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Abstract

We consider the full genuine next-to-leading order SUSY–QCD corrections to the
charged Higgs decays into quarks supplemented by the NNLO corrections to the
effective top and bottom Yukawa couplings. The NNLO corrections to the effective
top Yukawa coupling are a new ingredient of our analysis. We arrive at an approx-
imate NNLO prediction for MSSM charged Higgs decays after including the N4LO
QCD corrections for large charged Higgs masses. The residual uncertainties are in
the percent range or below, depending on the particular MSSM scenario.

1 Introduction

The Standard Model (SM) of particle physics has been very successful in describing scat-
tering and decay processes from the high- to the low-energy frontiers [1]. A cornerstone of
this model is the Higgs mechanism for electroweak symmetry breaking [2]. The discovery
of the Higgs boson in 2012 [3, 4] has confirmed this realization of spontaneous symme-
try breaking and completed the required particle content of the SM [5]. Although the
SM describes all processes at the high-energy frontier and shows the proper behaviour of
processes in the high-energy limit, it cannot describe all observations. In particular, the
evidence for Dark Matter and the inability of the SM to generate the baryon asymmetry
of the universe call for physics beyond the SM.

The Higgs sector allows the electroweak force to remain weakly interacting up to
very high-energy scales [6, 7]. One of the major lines of research beyond the SM is the
formulation of grand unified theories (GUTs) which are broken down to the low-energy
SM at an energy scale of the order of 1016 GeV and can be motivated by the approximate
unification of the gauge couplings of the SM. This requires the SM to be weakly interacting
up to these high-energy scales, which is only possible if the Higgs mass takes a value in the
range between about 130 and 190 GeV [8]. This is compatible with the observed Higgs
mass of (125.09± 0.24) GeV, if the universe is allowed to be metastable [9].

However, even if the Higgs mass is in this range, a further problem arises. If the SM is
embedded in a GUT, quadratic divergences in higher-order corrections to the Higgs mass
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suggest that, if the Higgs boson couples directly or indirectly to particles with masses
at the GUT scale, quantum fluctuations tend to raise the Higgs mass to this new mass
scale [10]. To stabilize the Higgs mass at the electroweak scale, an extreme fine-tuning of
the corresponding mass counterterm is necessary. This hierarchy problem can be avoided
by the introduction of supersymmetry [11], a novel symmetry between the bosonic and
fermionic degrees of freedom of the model. Supersymmetric models are free of quadratic
divergences and solve the hierarchy problem if the superpartners of all SM particles acquire
masses below about 1 − 10 TeV. Supersymmetric GUTs predict a value of the Weinberg
angle that is in striking agreement with the precision measurements at LEP and SLC [12].
The minimal supersymmetric extension of the SM (MSSM) [13, 14] requires the existence
of 5 elementary Higgs bosons. These consist of two neutral CP-even states h,H , one
neutral CP-odd A state, and two charged Higgs states H±. For real MSSM parameters,
the Higgs sector can be described by two input parameters at leading order (LO): the
pseudoscalar mass MA and tgβ. The latter is the ratio of the two vacuum expectation
values involved in the neutral components of the two Higgs doublets.

An immediate sign of an extended Higgs sector beyond the SM would be the discovery
of a charged Higgs boson. The main search channel for heavy charged Higgs bosons is its
decay into a tb̄ final state. This work addresses charged Higgs-boson decays into heavy
quarks. The decay H+ → tb̄ provides the dominant charged Higgs decay channel for a
large range of the charged Higgs mass, depending on the MSSM scenario. In our numerical
analysis, we have adopted the M125

h benchmark scenario of Ref. [15] as a representative
case of the MSSM. This scenario is not excluded by the experimental searches. The input
parameters defined in the on-shell scheme of Ref. [15] are

M125
h : MQ̃3

= 1.5 TeV, Mℓ̃3
= 2 TeV, Mg̃ = 2.5 TeV,

M1 = M2 = 1 TeV, Ab = Aτ = At = 2.8 TeV + µ/tgβ, µ = 1 TeV , (1)

where MQ̃3
(Mℓ̃3

) denotes the (common) left- and right-handed soft SUSY-breaking mass
parameter of the third generation squarks (sleptons), Mg̃ is the gluino mass, M1,M2 are
the soft SUSY-breaking gaugino mass parameters, µ is the higgsino mass parameter and
Ab, At, Aτ are the soft SUSY-breaking trilinear coupling parameters of the third gener-
ation. We have determined all squark masses according to the procedure described in
Ref. [16]. This leads to the following values of the stop and sbottom masses for two values
of tgβ = 10, 40:

tgβ = 10

mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1
= 1496 GeV, mb̃2

= 1508 GeV

tgβ = 40

mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1
= 1479 GeV, mb̃2

= 1525 GeV. (2)

