the coupling constant. The function KK(j1 + j2, z) is called the detector kernel. It

is independent of the coupling constant and is given by

KK(j, z) =
∑

k=0,1,2

z−j−k (−1)k
(
k

2

)
Γ(j)Γ(j + k)

Γ(j − 2)Γ(j + k − 2)

× Γ(K − 1)Γ(K + 1)

Γ(K − 2 + j + k)Γ(K + 3− j − k)
2F1

(
3− j − k, 3− j − k

K + 3− j − k

∣∣∣∣∣z
)
. (5.9)

The derivation of this relation can be found in Appendix C, see (C.8) for s1 = s2 = 2. We see

that the dependence on the angular variable z in (5.8) comes only through the detector kernel.

We remark that the relation (5.8) holds for any value of the coupling constant.

One can check that the function FK(z) defined in (5.8) satisfies the differential equation

(4.8), irrespectively of the choice of the Mellin amplitude MK(j1, j2), provided that the latter

does not depend on K. For example, this is the case at weak coupling in the planar limit for

sufficiently large K, namely K ≥ ℓ+ 1, see (5.4).

In the special case K = 2 the kernel simplifies drastically and it is given by (B.17) (see

[16]–[19]). In the next subsection, we discuss the asymptotic behavior of the kernel (5.9) at

large K. As we show below, the main advantage of the Mellin representation (5.8) is that it

allows us to demonstrate directly that the corrections to the energy correlation scale as 1/K

for a finite coupling constant. In particular, at weak coupling

F (ℓ)
K (z) =

1

K
φ(ℓ)(z) +O(1/K2) . (5.10)

This relation generalizes (4.26) to any loop order.

5.2 Leading term of the large K expansion

For arbitrary K the detector kernel (5.9) is given by a sum of three terms, each containing a

hypergeometric function. At large K these functions can be replaced by 1. In this way, we

obtain that, to the leading order in 1/K, the detector kernel (5.9) takes the form

KK(j, z) =
1

K
κ(j, z) +O(K−2) , (5.11)

where the leading coefficient function κ(j, z) is given by

κ(j, z) = (j − 2)(j − 1) z−2−j
[
j(1 + j) + 2j(1− j)z + (j − 1)(j − 2)z2

]
. (5.12)
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This relation is conveniently rewritten in terms of a fourth-order differential operator,

κ(j, z) = Dz−j+1 , D :=
1

z

d

dz
z2

d

dz

(1− z)2

z2
d

dz
z2

d

dz
. (5.13)

It coincides with the analogous operator in (5.5) after replacing γ with 1/z. Inserting (5.13)

into (5.8) and changing the integration variable j2 to j = j1+j2, we arrive at the relation (5.10)

with the function φ(ℓ)(z) given by

φ(ℓ)(z) = D
∫

djdj1
(2πi)2

[
Γ(1− j)

Γ(1− j1)Γ(1− j + j1)

]2
M (ℓ)(j1, j − j1) z

−j+1 , (5.14)

where M (ℓ)(j1, j − j1) is the O(λℓ) correction to the Mellin amplitude MK(j1, j − j1).

To illustrate the relation (5.14), we repeat the calculation of the function φ(ℓ)(z) at one

loop, i.e. for ℓ = 1. The one-loop Mellin amplitude is given by (B.14). After its substitution in

(5.14) the integration over j1 can be done immediately leading to

φ(1)(z) = D
∫

dj

2πi

1

2j

[
π

sin(πj)

]2
z−j+1 = D

[z
2
(Li2(1− z)− ζ2)

]
. (5.15)

Here in the second relation we closed the integration contour in the left half-plane and picked

the residues at the poles j = −1,−2, . . . . Applying the differential operator (5.13) we recover

the expression (4.27), obtained in the previous section from the generating function.

5.3 Integral relation between the kernels at large K

The differential operator in (5.13) allows us to establish a remarkably simple relation between

the detector kernels (5.9) for K = 2 and for K →∞.

We recall that the kernel KK=2(j, z) is given by (B.17). Applying the identity

z−j+1 = −z2 sin(πj)
π

∫ 1

0

dτ
(1− τ)jτ−j−1

z + τ(1− z)

= −z2

2

∫ 1

0

dτ
τ(1− τ)

z + τ(1− z)
KK=2(j, τ) , (5.16)

we get from (5.13)

κ(j, z) = −1

2
D
[
z2
∫ 1

0

dτ
τ(1− τ)

z + τ(1− z)
KK=2(j, τ)

]
. (5.17)

Notice that the Mellin parameter j enters the right-hand side of (5.17) through the argu-

ment of the K = 2 detector kernel. Then, substituting (5.11) and (5.17) into (5.8) we can swap

the Mellin integration with that in (5.17) to get

φ(ℓ)(z) = D
[
−z2

2

∫ 1

0

dτ
τ(1− τ)

z + τ(1− z)
F (ℓ)

aux(τ)

]
, (5.18)
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where F (ℓ)
aux(τ) is the convolution of the Mellin amplitude of the correlation function (5.2) and

the K = 2 detector kernel,

F (ℓ)
aux(z) =

∫
djdj1
(2πi)2

[
Γ(1− j)

Γ(1− j1)Γ(1− j + j1)

]2
M

(ℓ)
K (j1, j − j1)KK=2(j, z) . (5.19)

At one loop, the Mellin amplitude M
(1)
K is independent of K and is shown in (B.14). As a

consequence, the function F (1)
aux(z) coincides with the one-loop correction to the energy correla-

tion F (1)
K=2(z). Recalling the one-loop result (4.10), we apply the relation (5.18) and reproduce

φ(1)(z) in (4.27).

In summary, we have calculated the leading term in (5.10) in three different ways: (i)

extracting it from the generating function (4.23); (ii) doing the Mellin integrations in (5.14);

(iii) doing the one-fold integration in (5.18).

At two loops, the Mellin amplitude M
(2)
K takes different forms for K = 2 and K ≥ 3, see

(B.15). In the former case, the function F (2)
aux(z) coincides with the two-loop correction to the

energy correlation F (2)
K=2(z) in (B.16). In the latter case, F (2)

aux(z) is independent of K and it

coincides with the auxiliary function in (B.18).

At higher loops, a similar transition happens at K = ℓ+ 1. The underlying reason for this

was explained in the beginning of Section 4. For K ≥ ℓ + 1 the Mellin amplitude M
(ℓ)
K ceases

to depend on K and the same is true for the function F (ℓ)
aux(z). Then, it follows from (5.18) and

(5.10) that the leading O(1/K) correction to the energy correlation φ(ℓ)(z) is independent of

K.

5.4 Two-loop corrections to the large K asymptotics

In this subsection, we use the relation (5.18) at ℓ = 2 and compute the function φ(2)(z) defining

the leading term of the large K asymptotics of the energy correlation at two loops. The

evaluation of the integral in (5.18) is much simpler than the double Mellin integral (5.14). As

explained above, the function F (2)
aux(z) in (4.36) should not be confused with the two-loop energy

correlation F (2)
K=2(z) defined in (4.34).

According to (4.36), the function F (2)
aux(z) is a combination of classical polylogarithms of

transcendental weight up to three. It can also be expressed in terms of harmonic polylogarithms

[29], whose arguments define an alphabet of three letters,

z , 1−
√
z , 1 +

√
z . (5.20)

Note that the two-loop correction (4.30) involves the same HPL alphabet.

The integration of F (2)
aux(z) in (5.18) is done with the help of HyperInt [30]. The result can

be expressed in terms of classical polylogarithms of weight up to four but the HPL alphabet

(5.20) is not sufficient anymore, the new letter
√
1− z+ i

√
z has to be added.11 Schematically

11This letter also appeared in the NLO calculation of EEC in QCD [31]. There it contributes to individual

Feynman diagrams representing real corrections but cancels out in their sum.
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loop order ℓ K = 2 K ≥ 3 K →∞

0 0 1 0

1 1 3 2

2 3 5 4

Table 1. Maximal transcendental weight of the polylogarithms in the expression for the energy

correlation F (ℓ)
K (z) at ℓ loops for finite K and in the limit K →∞.

we can write

z2
∫ 1

0

dτ
τ(1− τ)

z + τ − zτ
F (2)

K=2(τ) =
z

(1− z)2

[
g
(3)
1 + zg

(3)
2 + g

(4)
3 + zg

(4)
4 + z2g

(4)
5

+ zh
(4)
1 + i

√
z(1− z)h

(3)
2

]
, (5.21)

where g
(w)
i and h

(w)
i are multi-linear combinations (with rational coefficients) of classical polylog-

arithms and zeta-values of homogeneous weight w. The g−functions are spanned over products

of

log(z) , Li2(z) , Li3(z) , Li3(1− z) , Li4(z) , Li4(1− z) , Li4

(
−1− z

z

)
, (5.22)

whereas the h−functions are spanned over products of polylogarithms that depend on the new

letter and their arguments are naturally expressed in terms of x := i
√

z
1−z

,

log(x), log(1± x), Li2(x), Li3

(
x

1 + x

)
, Li4

(
x

1 + x

)
. (5.23)

Note that (5.21) is invariant upon the reflection
√
z → −

√
z that is equivalent to the complex

conjugation x→ x∗.

Substituting (5.21) into (5.18), we apply the differential operator (5.13) and obtain a closed-

form expression for the function φ(2)(z), to be found in the ancillary file. We recall that this

function defines the leading large K behavior (5.10) of the energy correlation at two loops.

It is interesting to note that, due to the appearance of the new letter in the HPL alphabet,

its expression involves a larger set of functions than the two-loop energy correlation F (2)
K (z)

at finite K. Also, the maximal transcendental weight of these functions varies with K, as

summarized in Table 1.