We have used the renormalization-group-improved two-loop corrected charged Higgs mass
and couplings of Ref. [17] in our analysis. The top pole mass has been chosen asmt = 172.5
GeV, the bottom MS mass as mb(mb) = 4.18 GeV and the strong coupling as αs(MZ) =
0.118 in the MS scheme. However, for the bottom mass involved in the derivation of the
sbottom sector, the derived bottom mass has been employed to avoid large uncancelled
tgβ-enhanced contributions (see discussion in Refs. [18]).
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The branching ratios of the charged Higgs boson are shown in Fig. 1 as a function
of the charged Higgs mass, for two values of tgβ = 10, 40. These plots already include
the results of our work. The decay mode into τ+ντ reaches branching ratios of more
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Figure 1: Branching ratios of the charged Higgs boson within the M125
h scenario as a

function of the charged Higgs mass for two values of tgβ = 10, 40. The results shown here
include the results of this paper. The branching ratios into charginos and neutralinos (χ̃χ̃)
involve the sum over all gaugino final states, whereas those into squarks (q̃q̃) incorporate
the sum over all squark final states. This figure has been obtained with Hdecay [19].

than 90% below the tb̄ threshold and the muonic one reaches a few 10−3. All other
leptonic decay channels of the charged Higgs bosons are unimportant, while decays into
a charm plus bottom or strange quark appear at the percent- or few permille-level. For
large charged Higgs masses beyond the chargino, neutralino and squark thresholds, decays
into these supersymmetric final states are significant, reaching branching ratios of up to
∼ 80%. Below the tb̄ decay threshold, charged-Higgs decays into off-shell top quarks,
H+ → t∗b̄ → bb̄W+, are relevant [20]. Their branching ratio can reach the percent level
for charged Higgs masses below the top-bottom threshold.

This article is structured as follows: In Section 2 we discuss the effective bottom and
top Yukawa couplings at NNLO, in Section 3 we state our main results for the charged
Higgs decays H+ → tb̄, cb̄, cs̄ before concluding in Section 4.

2 Effective Yukawa couplings

Within the MSSM, radiative corrections to the effective bottom and top Yukawa couplings
are important for moderate to large values of tgβ. The dominant part of these corrections
can be coped with by introducing effective Yukawa factors for the neutral Higgs bosons.
For charged Higgs bosons, the top and bottom Yukawa-coupling factors are identical
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to the pseudoscalar couplings at LO. In this work, we have also adopted the effective
pseudoscalar Yukawa-coupling factors for the charged Higgs boson that include higher-
order corrections. The expressions for the effective pseudoscalar Yukawa-coupling factors
are

gAb → g̃Ab =
gAb

1 + ∆b

[
1− ∆b

tg2β

]
(gAb = tgβ)

gAt → g̃At =
gAt

1 + ∆t

[
1−∆ttg

2β
]

(gAt = 1/tgβ) . (3)

The QCD and electroweak corrections to the bottom Yukawa coupling [21, 22] take the
form (CF = 4/3)

∆b = ∆QCD
b +∆elw,t

b +∆elw,1
b +∆elw,2

b

∆QCD
b =

CF

2

αs

π
mg̃ µ tgβ I(m2

b̃1
, m2

b̃2
, m2

g̃)

∆elw,t
b =

λ2
t

(4π)2
At µ tgβ I(m2

t̃1
, m2

t̃2
, µ2)

∆elw,1
b = − α1

12π
M1 µ tgβ

{
1

3
I(m2

b̃1
, m2

b̃2
,M2

1 ) +

(
c2b
2
+ s2b

)
I(m2

b̃1
,M2

1 , µ
2)

+

(
s2b
2

+ c2b

)
I(m2

b̃2
,M2

1 , µ
2)

}

∆elw,2
b = −α2

4π
M2 µ tgβ

{
c2t I(m

2
t̃1
,M2

2 , µ
2) + s2t I(m

2
t̃2
,M2

2 , µ
2)

+
c2b
2
I(m2

b̃1
,M2

2 , µ
2) +

s2b
2
I(m2

b̃2
,M2

2 , µ
2)

}
, (4)

where λt =
√
2mt/(v sin β) represents the top Yukawa coupling and α1 = g′2/4π, α2 =

g2/4π correspond to the electroweak gauge couplings. The masses mb̃1,2
and mt̃1,2 denote

the sbottom and stop masses. The variables s/ct,b = sin / cos θt,b are related to the
stop/sbottom mixing angles θt,b. The function I is defined as

I(a, b, c) =
ab log

a

b
+ bc log

b

c
+ ca log

c

a
(a− b)(b− c)(a− c)

=
1

a− b






a log
a

c
a− c

−
b log

b

c
b− c





. (5)

As can be seen from Eq. (4),the ∆b terms grow with tgβ in addition to the tgβ behaviour of
the bottom Yukawa coupling at LO. The effective coupling g̃Ab resums the ∆b contributions
to all orders. The two-loop SUSY–QCD corrections to all individual terms given in Eq. (4)
are known [23, 24, 25]. They modify the effective Yukawa couplings by about 10% for the
central renormalization-scale choice given by the average mass of the contributing SUSY
particles at one-loop order. Potentially large terms growing with Ab can be incorporated
as well by the simple replacement [22]

∆b → ∆b

1 + ∆b,1
,

where ∆b,1 = −2

3

αs

π
mg̃ Ab I(m

2

b̃1
, m2

b̃2
, m2

g̃) . (6)
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Here the two-loop SUSY–QCD corrections amount to ∼ 10% [25]. These one- and two-
loop calculations can be translated to the strange Yukawa coupling with the appropriate
replacements of the bottom/top masses and couplings by their strange/charm counter
parts [25].

For our calculation of the charged Higgs decays into quarks, the SUSY–QCD correction
∆QCD

b is the relevant one for analyzing the different perturbative orders in the strong
coupling αs. The SUSY–QCD part ∆QCD

b at one- and two-loop order is displayed in
Fig. 2 as a function of the renormalization scale of the strong coupling αs.

The ∆b corrections to the bottom Yukawa coupling amount to up to 30%− 40%, de-
pending on the value of tgβ in the M125

h benchmark scenario, and are thus sizable. The
scale dependence is significantly reduced from one- to two-loop order so that the residual
theoretical uncertainties remain at the few-percent level. For the central prediction of
the ∆QCD

b corrections to the bottom Yukawa coupling, we have chosen the average SUSY
mass µR = (mb̃1

+mb̃2
+mg̃)/3 as the renormalization scale. The corresponding effective

Yukawa-coupling factor g̃Ab of Eq. (3) is displayed in Fig. 3 as a function of the renormal-
ization scale µR. The radiative corrections included in ∆b reduce the LO coupling factor
gAb by about 10% (20%) for tgβ = 10(40), as can be inferred from the comparison of the
effective g̃Ab factor with the LO coupling gAb for the central scale choice µR = µ0.

2.1 Effective top Yukawa couplings at NNLO

The top Yukawa coupling is affected by analogous radiative corrections. The SUSY–QCD
part is discussed at the NNLO level in this section1. At the one-loop level, it is given by

∆t =
CF

2

αs

π

mg̃ µ

tgβ
I(m2

t̃1
, m2

t̃2
, m2

g̃) . (7)

This term is the leading SUSY-QCD correction to the top Yukawa couplings of the neutral
MSSM Higgs in the limit of heavy SUSY particles, analogously to the bottom case [22]. For
the incorporation of the NNLO corrections, we follow the same line as in Refs. [22, 23].
The one-loop corrections can be obtained by off-diagonal mass insertions as shown in
Fig. 4 and by replacing the vacuum expectation value v1 of the first Higgs doublet by
the full Higgs field, v1 →

√
2φ0∗

1 . This method is based on the low-energy theorems for
soft external Higgs fields [27] and results in the effective Lagrangian for the neutral Higgs
fields

Leff = −λttR
[
φ0
2 +∆ttgβφ

0∗
1

]
tL + h.c.