The dependence of zφ(2)(z) on the angular variable 0 < z < 1 is shown in Figure 6 (see the

curve labelled ‘asympt’). For z → 1 it approaches a finite value,

φ(2)(z) =
7ζ4
4

+
85ζ3
6

+
181ζ2
180

+
49

144
+O (1− z) . (5.24)
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For z → 0 it grows as log z/z,

φ(2)(z) =
3 log z

z
+

(
−3

2
ζ3 + 3ζ2 −

7

2

)
1

z
+O

(
log2 z

)
. (5.25)

We verify that this relation is in agreement with the large K limit of (4.38).

5.5 Subleading corrections

So far we have discussed only the leading term in the largeK expansion of the energy correlation

(5.10),

F (ℓ)
K (z) =

1

K
φ(ℓ)(z) +

∞∑
n=2

1

Kn
φ(ℓ)
n (z) . (5.26)

The differential equation (4.8) allows us to find the subleading coefficient functions φ
(ℓ)
n (z) in

terms of the leading function φ(ℓ)(z) ≡ φ
(ℓ)
n=1(z).

Let us rewrite (4.8) as

DF (ℓ)
K (z) = K

[
(K − 1)F (ℓ)

K (z)− (K − 2)F (ℓ)
K−1(z)

]
, (5.27)

where the differential operator D is defined in (4.9). Substituting the expansion (5.26) into this

equation and comparing the coefficients on both sides, we derive a recursion relation for φn(z)

with n ≥ 2. The solution is

φ
(ℓ)
2 (z) = (1− D)φ(ℓ)(z) ,

φ
(ℓ)
3 (z) =

(
1− D+

1

2
D2

)
φ(ℓ)(z) ,

φ
(ℓ)
4 (z) =

(
1− D+

1

3
D2 − 1

6
D3

)
φ(ℓ)(z) , . . . (5.28)

For z → 1, the functions (5.26) approach a finite value. At small z, replacing φ(ℓ)(z) ∼
(log z)ℓ−1/z (see (4.41)) in (5.28), it is straightforward to verify that the ratio φ

(ℓ)
n (z)/φ(ℓ)(z)

goes to (−1)n−1 for z → 0. Therefore, the subleading terms in (5.26) effectively modify the

coefficient in front of the leading term to 1/(K + 1)

FK(z) =
3

K + 1
z−1+ λ

4π2 + . . . , (5.29)

where the dots denote the subleading corrections suppressed by powers of λ and z. At two

loops, the relation (5.29) is in agreement with (4.40).
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6 Contact terms

The expressions for the energy correlations derived in the previous sections are valid only for

0 < z < 1. To extend them to the end points z = 0 and z = 1, we have to add contact

terms. As was explained above, such terms are needed to ensure that the sum rules (3.11) are

satisfied. Furthemore, the obtained expressions for the energy correlations have non-integrable

singularities at the end points z = 0 (for K ≥ 2 and K → ∞) and z = 1 (for K = 2) and

require a careful treatment.

In this section we present two complimentary approaches to computing the contact terms.

We start with the simplest example of the one-loop correction to the energy correlation F (1)
K=2(z)

given by (4.10) and proceed to the case of arbitrary K at one loop. In Section 6.3 we compute

the contact terms at two loops.

6.1 Sum rule approach

At K = 2, the one-loop correction to the EEC (4.10) is singular at the end points z = 0 and

z = 1. Following Section 4 in Ref. [7] (see also [6, 8]), we define the regular (i.e. integrable)

part by subtracting the non-integrable singularities from (4.10),

F (1) reg
K=2 (z) = − log(1− z)

z2(1− z)
− 1

z
+

log(1− z)

1− z
= − 1

z2
(z + (z + 1) log(1− z)) . (6.1)

The resulting function F (1) reg
K=2 (z) is integrable in the interval 0 ≤ z ≤ 1. Next, we compensate

the subtracted singular terms by adding them up but now interpreted as (integrable) plus-

distributions (for the definitions see (D.1) and (D.2)). In addition, we allow for contact terms

at the end points with arbitrary coefficients,

F (1)
K=2(z) = F

(1) reg
K=2 (z) +

[
1

z

]
+

−
[
log(1− z)

1− z

]
+

+ C1δ(z) + C2δ(1− z) . (6.2)

The above procedure is the most general regularization of the energy correlation at the end

points consistent with the sum rules (3.11). Indeed, subtracting the poles makes the function

integrable. The subsequent addition of the subtracted term in the form of the plus-distributions

does not modify the energy correlation (4.10) for 0 < z < 1, at the same time maintaining

the integrability. At this stage the regularized expression (6.2) still contains the arbitrary

coefficients C1 and C2, which is the usual ambiguity in singular distributions. They can be

determined from the sum rules (3.13).

Substituting (6.2) into the sum rules (3.13) we get for K = 2

(1 + ζ2) + C1 + C2 = ζ2 + C2 = 0 , (6.3)

leading to C1 = −1 and C2 = −ζ2. Finally, the complete one-loop expression for the energy

correlation at weight K = 2 is

F (1)
K=2(z) = F

(1) reg
K=2 (z) +

[
1

z

]
+

−
[
log(1− z)

1− z

]
+

− δ(z)− ζ2δ(1− z) , (6.4)
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where the regular part F (1) reg
K=2 (z) is given by (6.1).

For higher weights K ≥ 3, the contact terms for the energy correlation F (1)
K (z) can be

found in the same way. We recall that the function F (1)
K≥3(z) is singular for z → 0 (see (4.21))

but it is finite at z → 1 for K ≥ 4 (see (4.22)). Then we define the regular function F (1)reg
K (z)

by subtracting the non-integrable singularity at z = 0,

F (1)reg
K (z) =

1

K!
(∂t)

KG(z, t)
∣∣∣
t=0
− 3

K + 1

1

z
, (6.5)

where the first term on the right-hand side involves the generating function (4.23). To get the

complete one-loop result, we add to F (1)reg
K (z) the plus-distribution term [1/z]+ and calculate

the coefficient of the contact term δ(z) with the help of the sum rules (3.13). In this way, we

find for K ≥ 3

F (1)
K (z) = F (1)reg

K (z) +
3

K + 1

[
1

z

]
+

+
c
(1)
δ,K

K + 1
δ(z) , (6.6)

where

c
(1)
δ,K =

5

2
− 3

K − 1
− 3

K
− 3

K + 1
. (6.7)

Let us emphasize that only the contact term at the end point z = 0 is required, and its

coefficient is fixed by one of the sum rules in (3.13). The other sum rule is not sensitive to the

contact term in (6.6), and it should be automatically satisfied. This is a useful cross-check of

our EEC calculation,

3

K + 1
+

∫ 1

0

dz zF (1)reg
K (z) = 0 . (6.8)

At large K, we apply (4.27) to find the regular part of φ(1)(z),

φ(1)
reg(z) = 2Li2(1− z)− 6 log(z)− 2ζ2 −

13

2
. (6.9)

The sum rule (3.13) enables us to calculate the contact terms,

φ(1)(z) = φ(1)
reg(z) +

[
3

z

]
+

+
5

2
δ(z) . (6.10)

We see that the distribution terms in (6.10) agree with those in (6.6) at large K.

6.2 Mellin approach

In this subsection, we follow Refs. [26, 27] to compute the contact terms for the function φ(1)(z)

which is given by the Mellin integral (5.15).

We computed the integral in (5.15) by closing the contour from the left and picking the

poles at j = −1,−2,−3, . . .. The integrand in (5.15) involves D(z−j+1). It is given by the sum
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of three terms of the form zα with α = −j − 2,−j − 1,−j which we now treat as distributions

zα+, see (D.3). The key observation is that this distribution has a contact term in its Laurent

expansion, see (D.4). This creates an extra pole under the Mellin integral at α = −1, whose
contribution accounts for the contact term in the energy correlation. Of the three values of α

listed above, only α = −j−2 is inside the integration contour. Replacing z−j−2
+ = − 1

j+1
δ(z)+. . .,

we compute the residue at j = −1,

−δ(z)Res
j=−1

(
1

2
(j − 2)(j − 1)

[
π

sin(πj)

]2)
=

5

2
δ(z) , (6.11)

in agreement with (6.10). The energy correlation F (1)
K=2 with its two contact terms is treated

similarly.

We see that the two approaches – the sum rule method of fixing the contact terms and the

approach based on the careful calculation of the Mellin integral – give identical results for the

one-loop energy correlation. However, technically the Mellin approach may be more difficult

to implement beyond one loop. Indeed, there the function M (ℓ)(j1, j − j1) in (5.14) is given

by a 2(ℓ− 1)−fold Mellin integral. The sum rule approach is more efficient, provided that the

function F (ℓ)(z) is known explicitly for 0 < z < 1. We apply it at the two-loop level in the next

subsection.

6.3 Two-loop contact terms from the sum rules

Let us start with K = 2. The two-loop function F (2)
K=2(z) (4.34) was calculated in [18] for

0 < z < 1. Like the one-loop case, this function has non-integrable singularities at z = 0 and

z = 1. Promoting them to plus-distributions, adding the contact terms δ(z) and δ(1− z) and

using the sum rules (3.13) to fix their coefficients, we obtain

F (2)
K=2(z) = F

(2) reg
K=2 (z) +

(
−3 + ζ2 −

ζ3
2

)[
1

z

]
+

+

[
log(z)

z

]
+

+
ζ3
2

[
1

1− z

]
+

+
3ζ2
2

[
log(1− z)

1− z

]
+

+
1

2

[
log3(1− z)

1− z

]
+

+

(
7− 3ζ2 +

11

4
ζ4

)
δ(z) + 5ζ4δ(1− z) . (6.12)

Here the regular function F (ℓ) reg
K is obtained from F (2)

K=2(z) by subtracting the poles at z = 0

and z = 1.

For K ≥ 3, the two-loop function F (2)
K (z) contains a non-integrable singularity at z = 0

calculated in (4.38). For z → 1, it is regular for K ≥ 4 and has an integrable logarithmic

singularity for K = 3. As a result, only the contact term δ(z) is required. As before, we

promote the poles at z = 0 to plus-distributions to get

F (2)
K (z) = F (2)reg

K (z) +
3

K + 1

[
log(z)

z

]
+

+
c
(2)
1/z,K

K + 1

[
1

z

]
+

+
c
(2)
δ,K

K + 1
δ(z) , (6.13)
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where c
(2)
1/z,K is given in (4.39).

To find the coefficient of the contact term c
(2)
δ,K , we substitute (6.13) into the sum rules

(3.13). We implemented the integration in (3.13) numerically and carried out the calculation

for K ≤ 15. We interpolated the HPL expressions (4.30) by their generalized series expansions

in the vicinity of z = 0 and z = 1, and integrated numerically the interpolation formulae

achieving a precision of at least 40 digits. This level of precision was sufficient to reconstruct

c
(2)
δ,K with K ≤ 15 as rational linear combinations of the numbers {1, ζ2, ζ3, ζ4} using the PSLQ

algorithm. Exploiting these results, we arrived at an expression for c
(2)
δ,K valid for any weight

K,

c
(2)
δ,K =

111

16
ζ4 +

1

2

(
−23

2
+

3

K − 1
+

3

K
+

3

K + 1

)
ζ3 + 3H

(2)
K+1 +

15

2

−
(
7

2
+

3

K − 1
+

3

K
+

3

K + 1

)
ζ2 +

8

K − 1
+

7

2K
− 1

K + 1
, (6.14)

where H
(2)
n is the n-th generalized harmonic number of degree two. We have also checked

numerically that the second sum rule in (3.13) is satisfied for K ≤ 15,

− 3

K + 1
+

c
(2)
1/z(K)

K + 1
+

∫ 1

0

dz zF (2)reg
K (z) = 0 . (6.15)

Similarly, we use (5.25) supplemented with the sum rule (3.13) to calculate the contact

terms for the two-loop function φ(2)(z) defining the leading large K asymptotics (5.10) of the

energy correlation,

φ(2)(z) = φ(2)
reg(z) + 3

[
log(z)

z

]
+

+

(
−7

2
+ 3ζ2 −

3

2
ζ3

)[
1

z

]
+

+

(
15

2
− ζ2

2
− 23

4
ζ3 +

111

16
ζ4

)
δ(z) . (6.16)

We would like to emphasize that, unlike (6.13), this relation was derived analytically.

In the large K limit the function (6.13) takes the expected form (5.10). Comparing the

coefficients of the contact terms in (6.13) and (6.16) we obtain the consistency relation

lim
K→∞

c
(2)
δ,K =

111

16
ζ4 −

23

4
ζ3 −

ζ2
2
+

15

2
. (6.17)

We verified using (6.14) that it is indeed satisfied. Analogous consistency relations hold for

c
(2)
1/z,K in (4.39) at large K.

7 Event shapes at strong coupling

After exploring the dependence of the energy correlations on K at weak coupling λ ≪ 1, in

this section we perform the same analysis at strong coupling λ ≫ 1. We also consider event

shapes in N = 4 SYM with detectors other than energy calorimeters.
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The energy correlations at strong coupling were analyzed in [5], where their computation

was mapped to the propagation of a probe particle (dual to the source operator) on a shock

wave background (dual to the energy calorimeters). In particular, it was found that in theories

which are dual to matter minimally coupled to gravity in AdS, the energy correlations do not

depend on the angle,

⟨Ê(n1) . . . Ê(nk)⟩GR = 1. (7.1)

This universality is the expression of the equivalence principle in the bulk since the energy

correlations in this approximation effectively measure the Shapiro time delay, which in general

relativity does not depend on the type of particle in question.

The leading stringy correction to the EEC was computed in [5],

⟨Ê(n1)Ê(n2)⟩c =
4π2

λ
(1− 6z(1− z)) . (7.2)

It was also found there that the connected energy correlations obey

⟨Ê(n1)Ê(n2)...Ê(nk)⟩c ∼
1

λk/2
. (7.3)

This relation is analogous to (1.4) where the role of ∆H is played by the coupling constant λ.

In this section we rederive and generalize these results starting from the Mellin space rep-

resentation of the four-point functions ⟨OKO2O2ŌK⟩ at strong coupling. We consider different

event shapes measuring the correlations of various conserved charges (not just energy, see also

footnote 22). In close analogy with (3.5) we introduce

⟨Js1(n1)Js2(n2)⟩K =
(q2)s1+s2

2(4π)2(qn1)s1+1(qn2)s2+1
F s1,s2

K (z) , (7.4)

where the flow operator Js(n) is built out of the conserved current of spin s. The energy-energy

correlation studied in the previous section corresponds to F2,2
K . For s = 1 we get the charge

detector. The corresponding flow operator Js=1(n) is given by the light-ray transform of the

spin one conserved current (see (A.4)). For s = 0 we get the scalar detector Js=0(n), it is given

by the light-ray transform of the half-BPS operator of dimension ∆ = 2 (see (A.4)). More

details about the correlations (7.4) can be found in appendix C.

In this section we compute F s1,s2
K (z) in the supergravity approximation and derive the

leading stringy correction to it,

F s1,s2
K (z) = F s1,s2

K,sugra(z) +
4π2

λ
F s1,s2

K,stringy(z) + . . . , (7.5)

where the dots denote subleading corrections. We find that in the K → ∞ limit the event

shapes (7.4) do not depend on the angle and are given by the product of the one-point functions

⟨Js1(n1)⟩K⟨Js2(n2)⟩K . We also analyze the event shapes away from the large K limit, and we

find that for event shapes other than the energy-energy correlation the dependence on K is
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nontrivial. For the EEC, in contrast to the weak coupling results where the suppression factor

is ∼ 1/K, now the leading correction is suppressed by 1/λ.

In our analysis we consider K’s that do not scale parameterically with λ, see e.g. [32].

Taking K ∼ λ1/4, which corresponds to a source dual to short massive string modes, we do not

expect to observe any change to (7.1) and (7.2) above. For K ≳
√
λ, in which case the source

is described by a big classical string [33], we expect to get back the 1/K suppression of the

leading correction to the energy correlation [34]. It would be interesting to check this explicitly.

7.1 Supergravity approximation

The four-point function of the half-BPS operators ⟨OKO2O2ŌK⟩ has been actively studied at

strong coupling recently, starting from [35, 36]. We will be only interested in stringy corrections

here, leaving quantum gravity corrections aside.

The stringy corrections to the ⟨OKO2O2ŌK⟩ Mellin amplitude were considered in [37]. To

utilize their results, let us notice that the Mellin variables (s, t) used in that paper are related

to (j1, j2) used in the present paper as follows12

2j1 = K − s− t, 2j2 = t−K . (7.6)

The Mellin amplitudeMK(s, t) in [37] is related to our MK(j1, j2) as follows,

MK(j1, j2)

[Γ(1− j1)Γ(1− j2)]2Γ(2 + j1 + j2)
=

1

K
Γ(j1 + j2 +K)MK(−2(j1 + j2), 2j2 +K) . (7.7)

Let us notice that while the normalization of the scalar correlator ⟨OKO2O2ŌK⟩ does not have
an intrinsic meaning, it is important for us because we use superconformal Ward identities to

relate it to the correlators with conserved currents which have canonical normalization, see

appendix C for details. This explains the factor 1
K

in the formula above.

The supergravity result for the Mellin amplitudeMK(s, t) takes the form

Msugra
K (s, t) =

4K

Γ(K − 1)

1

(s− 2)(t−K)(K − s− t)
. (7.8)

It is then easy to compute various event shapes by plugging this Mellin amplitude into the

master formula (C.7). We get the following results

F0,0
K,sugra(z) = 2z2 +K(K − 2)z +

1

2
K(K − 1)2(K − 2) ,

F1,1
K,sugra(z) = 2z +

1

2
(K − 2)(K + 1) ,

F2,1
K,sugra(z) = −K ,

F2,2
K,sugra(z) = 2 . (7.9)

12The weight K is denoted by p in [37].

– 39 –



It is interesting to notice that while the energy correlations do not depend on K, in agreement

with the arguments of [5], the results for other event shapes require simply polynomial cor-

rections. We can also consider the large K → ∞ limit. According to the general clustering

arguments at the beginning of this paper all the event shapes effectively cluster, in other words

they become angle-independent,

lim
K→∞

F0,0
K,sugra(z) ∼ K4 ,

lim
K→∞

F1,1
K,sugra(z) ∼ K2 , (7.10)

with the correction to clustering being of order 1/K.

Let us comment on the power of K that appears in (7.10). As the two-point function

clusters, the power is dictated by the square of the corresponding one-point event shape. This

in turn is given by the light transform of the corresponding three-point function which in our

case scales as ∼ K. The light transform of a detector operator with quantum numbers (∆, J)

produces an extra factor ∆1−J
H . This is why starting from the three-point function which scales

as K, we get K4 for scalar-scalar correlations (detectors of spin J = 0), K2 for charge-charge

correlations (spin J = 1), and K0 for energy-energy correlations (spin J = 2).

7.2 Stringy correction

The computation of the stringy corrections to event shapes is subtle because the event shapes are

sensitive to the high-energy limit of the scattering amplitudes in AdS. In particular, computing

the higher derivative stringy corrections to the Mellin amplitude and plugging them into the

formula (C.7) produces divergent results.

To solve this problem we adopt the approach used in [24] based on the Borel re-summation

of the leading high-energy corrections to the Mellin amplitude. The basic observation is that

these are controlled by the scattering of strings in flat space, see also [5]. One can then use

the formulas that relate the Mellin amplitude to its flat space limit to predict the form of the

relevant series [38].