= −mtt̄

[
1− iγ5

G0

v

]
t− mt/v

1 + ∆t
t̄
[
ght (1−∆t tgα tgβ)h

+gHt

(
1 + ∆t

tgβ

tgα

)
H − gAt

(
1−∆ttg

2β
)
iγ5A

]
t , (8)

1The two-loop corrections to the effective top Yukawa coupling of the light scalar Higgs boson h have
first been calculated in Ref. [26].
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Figure 2: Scale dependence of the SUSY–QCD correction ∆QCD
b given in Eq. (4) at one-

loop and two-loop order in the M125
h scenario for tgβ = 10, 40 as a function of the renor-

malization scale µR and in units of the central scale choice µ0 = (mb̃1
+mb̃2

+mg̃)/3.
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Figure 3: Scale dependence of the SUSY–QCD corrected effective Yukawa coupling factors
g̃Ab of Eq. (3) at one-loop and two-loop order in the M125

h scenario as a function of the
renormalization scale µR and in units of the central scale choice µ0 = (mb̃1

+mb̃2
+mg̃)/3.

At leading order, gAb = 10(40) for tgβ = 10(40).
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tL tR

t̃L t̃R

g̃

−λt µ v1

Figure 4: One-loop diagrams of the SUSY–QCD contributions to the top self-energy with
the off-diagonal mass insertions corresponding to the corrections ∆t of the top Yukawa
couplings. The contributing particles involve top quarks t, top squarks t̃ and gluinos g̃.

where gAt,b are as defined in Eq. (3) and we used the explicit representation of the neutral
components of the Higgs iso-doublets,

φ0
1 =

1√
2

[
v1 +H cosα− h sinα + iA sin β − iG0 cos β

]

φ0
2 =

1√
2

[
v2 +H sinα+ h cosα + iA cos β + iG0 sin β

]
. (9)

In these expressions, α denotes the mixing angle of the neutral CP-even Higgs sector.
The relation between the top Yukawa coupling λt and the top mass mt is modified as

λt =
√
2

mt

v sin β(1 + ∆t)
. (10)

In this work, we assume the pseudoscalar coupling gAt to top quarks to be the relevant
effective top-Yukawa coupling for the charged Higgs boson, also at higher perturbative
order. Power counting allows us to show that the effective Lagrangian on the first line
of Eq. (8), which is given in the current-eigenstate basis, is exact for the leading terms
scaling with 1/tgβ. Any additional insertion of the vertex Feynman rule of Fig. 4 yields
another power of mt/MSUSY . The leading term of the full vertex in the expansion in
m2

t/M
2
SUSY and M2

Φ/M
2
SUSY (Φ = h,H,A) is given by the contribution ∆t in the limit of

vanishing top and Higgs masses.
The two-loop corrections to ∆t can be derived from the related two-loop corrections to

the top-quark self-energy (see Fig. 5) in the limit of vanishing quark masses (including the
top mass) for the first term of a large SUSY-mass expansion. Applying all possible off-
diagonal mass insertions in the stop propagators of Fig. 5, we have obtained the two-loop
corrections to the ∆t term. The stop and gluino masses have been renormalized on-shell.
For the strong coupling αs we have applied the MS scheme with five active flavours, where
the top quark and SUSY particles have been decoupled. The explicit expressions of the
renormalization constants have been obtained by replacing the sbottom masses by the
stop masses in the results given in Ref. [23]. In order to restore the supersymmetric
relations between the SM couplings and their supersymmetric counterparts, we have in-
cluded the anomalous counterterms within dimensional regularization which we used in
the calculation of the NNLO corrections to the top Yukawa coupling. In this way, we
have translated the calculation of the NNLO corrections presented for the bottom-quark
case in Ref. [23] to the top-quark case. The results for ∆t at one- and two-loop order are
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Figure 5: Two-loop diagrams of the SUSY–QCD contributions to the top self-energy in-
volving top quarks t, top squarks t̃, gluons g and gluinos g̃. The squark-quark contributions
to the gluino propagator have to be summed over all quark/squark flavors q/q̃, including
both directions of the flavor flow due to the Majorana nature of the gluino.
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Figure 6: Scale dependence of the SUSY–QCD correction ∆t at one-loop and two-loop
order in the M125

h scenario for tgβ = 10, 40 as a function of the renormalization scale µR

and in units of the central scale choice µ0 = (mt̃1 +mt̃2 +mg̃)/3.
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Figure 7: Scale dependence of the SUSY–QCD corrected effective Yukawa-coupling factors
g̃At at one-loop and two-loop order in the M125