The leading stringy correction to the Mellin amplitude takes the form [37]

Mstringy
K (s, t) =

4K

Γ(K − 1)

(K + 1)(K + 2)(K + 3)

4λ3/2
ζ(3) . (7.11)

If we try to plug this formula into the generating function for the event shapes, we find that

the t integral takes the form
∫

dt
2πi
Mstringy

K (s, t) and is divergent. Therefore we need to re-sum

the stringy corrections. More precisely, rescaling t→
√
λt we notice that infinitely many terms

in the stringy expansion of the Mellin amplitude become of the same order
∫
dt t2n

λ3/2+n ∼ 1√
λ
,

which is indeed the expected leading stringy correction to the event shape [5].

In [24], using the flat space limit of the amplitude, it was found that for K = 2 the relevant

series takes the form ∑
n=0,n−even

cnx
n, cn =

1

4

Γ(6 + n)ζ(3 + n)

2n+1
. (7.12)
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For general K, using [37], we get instead∑
n=0,n−even

cnx
n, cn =

1

4

Γ(4 + n+K)ζ(3 + n)

2nΓ(1 +K)
. (7.13)

To perform the Borel sum, we change the summand cnx
n → cn(σx)n

Γ(n+1)
. We then substitute

ζ(3+n) =
∑∞

k=0
1

(k+1)3+n and perform the sum over n. As a result, we get the following integral

when evaluating
∫

dt
2πi
Mstringy

K (s, t)∫ ∞

0

dt

π

∫ ∞

0

dσe−σ

∞∑
k=0

1

(k + 1)3

[
1

(1− iσt
2(1+k)

)4+K
+

1

(1 + iσt
2(1+k)

)4+K

]
=

π2

3

1

K + 3
, (7.14)

where σ is the integration of the Borel transform. To evaluate this integral we notice that if

we rescale x→ x
σ
, which assumes σ ̸= 0, we get zero. Therefore we can limit the integral over

σ to an infinitesimal interval around the origin and drop e−σ from the integrand.

In this way we get for the integral of the re-summed Mellin amplitude∫
dt

2πi
Mstringy

K (s, t) =
4K

Γ(K − 1)

(K + 1)(K + 2)π2

24λ
. (7.15)

Using this result we can compute the stringy corrections to the event shapes:

F0,0
stringy(z) = 2z2

(
1− 6z(1− z) +

K(K − 2)

24
(18z +K(K − 2)− 11)

)
,

F1,1
stringy(z) = 2z

(
1− 6z(1− z) +

(K + 1)(K − 2)

8
(3z − 2)

)
,

F2,1
stringy(z) = −

K + 2

2
(1− 6z(1− z)) ,

F2,2
stringy(z) = 2

(
1− 6z(1− z)

)
. (7.16)

As an extra consistency check, we verify that the charge-charge correlation F1,1
stringy(z) satisfies

the relation
∫ 1

0
dzF1,1

stringy = 0, which follows from the conservation of the total charge. Similarly,∫ 1

0
dzF2,2

stringy =
∫ 1

0
dzzF2,2

stringy = 0 due to the energy-momentum sum rules (3.11). Putting

K = 2 in (7.16), we recover the results of [17] that, due to the superconformal Ward identities,

all F s1,s2
stringy(z) are proportional to each other up to a power of z. This simple relationship

between event shapes does not hold for K > 2.

8 Clustering in CFT

In this section we present some arguments in favor of (1.4) in a general CFT. We start by

discussing the clustering of correlation functions involving the stress-energy tensor in heavy

states. It is analogous to familiar clustering of correlation functions in QFT as the spatial sep-

aration between operators becomes large. We then discuss the leading non-universal correction
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to the disconnected result which depends on the details of the theory and the heavy operator

in question. We then proceed to event shapes which is the main topic of this paper, and we

conjecture that the clustered structure of the stress-energy tensor correlators is not affected by

the light-ray transform. Finally, we discuss the special case of heavy states in planar theories

cT ≫ ∆H ≫ 1, where cT is defined via the two-point function of stress tensors ⟨TµνTρσ⟩ ∼ cT .
13

The statements in this section are based on some basic physics intuition and we do not attempt

to prove them rigorously starting from the CFT axioms [40].

8.1 Clustering of local operators in a heavy state

In QFT, the correlation functions of local operators factorize when the mutual separation

between the local operators goes to infinity [41]. In CFT a closely related property is expected

to hold for the correlation functions of local operators in heavy states. We define

⟪OH(∞)
∏
i

OL(xi)OH(0)⟫ ≡ lim
x→∞

⟨OH(x)
∏

iOL(xi)OH(0)⟩
⟨OH(x)OH(0)⟩

. (8.1)

Let us also introduce the notation T (x) ≡ Tµν(x)z
µzν for the stress-energy tensor operator

contracted with a null polarization vector zµ. We keep the dependence on the polarization

implicit to avoid cluttering. We can now formulate the clustering of the stress-energy tensor

operators in a heavy state as follows

lim
∆H→∞

⟪OH(∞)
∏

i T (xi)OH(0)⟫∏
i⟪OH(∞)T (xi)OH(0)⟫ = 1. (8.2)

Let us motivate why (8.2) might be true. We consider a CFT on R× Sd−1 with the heavy

operator defining a state of energy E = ∆H

R
and the physical distances between the operators

being Lij = R|xi − xj|. The key point is that we can naturally associate to the limit ∆H →∞
an infinite volume or thermodynamic limit by sending at the same time R→∞, see e.g. [42].

Such a limit is not uniquely defined because it requires specification of which quantities are

kept fixed as we take the limit.

It is natural to keep certain local densities fixed as we take the limit. For our purposes we

can keep the energy density ϵ = E
Rd−1 = ∆H

Rd fixed. It is also natural to keep the physical distances

between the operators Lij fixed. Notice that it corresponds to the multi-OPE limit |xij|→ 0

in the space of cross-ratios. On general grounds, we then expect to get nontrivial correlation

functions in the infinite volume Rd−1 in an excited state characterized by a characteristic scale

Lϵ. In CFT, due to the absence of dimensionful parameters, such a correlator depends on the

dimensionless ratios
Lij

Lϵ
. We expect that for

Lij

Lϵ
≪ 1 we get nontrivial correlations in the excited

state, whereas for
Lij

Lϵ
≫ 1 the correlator clusters as the relative spatial separation between the

operators goes to infinity.14 Because the stress-energy tensor measures the energy density, the

resulting one-point function ⟨T ⟩ϵ ̸= 0, and the disconnected piece indeed provides the leading

answer to the correlator at large distances.

13See, for example, [39] for the precise definition.
14For the closely related finite temperature CFT correlators the clustering property was discussed in [23].
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There is an obvious generalization of the argument above for CFTs with global symmetries.

Let us assume for simplicity a CFT with U(1) global symmetry and denote the corresponding

conserved current J(x) ≡ Jµ(x)z
µ. We can then consider a source of large charge and apply

the same argument to argue that

lim
Q→∞

⟪OQ(∞)
∏

i J(xi)OQ(0)⟫∏
i⟪OQ(∞)J(xi)OQ(0)⟫ = 1, (8.3)

where this time we keep the charge density q = Q
Rd−1 fixed as we take the limit and we use the

fact that ⟨J⟩q ̸= 0 because the conserved current measures charge density.

We expect similar arguments to hold for any local operators and not just conserved currents.

However, in this case the non-vanishing property of the one-point function is not guaranteed.

Let us next discuss the leading correction to the disconnected result discussed above. For

this purpose it is convenient to consider the four-point function. At the level of the original

correlation function on the plane the thermodynamic limit discussed above corresponds to the

following limit

lim
∆H→∞

∆−2
H ⟪OH(∞)Tµν

(
1− w

∆
1/d
H

, 1− w̄

∆
1/d
H

)
Tρσ(1)OH(0)⟫ = ⟨Tµν(w, w̄)Tρσ(0, 0)⟩ϵ, (8.4)

where we have put all operators on a 2d plane with complex coordinates (z, z̄) and we set them

to
(
1− w/∆

1/d
H , 1− w̄/∆

1/d
H

)
as we take ∆H → ∞. The separation between the operators on

the right-hand side after taking the limit is x2 = ww̄. The extra factor ∆−2
H has a kinematic

origin and comes from mapping the correlator on the plane to the one on the cylinder, see [42]

for details. The two-point function ⟨Tµν(w, w̄)Tρσ(0, 0)⟩ϵ stands for the two-point function in

the microcanonical ensemble with energy density ϵ for the theory on R1,d−1. Locally, it is the

same as the finite temperature correlator where the temperature is fixed to correctly reproduce

the energy density ϵ.

As we take the operator insertions apart, in an interacting theory the leading correction to

the disconnected result is expected to decay exponentially, see e.g. [43],

⟨Tµν(w, w̄)Tρσ(0, 0)⟩ϵ = ⟨Tµν⟩ϵ⟨Tρσ⟩ϵ +O(e−mth|w|), (8.5)

where mth is the so-called thermal mass. It could also happen that the effective theory that

emerges in the limit ∆H →∞ is gapless, in which case the leading correction to the disconnected

piece is a power. For the thermal case it happens for example in the case of the free scalar

theory, and for the large charge case in the case of the three-dimensional O(2) model [44, 45]. In

addition to the connected corrections in the macroscopic state we can imagine having corrections

related to the finite curvature of the sphere, e.g. terms that go to zero as Lϵ

R
.