h scenario as a function of the renormaliza-
tion scale µR and in units of the central scale choice µ0 = (mt̃1 +mt̃2 +mg̃)/3. At leading
order, gAb = 0.1(0.025) for tgβ = 10(40).
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shown in Fig. 6 as a function of the renormalization scale of the strong coupling αs. The
∆t terms turn out to be at the permille level in the M125

h benchmark scenario. The scale
dependence is significantly reduced from the one- to two-loop level so that the residual
relative theoretical uncertainties are at the few-percent level. For the central prediction
of the ∆t contributions to the effective top Yukawa coupling we have chosen the average
SUSY mass µR = (mt̃1 + mt̃2 + mg̃)/3 as the renormalization scale. The corresponding
effective top Yukawa-coupling factor g̃At of Eq. (3) is presented in Fig. 7 at one- and
two-loop order as a function of the renormalization scale µR. Due to the additional tg2β
enhancement of g̃At , the SUSY–QCD corrections to the effective Yukawa-coupling factor
turn out to be sizable, i.e. about 5%-10% (30%) for tgβ = 10(40), and thus of similar size
as the bottom Yukawa-coupling factor g̃Ab discussed in the previous subsection.

3 Charged Higgs decays into quarks

H+

U

D

Ũ

D̃

g̃ + H+

U

D

Ũ

g̃

+ H+

U

D

D̃

g̃

Figure 8: Virtual SUSY–QCD corrections to charged Higgs boson decays into UD quark
pairs at next-to-leading order. U denotes up-type and D down-type quarks.

In this section, we consider the genuine NLO SUSY–QCD corrections to the charged Higgs
decays into quarks. These consist of vertex-correction terms and self-energy contributions
to the external legs, see Fig. 8, which have been combined with their respective countert-
erms. For the calculation of the vertex corrections, the charged Higgs couplings to up-

i
√
2
Gij

v
H+

Ũi

D̃j

Figure 9: Feynman rule for the charged Higgs coupling to up- and down-type squarks, Ũi

and D̃j (ij = L,R or 1, 2), respectively.

and down-type squarks are required. The generic Feynman rule is depicted in Fig. 9. In
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the chiral basis, the corresponding couplings read as (gAD = 1/gAU = tgβ)

GLL = m2
Dg

A
D +m2

Ug
A
U −M2

W s2β

GLR = mD(ADg
A
D + µ)

GRL = mU (AUg
A
U + µ)

GRR = mDmU(g
A
D + gAU ) . (11)

Rotating these couplings to the sfermion mass eigenstate basis results in

G11 = GLLcUcD +GLRcUsD +GRLsUcD +GRRsUsD

G12 = −GLLcUsD +GLRcUcD −GRLsUsD +GRRsUcD

G21 = −GLLsUcD −GLRsUsD +GRLcUcD +GRRcUsD

G22 = GLLsUsD −GLRsUcD −GRLcUsD +GRRcUcD , (12)

where si = sin θi, ci = cos θi denote the mixing-angle contributions. Since the sfermion
mixing angles are proportional to the SM fermion masses, we have kept the mixing angles
for the stop and sbottom states, but have neglected them for the first two generations.

For the SUSY–QCD part of the NLO calculation, we have renormalized the quark
masses on-shell. The contribution of the SUSY masses to the QCD-running of the quark
masses is decoupled in this way. We have assumed that the pure QCD corrections factorize
from the genuine SUSY–QCD corrections, since the QCD corrections are dominated by
light-particle contributions. In the QCD part, the up-type (down-type) quark masses
have been implemented as the MS masses mU,D = mU,D(MH±) at the scale of the charged
Higgs mass in the limit of large charged Higgs masses, while closer to the decay threshold
we adopted the pole masses2 MU,D. Close to threshold, the partial decay width at NLO
reads

Γ[H+ → UD̄ ] =
3GFMH±

4
√
2π

|VUD|2 λ1/2
{

(1− µU − µD)

[
M2

U(g
A
U )

2

(
1 +

4

3

αs

π
δ+UD

)(
1 + δ̃+UD

)

+M2
D(g

A
D)

2

(
1 +

4

3

αs

π
δ+DU

)(
1 + δ̃+DU

)]

−4MUMD
√
µUµDg

A
Ug

A
D

(
1 +

4

3

αs

π
δ−UD

)[
1 + δ̃−UD

]}
, (13)

with µi = M2
i /M

2
H± and λ = (1 − µU − µD)

2 − 4µUµD. The δ̃±ij denote the individual
parts of the SUSY–QCD corrections. We have assumed the CKM matrix element VUD to
be the same in the quark and squark sector so that it factorizes globally. The coupling
factors gAQ are given in Eq. (3) at LO. The QCD-correction factors δ±ij (i, j = U,D) read
as [28, 29]

δ+ij =
9

4
+

3− 2µi + 2µj

4
log

µi

µj

+
(3
2
− µi − µj)λ+ 5µiµj

2λ1/2(1− µi − µj)
log xixj +Bij

δ−ij = 3 +
µj − µi

2
log

µi

µj
+

λ+ 2(1− µi − µj)

2λ1/2
log xixj +Bij , (14)

2Both regions have been combined by a quartic interpolation w.r.t. the masses.
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with xi = 2µi/[1− µi − µj + λ1/2] and the terms

Bij =
1− µi − µj

λ1/2
[4Li2(xixj)− 2Li2(−xi)− 2Li2(−xj) + 2 log xixj log(1− xixj)

− log xi log(1 + xi)− log xj log(1 + xj)]

−4

[
log(1− xixj) +

xixj

1− xixj
log xixj

]

+
λ1/2 + µi − µj

λ1/2

[
log(1 + xi)−

xi

1 + xi
log xi

]

+
λ1/2 − µi + µj

λ1/2

[
log(1 + xj)−

xj

1 + xj
log xj

]
.

The expressions for the SUSY–QCD corrections δ̃±ij are quite involved [30]. However, in
the limit of large SUSY parameters AU/D, µ,Mg̃ and mŨi/D̃i

(i = 1, 2), they approach
simple expressions,

δ̃+UD = −2δU + CF
αs

π

{
c2U

m2

Ũ1

−m2

Ũ2

8

[
M2

g̃ J(m
2

Ũ1

, m2

Ũ2

,M2
g̃ )− I(m2

Ũ1

, m2

Ũ2

,M2
g̃ )
]

−c2D
m2

D̃1

−m2

D̃2

8

[
M2

g̃ J(m
2

D̃1

, m2

D̃2

,M2
g̃ )− I(m2

D̃1

, m2

D̃2

,M2
g̃ )
]

−
m2

D̃1

−m2

Ũ1

8

[
M2

g̃ J(m
2

D̃1

, m2

Ũ1

,M2
g̃ )− I(m2

D̃1

, m2

Ũ1

,M2
g̃ )
]

−
m2

D̃2

−m2

Ũ2

8

[
M2

g̃ J(m
2

D̃2

, m2

Ũ2

,M2
g̃ )− I(m2

D̃2

, m2

Ũ2

,M2
g̃ )
]

−Mg̃

(
AU +

µ

gAU

)[
s2Uc

2
DI(m

2

Ũ1

, m2

D̃1

,M2
g̃ ) + c2Uc

2
DI(m

2

Ũ2

, m2

D̃1

,M2
g̃ )

+s2Us
2
DI(m

2

Ũ1

, m2

D̃2

,M2
g̃ ) + c2Us

2
DI(m

2

Ũ2

, m2

D̃2

,M2
g̃ )

−I(m2

Ũ1

, m2

Ũ2

,M2
g̃ )
]}

δ̃+DU = −2δD + CF
αs

π

{
c2D

m2

D̃1

−m2

D̃2

8

[
M2

g̃ J(m
2

D̃1

, m2

D̃2

,M2
g̃ )− I(m2

D̃1

, m2

D̃2

,M2
g̃ )
]

−c2U
m2

Ũ1

−m2

Ũ2

8

[
M2

g̃ J(m
2

Ũ1

, m2

Ũ2

,M2
g̃ )− I(m2

Ũ1

, m2

Ũ2

,M2
g̃ )
]

−
m2

Ũ1

−m2

D̃1

8

[
M2

g̃ J(m
2

D̃1

, m2

Ũ1

,M2
g̃ )− I(m2

D̃1

, m2

Ũ1

,M2
g̃ )
]

−
m2

Ũ2

−m2

D̃2

8

[
M2

g̃ J(m
2

D̃2

, m2

Ũ2

,M2
g̃ )− I(m2

D̃2

, m2

Ũ2

,M2
g̃ )
]