To summarize, while the leading result (8.2) is universal, the corrections to it depend on

the details of the theory and the nature of the heavy state. As such, they cannot be computed

on general grounds and require a detailed case-by-case analysis.
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8.2 Event shapes

Going from the formulas for correlation functions of local operators to the calculation of event

shapes includes the extra step of integrating over the detector times, or, equivalently, performing

the light transform. When we do that, the separation between the detector operators |x12|
becomes arbitrarily small [46]. The small separation regime includes the light-cone limit and

the Regge limit. It could then happen that while the clustering holds for local operators at

fixed separation, it fails for the light-ray operators. As a simple example, consider the charge-

charge correlation related to (8.3). As we perform the light-transform, the one-point charge

correlation produces a finite result, whereas the two-point (or higher-point) function in general

will diverge in the Regge limit.15 Therefore, the analog of (8.3), in general will not hold for

charge correlations.

The situation is better for the energy correlations which are finite, or IR-safe, observables.

In this case, the contribution of the Regge limit to the light transform produces a finite result.

The question that remains then is whether this contribution is suppressed, compared to the

factorized result in the limit of the heavy source ∆H → ∞. We do not know how to show

it in general, but based on the explicit example analyzed in the paper and the intuition that

the Regge limit is naturally suppressed for energy correlations, we conjecture that in a general

CFT

Celestial clustering: lim
∆H→∞

⟨E(n1) . . . E(nk)⟩ =
k∏

i=1

(q2)2

4π(qni)3
. (8.6)

Intuitively, (8.6) is consistent with the physical picture of a state created by a heavy operator

on the celestial sphere having an effective angular correlation length that goes to zero as ∆H →
∞. The same picture suggests that the cumulant expansion of the energy correlations (1.3)

organizes itself in the hierarchical fashion (1.4).

To understand this better in a non-perturbative setting it is interesting to consider the

light-ray OPE, which captures the behavior of the energy correlations at small angles. For

simplicity, let us start with the two-point energy correlation ⟨E(n1)E(n2)⟩. The leading OPE

contribution at small angles z = sin2(θ/2) ≪ 1 takes the form (including the 1 from the

disconnected contribution)

⟨E(n1)E(n2)⟩ ∼ 1 +
⟨O+

3 ⟩H
z1−γ+

3 /2
, z ≪ 1, (8.7)

where O+
3 is the spin three light-ray operator of positive signature belonging to the stress-energy

tensor Regge trajectory and γ+
3 is its anomalous dimension.

As follows from (8.7), the contribution of O+
3 to the energy-energy correlation diverges at

small angles for γ+
3 < 2. Assuming that this relation is satisfied, a necessary condition for (1.4)

15It could be that due to an improved Regge behavior, the charge-charge correlation is finite. For example,

this is expected to happen in the O(2) Wilson-Fischer model [47], see also [48].
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to hold is

⟨O+
3 ⟩H ≲

1

∆h2
H

, ∆H →∞ . (8.8)

We then see from (8.7) that there is an emerging characteristic angle defined as 1

∆
h2
H

1

θ
2−γ+3
∗

≃ 1.

It plays the same role as θ0 in QCD. Namely, for θ ≲ θ∗ the second term on the right-hand side

of (8.7) dominates and the energy-energy correlation is in the OPE regime. For θ ≳ θ∗ this

term is subdominant and the energy-energy correlation is in the flat regime. Notice that as the

angle between the detectors decreases, the transition in QCD is OPE-to-flat, whereas for CFT

energy correlations in heavy states it is flat-to-OPE.

Similarly, considering the multi-collinear limit of energy correlations, see e.g. [8, 49], we

get a spin k + 1 light-ray operator

⟨E(n1)E(n2)...E(nk)⟩c ∼ ⟨O+
k+1⟩H , (8.9)

and the conjecture (1.4) implies that

⟨O+
k+1⟩H ≲

1

∆hk
H

, ∆H →∞ . (8.10)

Let us now see how this comes about in the simple multi-particle model of the final state.

Imagine that the source carries total energy E which is shared between K particles. In this

case the operator O+
J schematically measures the (J − 1)-th moment of the energy distribution

⟨EJ−1⟩ =
∑K

i=1E
J−1
i . Taking Ei =

E
K
, we get that ⟨O+

J ⟩ ∼ E
KJ−2 . In the heavy limit we expect

that K(∆H)→∞, which creates the hierarchy between the different connected contributions.

For example, in the free scalar theory the source ϕK creates aK-particle state, so that hk = k−1.

8.3 Planar theories

In the discussion above we kept cT fixed as we took ∆H →∞. We expect that the suppression

of connected energy correlations takes place in planar theories as well, where cT ≫ ∆H ≫ 1.

In this case, however, the argument about clustering in the thermodynamic limit does not

apply and a different argument is needed. As we have explicitly shown in this paper using the

example of half-BPS operators in N = 4 SYM at large charge K, the suppression of connected

correlations is different at weak (1.5) and at strong (1.6) coupling.

At weak coupling, perturbatively in λ, the connected energy correlations are suppressed

by 1
K
. The mechanism is precisely the one described above, where the heavy operator creates

a multi-particle state of weakly interacting particles with the number of particles ∼ K. We

expect this picture to be qualitatively correct for λ≪ 1≪ K.

At strong coupling, perturbatively in 1
λ
, the connected energy correlations are suppressed

by 1√
λ
. In this case, the strongly coupled dynamics leads to a copious production of particles

[50], with the characteristic energy controlled by λ and not by K. We expect this picture to be

correct for 1≪ K ≪ λ.
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More generally, it would be interesting to exlpore different scalings between K and λ [32]

(in particular, see Figure 1 in that paper): K ∼ 1 (SUGRA); K ∼ λ1/4 (short massive strings);

K ∼ λ1/2 (big classical strings). For example, the latter case is related to the so-called Frolov-

Tseytlin limit [33, 34], where the heavy state describes a classical “fat” string in AdS and to

leading order the correlators are again simple, given by the one-point functions on this classical

solution. It would be also interesting to study energy correlations in the recently introduced

large charge ’t Hooft limit [51].
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A Event shapes from correlation functions

In this appendix we recall the definition of an energy detector (and other flow operators)

from [16, 17]. We illustrate the procedure of calculating energy correlations from space-time

correlation functions on the simple example of a single energy detector at Born level.

The energy flow operator is defined by the integral

E(n) = (nn̄)

∫ ∞

−∞
dx− lim

x+→∞
x2
+ T++(x+n+ x−n̄) , (A.1)

in terms of the covariant light-cone component of the energy-momentum tensor

T++ ≡ n̄µn̄νTµν(x)/(nn̄)
2 . (A.2)

Here the lightlike vectors nµ, n̄µ (with n2 = n̄2 = 0) span a basis for the Lorentz covariant

decomposition of a vector into light-cone components, e.g.

xµ = x+n
µ + x−n̄

µ , x+ =
(xn̄)

(nn̄)
, x− =

(xn)

(nn̄)
. (A.3)

Lorentz covariance is maintained by requiring homogeneity under the rescaling of each light-like

vector by an arbitrary positive scale, nµ → ρ nµ , n̄µ → ρ′ n̄µ. For example, the operator (A.1)

scales as ρ−3E(n). We can fix a Lorentz frame in which nµ = (1, n⃗) and n̄µ = (1,−n⃗), where the
unit vector n⃗ (with n⃗2 = 1) defines the direction of the energy detector on the celestial sphere.

The vector n̄ is auxiliary and it drops out from the expressions for the energy correlations.

– 46 –



We recall that in the maximally supersymmetric N = 4 Yang-Mills theory the energy-

momentum tensor Tµν together with the R-symmetry current Jµ and the half-BPS operator

of weight two O2 are members of the same supermultiplet. By analogy with the energy flow

(A.1) one can define the R-charge and scalar flow operators (the R-symmetry indices are not

displayed)

Q(n) = (nn̄)

∫ ∞

−∞
dx− lim

x+→∞
x2
+ J+(x+n+ x−n̄) ,

O(n) = (nn̄)

∫ ∞

−∞
dx− lim

x+→∞
x2
+O2(x+n+ x−n̄) , (A.4)

where J+ ≡ n̄µJµ(x)/(nn̄). We denote collectively these three flow operators as Js(n) where

the spin s takes the values s = 0, 1, 2.

The definition (A.1) of the flow operator involves two steps: (i) we send the detector, i.e.

the projection T++ of the energy-momentum tensor, weighted with the factor x2
+, to spatial

infinity; (ii) we integrate over the entire working time of the detector −∞ < x− < ∞. These

manipulations are done with each insertion of the energy-momentum tensor into the Wightman

correlation function of the half-BPS scalar source and sink of weight K,

⟨E(n1) . . . E(nk)⟩ = σ−1
tot

∫
d4x eiqx⟨0|OK(x, Y ) E1(n1) . . . Ek(nk)OK(0, Y )|0⟩W . (A.5)

In close analogy with the k−point correlation functions, the correlations (A.5) can be

decomposed into connected pieces (cumulants) ⟨E(n1) . . . E(nk)⟩c . It is convenient to do it by

introducing the energy correlations via a generating functional,

⟨E(n1) . . . E(nk)⟩ = ∂J1 . . . ∂JkZ(J)
∣∣∣
Ji=0

. (A.6)

Here Ji are sources coupled to the energy flow operators E(ni) and the generating functional

Z(J) is defined by

Z(J) = e
∑

i Ji⟨E(ni)⟩c+
∑

i<j JiJj⟨E(ni)E(nj)⟩c+
∑

i<j<m JiJjJm⟨E(ni)E(nj)E(nm)⟩c+... (A.7)

In particular,

⟨E(ni)⟩c = ⟨E(ni)⟩ , ⟨E(ni)E(nj)⟩c = ⟨E(ni)E(nj)⟩ − ⟨E(ni)⟩⟨E(nj)⟩ , . . . (A.8)

Note that the expressions for the connected correlations of four or more operators involve non-

linear terms. Introducing the normalized energy flow operators Ê(ni) = E(ni)/⟨E(ni)⟩, one
finds that (A.6) is equivalent to (1.3).