−Mg̃

(
AD +

µ

gAD

)[
s2Dc

2
UI(m

2

D̃1

, m2

Ũ1

,M2
g̃ ) + c2Dc

2
UI(m

2

D̃2

, m2

Ũ1

,M2
g̃ )

+s2Ds
2
UI(m

2

D̃1

, m2

Ũ2

,M2
g̃ ) + c2Ds

2
UI(m

2

D̃2

, m2

Ũ2

,M2
g̃ )

−I(m2

D̃1

, m2

D̃2

,M2
g̃ )
]}
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δ̃−UD = −δU − δD

−CF

2

αs

π
Mg̃

{(
AD +

µ

gAD

)[
c2Us

2
DI(m

2

D̃1

, m2

Ũ1

,M2
g̃ ) + s2Us

2
DI(m

2

D̃1

, m2

Ũ2

,M2
g̃ )

+c2Uc
2
DI(m

2

D̃2

, m2

Ũ1

,M2
g̃ ) + s2Uc

2
DI(m

2

D̃2

, m2

Ũ2

,M2
g̃ )

−I(m2

D̃1

, m2

D̃2

,M2
g̃ )
]

+

(
AU +

µ

gAU

)[
s2Uc

2
DI(m

2

D̃1

, m2

Ũ1

,M2
g̃ ) + c2Uc

2
DI(m

2

D̃1

, m2

Ũ2

,M2
g̃ )

+s2Us
2
DI(m

2

D̃2

, m2

Ũ1

,M2
g̃ ) + c2Us

2
DI(m

2

D̃2

, m2

Ũ2

,M2
g̃ )

−I(m2

Ũ1

, m2

Ũ2

,M2
g̃ )
]}

, (15)

with the function I of Eq. (5) and

J(a, b, c) =
∂I(a, b, c)

∂c
=

1

a− b






a log
a

c
(a− c)2

−
b log

b

c
(b− c)2





+

1

(a− c)(b− c)
. (16)

The terms δQ (Q = U,D) are related to the ∆U/D terms, respectively,

δQ = ∆Q

[
1 +

1
(
gAQ

)2

]
(Q = U,D) . (17)

For the third generation, ∆U is given by ∆t of Eq. (7) and ∆D by ∆QCD
b of Eq. (4).

The use of the effective up- and down-type Yukawa couplings g̃AU , g̃
A
D at LO leads to

the subtraction of the δU and δD terms in Eq. (15), leaving the SUSY-remainders

δ̃+UD → δ̃+UD,rem = δ̃+UD + 2δU

δ̃+DU → δ̃+DU,rem = δ̃+DU + 2δD

δ̃−UD → δ̃−UD,rem = δ̃−UD + δU + δD (18)

in the SUSY–QCD corrections to the charged Higgs decay of Eq. (13). This yields the
improved expression of the partial decay width

Γ[H+ → UD̄ ] =
3GFMH±

4
√
2π

|VUD|2 λ1/2
{

(1− µU − µD)

[
M2

U g̃
A
U

(
1 +

4

3

αs

π
δ+UD

)(
g̃AU + gAU δ̃

+
UD,rem

)

+M2
Dg̃

A
D

(
1 +

4

3

αs

π
δ+DU

)(
g̃AD + gADδ̃

+
DU,rem

)]
(19)

−4MUMD
√
µUµD

(
1 +

4

3

αs

π
δ−UD

)[
g̃AU g̃

A
D +

g̃AUg
A
D + gAU g̃

A
D

2
δ̃−UD,rem

]}

for all charged Higgs decays into quarks. We extended our NNLO calculation of the ∆Q

(Q = t, b) contributions to the charm quarks and included ∆s terms in the effective strange
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Yukawa coupling [25]. We have implemented the effective Yukawa-coupling factors g̃AU , g̃
A
D

in every term emerging from the LO amplitude during the contraction with the NLO
amplitude, in complete analogy to the computation of neutral Higgs-boson decays into
bottom quarks, where this prescription avoids artificial singularities [22].