In this paper we are mainly interested in the case of two energy flow operators, the so-

called energy-energy correlation (EEC).16 For illustration purposes, in this appendix we show

16In Section 7 we also discuss the correlations of other flow operators.
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the details of the calculation of a single energy insertion at Born level [5],17

⟨E(n)⟩ = σ−1
tot

∫
d4x eiqx⟨0|OK(x, Y ) E(n)OK(0, Y )|0⟩(0)W . (A.9)

The starting point is the three-point function of two half-BPS operators of weight K and one

energy-momentum tensor. In Euclidean space it is given by

(GE)
µν(1, 2, 3) = ⟨0|OK(x1, Y )T µν(x2)OK(x3, Y )|0⟩(0)E

∼ (Y Y )K

x2
12x

2
2(x

2
1)

K−1

(
xµ
12

x2
12

+
xµ
2

x2
2

)(
xν
12

x2
12

+
xν
2

x2
2

)
− δµν

4
(trace) , (A.10)

where we have set x3 = 0, as indicated in (A.9). The last term on the right-hand side of (A.10)

ensures that δµν(GE)
µν(1, 2, 3) = 0.

We perform a Wick rotation to the Wightman function (GW )µν in Minkowski space-time

by inserting the prescription x2
ij → x2

ij − iϵx0
ij for i < j. Next we project the free vector

indices with n̄µ, according to the definition (A.2) (this removes the trace part). Using the

decomposition (A.3) in the limit x2+ →∞ we obtain x2
12− iϵx0

12 → 2x2+(x2−(nn̄)− (x1n)+ iϵ)

and x2
2 − iϵx0

2 → 2x2+(x2−(nn̄)− iϵ). With this we take the limit

lim
x2+→∞

x2
2+(GW )µνn̄µn̄ν ∼

(x1n)
2

((x1n)− x2−(nn̄)− iϵ)3(x2−(nn̄)− iϵ)3(x2
1 − iϵx0

1)
K−1

. (A.11)

We observe two poles in the variable x2− located on the opposite sides of the real axis. Closing

the integration contour in, say, the upper half-plane, we get

(nn̄)

∫ ∞

−∞
dx2− lim

x2+→∞
x2
2+(GW )µνn̄µn̄ν ∼

(Y Y )K

((x1n)− iϵ)3(x2
1 − iϵx0

1)
K−1

. (A.12)

Notice that the auxiliary light-like vector n̄ has dropped out of the right-hand side. The last

step in the procedure is the Fourier transform in (A.9) which gives

⟨E(n)⟩ = 1

4π

(q2)2

(qn)3
. (A.13)

In Section 3.3 we deal with the two-point correlation ⟨E(n1)E(n2)⟩ at Born level. The

main contribution comes from the first diagram in Figure 2. It factorizes into two one-point

expressions of the type (A.12), with two different direction vectors n1,2:

(n1n̄1)(n2n̄2)

∫ ∞

−∞
dx2− dx3− lim

x2+,x3+→∞
x2
2+x

2
3+ (GW )µν;λρ(1, 2, 3, 4)n̄1µn̄1νn̄2λn̄2ρ

∼ (Y Y )K

((x1n1)− i0)3((x1n2)− i0)3(x2
1 − i0x0

1)
K−1

. (A.14)

Introducing Schwinger parameters for the Fourier integral of the function in the second line,

we arrive at Eq. (3.15) in the main text. There exist other diagrams where the two detectors

exchange one propagator. They give rise to a contact term, as explained below.

17In N = 4 SYM the three-point functions of the members of the stress-tensor multiplet are protected from

quantum corrections. This is however not so for the four-point functions, the main subject of interest in this

paper.
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x1 x4

x2 x3

x1 x4

x2 x3

Figure 7. Cross-talk diagrams for Born-level QSC. The blob with a cross and the grey blob denote

the charge and scalar detectors, respectively.

The origin of the contact term δ(z) at Born level

Let us consider a simple example of an event shape, the Born level QSC (or charge-scalar

correlation), defined in (7.4) with s1 = 1, s2 = 0. It can be obtained from the Born level

correlator ⟨O(1)J(2)O(3)O(4)⟩, where O = ϕ̄ϕ is a scalar operator made of a charged scalar

field ϕ(x), and Jµ = iϕ̄
←→
∂µ ϕ is the U(1) current. We want to turn the operators at points 2 and

3 into detectors according to (A.4). The procedure becomes singular if the two detectors can

exchange a particle (‘cross talk’). At Born level this means to connect the detector points by a

propagator. The result, as we show below, is the contact term 1
(n2x14)x2

14
δ(n2n3). The subsequent

Fourier transform x14 → q turns this into the expected contact contribution q2

(n2q)2(n3q)
δ(z) (with

z as defined in (2.13)) to the event shape QSC.

The cross-talk Feynman diagrams are shown in Figure 7 and have the expression18

⟨O(1)n̄µ
2Jµ(2)O(3)O(4)⟩Born ⇒

⟨ϕ̄(1)ϕ(2)⟩i(n̄2

←→
∂ 2)⟨ϕ̄(2)ϕ(3)⟩⟨ϕ̄(3)ϕ(4)⟩⟨ϕ̄(4)ϕ(1)⟩

+ ⟨ϕ̄(1)ϕ(4)⟩⟨ϕ̄(4)ϕ(2)⟩i(n̄2

←→
∂ 2)⟨ϕ̄(2)ϕ(3)⟩⟨ϕ̄(3)ϕ(1)⟩ . (A.15)

Let us concentrate on the terms where the derivative (n̄2∂2) acts on the propagator connecting

the two detector points ⟨ϕ̄(2)ϕ(3)⟩ (up to normalization),

(n̄2x23)

(x2
23)

2
× 1

x2
14

[
1

x2
12x

2
34

+
1

x2
42x

2
31

]
. (A.16)

The remaining terms differ by a total derivative which vanishes under the detector time integral.

The analytic continuation from the Euclidean correlator (A.16) to the Wightman one is done as

explained after Eq. (A.10). In the limit x+ →∞, for a mixed pair of points source/detector we

find x2
ds = 2xd+ [xd− − (nxs)) + iϵ]. For the pair detector/detector the prescription is x2

d1 d2 −
iϵ εd1d2, where εd1d2 = sgn(xd1+ − xd2+).

18The remaining connected diagram, where both detectors are linked to the sources (see Figure 2), gives rise

to the contact term δ(1− z), as explained in [16].
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In the first factor in (A.16) we need the limits

(n̄2x23) = x2+x3+ σ2 ,

x2
23 − iϵx0

23 = −2x2+x3+ [(n2n3)− x2− σ2 − x3− σ3 + iϵ ε23] ,

where σ2 = 1/x3+ − (n̄2n3)/x2+ , σ3 = 1/x2+ − (n̄3n2)/x3+ . (A.17)

We have pulled out the factor x2+x3+, which cancels that from the definitions (A.4). We get

(n̄2x23)

(x2
23 − iϵx0

23)
2
=

−σ2

4[x2− σ2 + x3− σ3 − iϵ ε23]
× −x2− σ2 − x3− σ3 + iϵ

[(n2n3)− x2− σ2 − x3− σ3 + iϵ ε23]
2 . (A.18)

The second factor on the right-hand side is a delta sequence whose limit is δ(n2n3).
19 On its

support (n̄2n3) = (n̄3n2) = 1 (up to rescaling) and (n2n3) = (n̄2n̄3) = 0. The first factor in

(A.18) simplifies and the sign of xd1+ − xd2+ drops out,

σ2

x2− σ2 + x3− σ3 − iϵ ε23

δ(n2n3)−→ 1

x2− − x3− − iϵ
. (A.19)

In the limit the second factor in (A.16) becomes (we set x1 ≡ x and x4 = 0)

1

x2 − iϵx0

[
1

(x2− − (n2x) + iϵ) (x3− − iϵ)
+

1

(x2− − iϵ) (x3− − (n3x) + iϵ)

]
. (A.20)

The positions of the poles in (A.19) and (A.20) are such that only the first term in (A.20)

contributes to the time integrals and we get20∫
dx2−dx3− lim

x2+,x3+→∞
x2
2+x

2
3+ Eq. (A.16) ⇒ δ(n2n3)

(x2 − iϵx0)((n2x)− iϵ)
. (A.21)

Finally, the Fourier transform x→ q of (A.21) yields the expected contact term in the QSC,∫
d4x eiqx δ(n2n3)

(−x2 + iϵx0)((n2x)− iϵ)
∼ θ(q0)θ(q2)

(n2q)
δ(n2n3) ∼

q2

(n2q)2(n3q)
δ(z) . (A.22)

This simple example explains the origin of the contact term δ(z) in the event shapes at

Born level. For a more general discussion see [27].

19Consider the sequence of functions fη(y) = θ(y)η/(y + η)2 and their primitives Fη(y) = θ(y)y/(y + η),

where y ∈ R and η ∈ C. Clearly, limη→0 Fη(y) = θ(y), hence limη→0 fη(y) = θ′(y) = δ(y). In (A.18) y =

(n2n3) ≥ 0 and η = −x2− σ2 − x3− σ3 + iϵε23 ∈ C. This delta function satisfies the Lorentz covariant definition∫
ϵµνλρdn

µdnνdnλnρ δ(n2) δ(nn′)ϕ(n) = ϕ(n′) where ϕ(n) is a homogenous test function, ϕ(ωn) = ω−1ϕ(n).
20Note that if we replace the charge detector by another scalar detector, we do not find a delta sequence.

Moreover, the time integrals diverge. In [17] this divergence is avoided by selecting the SU(4) channel 105 in

the SSC, in which there is no cross-talk diagram.
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B Four-point correlation functions of half-BPS scalar operators

In this appendix, we summarize the properties of the four-point correlation functions in N = 4

SYM that we use in computing the energy correlations.

The four-point correlation functions of interest are

GK1K2K3K4 = ⟨OK1(x1, Y1)OK2(x2, Y2)OK3(x3, Y3)OK4(x4, Y4)⟩ , (B.1)

where OK(x, Y ) are half-BPS operators defined in (3.1). They are annihilated by half of the

N = 4 supersymmetry charges and their scaling dimension ∆ = K is protected.

The half-BPS scalar operator (3.1) is the lowest component of a shortN = 4 supermultiplet.

Among the operators (3.1) with different weights K, the one with K = 2 plays a special

role. The corresponding N = 4 supermultiplet becomes ultrashort [52]. It contains all the

conserved currents of the theory, including the SU(4) R-symmetry current of spin one and

the energy-momentum tensor of spin two, hence the name “stress-energy supermultiplet”. In

virtue of N = 4 superconformal symmetry, the four-point correlation functions of the operators

belonging to the same supermultiplet are related to each other by Ward identities.

In application to the energy correlations, we encounter the four-point correlation function

⟨OK(1)Tµ1ν1(2)Tµ2ν2(3)OK(4)⟩ where the half-BPS operators define the source/sink and the

stress-energy tensors describe the calorimeters. Applying the N = 4 superconformal Ward

identities, this correlator can be expressed in terms of the four-point function of scalar operators

⟨OK(1)O2(2)O2(3)OK(4)⟩. Below we summarize the properties of the latter.

The correlator GK22K splits into the sum of two terms

GK22K = ⟨OK(1)O2(2)O2(3)OK(4)⟩ = G0
K22K +Gloop

K22K . (B.2)

The first, Born-level part is a rational function of the space-time coordinates and a polynomial

in the auxiliary variables Y , independent of the coupling. The second, coupling dependent

correction part involves non-trivial functions originating from Feynman integrals.

The expression for the Born term G0
K22K can be obtained by Wick contracting the scalar

fields belonging to the four half-BPS operators. It is a polynomial of degree (K +2) in the free

scalar propagators

dij = dji ≡ ⟨ϕ(xi, Yi)ϕ(xj, Yj)⟩ =
Yi · Yj

x2
ij

, (B.3)

where x2
ij = (xi − xj)

2. The coefficients of this polynomial depend on the rank of the gauge

group Nc. In the planar limit, for Nc →∞, the connected part of G0
K22K is given by

G0
K22K =

1

2
K2(K − 1)NK

c dK−2
14 d12d13d23d24 , (B.4)

where the K−dependent combinatorial factor counts the number of Wick contractions.
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The interacting (coupling dependent) part of (B.2) takes the following form in the planar

limit (see [53] and references therein)

Gloop
K22K = 2

(
Nc

2

)K−2

K2R1234 × dK−2
14 FK(x, λ) . (B.5)

Here R is a universal rational prefactor carrying SU(4) weight 2 and conformal weight 1 at

each point,

R1234 = d213d
2
24x

2
13x

2
24 + d12d13d24d34

(
x2
14x

2
23 − x2

13x
2
24 − x2

12x
2
34

)
+ (1↔ 2) + (1↔ 4) , (B.6)

where the last two terms are obtained by exchanging the pair of coordinates (xi, Yi) of the

points indicated in the parentheses. According to its definition, R1234 is completely symmetric

under the exchange of any pair of points. For the special choice Y2 = Y3 the relation (B.6)

simplifies as

R1234

∣∣∣
Y2=Y3

= d12d13d24d34x
2
14x

2
23 . (B.7)

As explained in [17], putting Y2 = Y3 is equivalent to projecting the product of the two operators

O2(2)O2(3) in (B.2) onto the irreducible representation 105 = [0, 4, 0] of SO(6) ∼ SU(4). The

importance of this choice is that the scalar-scalar correlation ⟨OO⟩K=2 in this channel coincides

with the EEC. This property is however lost if the sources have K > 2.

The coupling-dependent function FK(x, λ) is an SU(4) singlet, i.e. it does not depend on

the Y−coordinates, and has conformal weight 1 at all four points xi (for i = 1, . . . , 4). At weak

coupling, it admits the perturbative expansion

FK =
∞∑
ℓ=1

(
λ

4π2

)ℓ

F
(ℓ)
K , (B.8)

where the functions F
(ℓ)
K can be expanded over a basis of conformal ℓ−loop four-point integrals.

At K = 2 the expansion (B.8) was derived in [54–57] up to ten loops. For K ≥ 3 the analogous

expansion is known up to five loops [53, 58]. 21 The conformal integrals are independent of K

but they appear in the expression for FK(x, λ) with K−dependent coefficients.

The explicit expressions of the function in (B.8) for ℓ = 1, 2 are

F
(1)
K = g1234 ,

F
(2)
K=2 = 2h12;34 + 2h13;24 + 2h14;23 +

1

2

(
x2
12x

2
34 + x2

13x
2
24 + x2

14x
2
23

)
[g1234]

2 ,

F
(2)
K>2 = 2h12;34 + 2h13;24 + h14;23 +

1

2

(
x2
13x

2
24 + x2

12x
2
43

)
[g1234]

2 , (B.9)

21An interesting interpretation of these results, together with a possible extension to any loop order, was

proposed in [59].
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where the notation was introduced for the one- and two-loop conformal integrals

g1234 = −
∫

d4x5

x2
15x

2
25x

2
35x

2
45

,

h12;34 = x2
34

∫
d4x5 d

4x6

(x2
15x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

. (B.10)

Combining together (B.8) and (B.9), one can verify that the function FK=2 is invariant under

the exchange of any pair of points in (1, 2, 3, 4), whereas FK>2 is symmetric in the two pairs

of points (1, 4) and (2, 3) separately, in agreement with the Bose properties of the correlation

function (B.2).

As follows from (B.9), the one-loop correction in (B.8) is independent of K. At two loops,

the functions F
(2)
K=2 and F

(2)
K>2 are given by different linear combinations of the same conformal

integrals. The three-loop results of [53] show that the functions F
(3)
K are different for K = 2

and K = 3, and again become the same for all K ≥ 4. The proposed generalization of [59]

indicates that a similar pattern continues at higher loops. Namely, the function F
(ℓ)
K ceases to

depend on K for K ≥ ℓ + 1. This feature allows us to study the event shapes recursively, see

Section 4.3.

Mellin representation

The product ΦK = x2
14x

2
23FK(x, λ) is invariant under the conformal transformations and, there-

fore, it depends on the two cross-ratios (5.1). For our purposes, it is convenient to use the

Mellin representation

FK(x, λ) =
1

x2
14x

2
23

∫
dj1dj2
(2πi)2

MK(j1, j2)

(
x2
12x

2
34

x2
14x

2
23

)j1(x2
13x

2
24

x2
14x

2
23

)j2

, (B.11)

or equivalently M[FK ] = MK(j1, j2). Here the integration contours are the same as in (5.2).

The symmetry of FK(x, λ) under the exchange of x1 and x4 translates into MK(j1, j2) =

MK(j2, j1).

The Mellin amplitude MK(j1, j2) admits a weak-coupling expansion analogous to (B.8),

see (5.3). To find the corresponding functions M
(ℓ)
K (j1, j2), it is sufficient to know the Mellin

transforms of the various conformal integrals in (B.9). Let us denote the Mellin amplitudes for

the integrals (B.10) as

M[g1234] = M (1)(j1, j2) ,

M[h14;23] = M (2)(j1, j2) . (B.12)

Their explicit expressions are given below, see (B.14). Then, the Mellin amplitudes of the
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remaining conformal integrals in (B.9) are given by

M[h12;34] = M (2)(−1− j1 − j2, j2) ,

M[h13;24] = M (2)(−1− j1 − j2, j1) ,

M[x2
23x

2
14g

2
1234] = M̃ (2)(j1, j2) ,

M[x2
13x

2
24g

2
1234] = M̃ (2)(j1, j2 − 1) ,

M[x2
12x

2
34g

2
1234] = M̃ (2)(j1 − 1, j2) . (B.13)

The functions M (1), M (2) and M̃ (2) introduced above are

M (1)(j1, j2) = −
1

4
[Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)]

2 ,

M (2)(j1, j2) = −
1

4
Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)

×
∫

dj′1dj
′
2

(2πi)2
Γ(j′1 − j1)Γ(j

′
2 − j2)Γ(1 + j1 + j2 − j′1 − j′2)

Γ(1− j′1)Γ(1− j′2)Γ(1 + j′1 + j′2)
M (1)(j′1, j

′
2) ,

M̃ (2)(j1, j2) =

∫
dj′1dj

′
2

(2πi)2
M (1)(j1 − j′1, j2 − j′2)M

(1)(j′1, j
′
2) . (B.14)

We apply the above relations to find from (B.9) the Mellin amplitudes of the one- and two-loop

FK ,

M
(1)
K (j1, j2) = M (1)(j1, j2) ,

M
(2)
K=2(j1, j2) = 2

[
M (2)(j1, j2) +M (2)(−1− j1 − j2, j2) +M (2)(−1− j1 − j2, j1)

]
+

1

2

[
M̃ (2)(j1, j2) + M̃ (2)(j1, j2 − 1) + M̃ (2)(j1 − 1, j2)

]
,

M
(2)
K>2(j1, j2) = M (2)(j1, j2) + 2

[
M (2)(−1− j1 − j2, j2) +M (2)(−1− j1 − j2, j1)

]
+

1

2

[
M̃ (2)(j1, j2 − 1) + M̃ (2)(j1 − 1, j2)

]
. (B.15)

Energy correlations in the Mellin representation

According to (5.8), the EEC is given by the convolution of the Mellin amplitude MK(j1, j2)

and the detector kernel KK(j1 + j2, z) from (5.9). Taking into account the symmetry of the

integrand of (5.8) under the exchange j1 ↔ j2, we get from (B.15)

F (2)
K=2(z) =

∫
dj1dj2

(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
KK=2(j1 + j2, z)

×
[
2M (2)(j1, j2) + 4M (2)(−1− j1 − j2, j1) +

1

2
M̃ (2)(j1, j2) + M̃ (2)(j1, j2 − 1)

]
. (B.16)

Here M (2)(j1, j2) and M̃ (2)(j1, j2) are the Mellin amplitudes (B.14) and the detector kernel is

KK=2(j, z) =
2

π
sin(πj)z−2−j(1− z)j−1 . (B.17)
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The auxiliary function F (2)
aux(z) introduced in (5.19) is given by the convolution of the Mellin

amplitude M
(2)
K>2(j1, j2) and the detector kernel KK=2(j1 + j2, z),

F (2)
aux(z) =

∫
dj1dj2

(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
KK=2(j1 + j2, z)

×
[
M (2)(j1, j2) + 4M (2)(−1− j1 − j2, j1) + M̃ (2)(j1, j2 − 1)

]
. (B.18)

Evaluating the Mellin integrals (B.16) and (B.18), one arrives at (4.34) and (4.36), respectively.

C Detector kernel of the Mellin representation

In this appendix, we present some details of the derivation of the Mellin representation (5.8)

and (5.9) of the energy correlation. We recall that the operator E(n) in (3.4) measures the

flux of the energy in the direction specified by the null vector nµ and it is built out of the

energy-momentum tensor.

If the underlying theory contains a conserved current of spin s,22 we can define the flow

operator Js(n) in an analogous manner. For spin s = 2 it coincides with E(n) whereas for

arbitrary spin s it measures the flow of the corresponding conserved charge.23 We generalize

(3.4) and define the correlation of charges with different spins

⟨Js1(n1)Js2(n2)⟩K = σ−1
tot(q)

∫
d4x eiqx⟨OK(x)Js1(n1)Js2(n2)ŌK(0)⟩ , (C.1)

where the total cross-section σtot(q) is given by (3.3).

In N = 4 SYM the charges Js are members of the stress-energy multiplet. As a conse-

quence, the correlation functions ⟨OK(x)Js1(n1)Js2(n2)ŌK(0)⟩ with different spins s1 and s2
are related to each other by N = 4 superconformal Ward identities. The general solution to

these identities was derived in [19],

⟨OK(x)Js1(n1)Js2(n2)ŌK(0)⟩ =
2s1+1is1+s2

(n1n2)s1+1

(xn2)
s1−s2

(x2)s1+K−1

d

dγs1
(1− γ)s1γs2

d

dγs2
GK(γ) , (C.2)

where γ is defined in (5.7) and the function GK(γ) is independent of the spins s1 ≥ s2.

The relation (C.2) was derived in Ref. [19] for sources of weightK = 2. As discussed around

(B.5), the generalization to arbitrary weight K can be achieved by simply attaching (K − 2)

additional scalar propagators stretched between the source/sink operators, thus introducing the

dependence of GK(γ) on the total weight. Going through the analysis in [19] we see that the

origin of the relation (C.2) has to do with the supermultiplet buildup at the detector points. At

22If s = 0 the term ‘conserved current’, strictly speaking, does not apply. We justify this name by the fact

that in N = 4 SYM the operator O2 of spin 0 belongs to the supermultiplet of the conserved energy-momentum

tensor, supersymmetry and R-symmetry currents.
23For the definition of the flow operators with spin s = 0, 1, 2 in N = 4 SYM see (A.1) and (A.4). Namely,

Js=0 = O, Js=1 = Q, Js=2 = E .
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the source/sink points we stick to the lowest weight state of the supermultiplet, so the result

is modified in an obvious way by the additional weight (K − 2) at these points.

Because the function GK(γ) is independent of the spins, we can obtain it by setting s1 =

s2 = 0 in (C.2). In this case, the flow operators Jsi=0(ni) are related to the half-BPS scalar

operators OK=2(xi), see (A.4), and the left-hand side of (C.2) is given by the correlation function

⟨OK(x)O2(x2)O2(x3)ŌK(0)⟩ 24 integrated over x2 and x3. It is convenient to use the Mellin

representation of this correlation function

⟨OK(x1)O2(x2)O2(x3)ŌK(x4)⟩ =
1

(x2
14)

K−2x2
12x

2
13x

2
24x

2
34

×
∫

dj1dj2
(2πi)2

MK(j1, j2)

(
x2
12x

2
34

x2
14x

2
23

)j1(x2
13x

2
24

x2
14x

2
23

)j2

(C.3)

with x1 = x and x4 = 0. This relation has been obtained in Euclidean signature. Before we can

proceed with the detector limit and time integration from the detector definitions (A.1) and

(A.4), we have to perform the analytic continuation to Minkowski space-time. As explained in

[16, 17, 60], this amounts to replacing x2 → x2 − i0x0 and (xni) → (xni) − i0 in (C.2) and

(C.3). The sign of the ‘i0’ prescription is determined by the order of the operators inside the

correlation function (C.2). Now we can repeat the calculation of [19] to get

GK(γ) = −
1

16π3

∫
dj1dj2
(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
MK(j1, j2)γ

j1+j2−1 , (C.4)

where γ is given by (5.7).

The last step is the Fourier transform in (C.1). Expanding the derivatives in (C.2) we find

that it is given by a linear combination of integrals of the form

I(a, b, c) =

∫
d4x eiqx

(xn2)
a

(x2 − i0x0)b
γc

= ((n1n2)/2)
−c

∫
d4x eiqx

(xn1 − i0)c(xn2 − i0)a+c

(x2 − i0x0)b+c
. (C.5)

Using the Schwinger parameterization they can be evaluated as

I(a, b, c) = ((n1n2)/2)
−c (−1)bi−a

Γ(−c)Γ(−a− c)
2π3 (q2/4)b+c−2

Γ(b+ c)Γ(b+ c− 1)

×
(

q2

2(qn1)

)−c(
q2

2(qn2)

)−a−c ∫ 1

0

dτ1dτ2 τ
−c−1
1 τ−a−c−1

2 (1− τ1 − τ2 + zτ1τ2)
b+c−2 , (C.6)

where the integration goes over the region 1− τ1 − τ2 + zτ1τ2 ≥ 0.

24For reasons explained in [17, 19] (see also (B.7)) one restricts the four-point scalar correlator to the channel

105 in the R-symmetry decomposition.
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Combining all factors together we find from (C.1)

⟨Js1(n1)Js2(n2)⟩K =
(q2)s1+s2

2(4π)2(qn1)s1+1(qn2)s2+1

×
∫

dj1dj2
(2πi)2

[
Γ(1− j1 − j2)

Γ(1− j1)Γ(1− j2)

]2
MK(j1, j2)K(s1,s2)

K (j1 + j2, z) . (C.7)

Here the dependence on the coupling constant resides in the Mellin amplitude MK(j1, j2). The

dependence on the variable z and the spins s1, s2 comes from the detector kernel

K(s1,s2)
K (j, z) =

s1∑
k=0

(−1)k
(s1
k

) Γ(j)Γ(j + k)

Γ(j − s2)Γ(j + k − s1)

× z1−j−k Γ(K + 1)Γ(K − 1)

Γ(K − 2 + j + k)Γ(K + s1 + s2 − 1− j − k)
2F1

(
s1 + 1− j − k, s2 + 1− j − k

K + s1 + s2 − 1− j − k

∣∣∣z) ,

(C.8)

where the hypergeometric function arises from the integration in (C.6).

For s1 = s2 = 2 the relation (C.7) coincides with (3.5) and (5.8), and the kernel (C.8)

reduces to (5.9). At large K the relation (C.8) simplifies as

K(s1,s2)
K (j, z) = K3−s1−s2

s1∑
k=0

(s1
k

)(−1)kz1−j−kΓ(j)Γ(j + k)

Γ(j − s2)Γ(j + k − s1)
. (C.9)

Notice that it scales as 1/K for s1 = s2 = 2.

D Plus-distributions

In this appendix, we recall the definition of the plus-distributions that appear in the expressions

for the contact terms discussed in Section 6.

Following [61], we define∫ 1

0

dz

[
1

z

]
+

ϕ(z) =

∫ 1

0

dz

z
[ϕ(z)− ϕ(0)] , (D.1)∫ 1

0

dz

[
logk(z)

z

]
+

ϕ(z) =

∫ 1

0

dz

z
logk(z)[ϕ(z)− ϕ(0)] , (D.2)

where ϕ(z) is a test function. The distributions [1/(1 − z)]+ and [logk(1 − z)/(1 − z)]+ are

defined in the same manner.

In general, for Reα > −n−1 and α ̸= −1,−2, . . . ,−n the distribution zα+ is defined as [61]∫ 1

0

dz zα+ ϕ(z) =

∫ 1

0

dz zα

[
ϕ(z)−

n−1∑
k=0

zk

k!
ϕ(k)(0)

]
+

n∑
k=1

ϕ(k−1)(0)

(k − 1)! (α + k)
, (D.3)
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where ϕ(k)(0) denotes the k-th derivative, and similarly for the distribution (1− z)α+. Note that

z−1
+ is not the value of zα+ at α = −1. The distribution zα+ admits the following Laurent series

expansion in the vicinity of α = −1:

zα+ =
δ(z)

α + 1
+ z−1

+ + (α + 1)[z−1 log z]+ + . . .+
(α + 1)k

k!
[z−1 logk z]+ + . . . (D.4)
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