For large charged Higgs masses, the above expressions for the partial widths simplify.
Due to the chiral structure of the charged Higgs vertex, the QCD corrections approach
the QCD corrections to the scalar current correlator, which are known up to N4LO [31].
In the large Higgs mass regime MH± ≫ MU +MD, the improved partial decay width is
given by [28, 29, 32]

Γ[H+ → UD ] =
3GFMH±

4
√
2π

|VUD|2
[
m2

U g̃
A
U

(
g̃AU + gAU δ̃

+
UD,rem

)
(20)

+m2
Dg̃

A
D

(
g̃AD + gADδ̃

+
DU,rem

)]
(1 + δQCD) ,

where mU,D denote the MS masses evaluated at the scale of the charged Higgs-mass MH±.
In this expression, we have used the effective Yukawa coupling g̃AU/D in every contribution

that emerges from the LO amplitude, as in Eq. (19), but we use the LO Yukawa-coupling
factors for the SUSY-remainder itself at the amplitude level. The QCD corrections δQCD

are given by [31]

δQCD = 5.67
αs(MH±)

π
+ (35.94− 1.36NF )

[
αs(MH±)

π

]2

+(164.14− 25.77NF + 0.259N2
F )

[
αs(MH±)

π

]3

+(39.34− 220.9NF + 9.685N2
F − 0.0205N3

F )

[
αs(MH±)

π

]4
, (21)

where large logarithms are absorbed in the MS masses mU,D at the charged-Higgs mass
scale and we have used NF = 5.

We have implemented these improved results for the partial charged Higgs decay
widths into heavy quarks, H+ → tb̄, cb̄, cs̄, using the corresponding expressions for ∆t,
∆b, ∆c and ∆s up to NNLO in the code Hdecay [19]. This allows us to predict these
partial charged Higgs decay widths with approximate NNLO SUSY–QCD precision within
the MSSM. In our numerical analysis, for the SUSY-remainders δ̃±ij themselves we have
consistently used the top pole mass and the derived bottom mass, in accordance with their
treatment in the stop and sbottom sectors [16]. Fig. 10 shows the size of the individual
NLO SUSY coefficients δ̃±ij (i, j = t, b) as a function of the charged Higgs mass within the
M125

h benchmark scenario for two values of tgβ = 10, 40. The upper curves correspond
to the SUSY-remainders δ̃±ij,rem after absorbing the dominant ∆t/b terms in the effective
Yukawa coupling factors g̃At/b, while the lower curves exhibit the full NLO SUSY–QCD
corrections without using the effective Yukawa couplings, i.e. the ∆b,t terms are part of
the fixed-order NLO correction. It is clearly visible that for charged Higgs masses up
to about 2 TeV the SUSY-remainders are in the percent range and below so that the
effective Yukawa-coupling factors g̃t,b alone yield a reliable approximation of the full NLO
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Figure 10: Individual NLO coefficients δ̃±ij (i, j = t, b) of the decay width Γ(H+ → tb̄)
as a function of the charged Higgs mass with and without the ∆t/b contributions in the
M125

h scenario. The upper curves show the sizes of the SUSY-remainders, while the lower
curves correspond to the full corrections including the ∆t/b contributions, without using
the effective Yukawa couplings.
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results. It should be noted that also the ∆t terms contained in the effective top Yukawa
coupling factor g̃At provide an excellent approximation of the NLO SUSY–QCD corrections
emerging from the top-Yukawa coupling. This can be understood from the leading terms in
the large SUSY-mass expansion of Eq. (15): The remainder terms are either not enhanced
for large values of tgβ or the tgβ-enhanced contributions are proportional to differences
of the function I of Eq. (5) that are small for nearly degenerate soft SUSY-breaking
squark-mass parameters. Only for larger Higgs masses close to and above the virtual
stop and sbottom thresholds the remainders turn out to be more sizable, as expected
for kinematical reasons. For a charged Higgs mass below about 2 TeV, this result can
also be used for an NNLO approximation of the SUSY–QCD corrections, since the SUSY
remainder of the NNLO corrections is expected to be even further suppressed in the limit
of large SUSY-masses.

In Fig. 11 we show the partial decay width Γ(H+ → tb̄) with pure QCD corrections
and NLO/approximate NNLO (in terms of the effective Yukawa couplings) SUSY–QCD
corrections as a function of the charged Higgs mass. We show the results for two values
of tgβ = 10, 40 and for the central scale choices. While the NLO SUSY–QCD corrections
modify the partial decay width substantially, the approximate NNLO corrections are still
relevant. They are at the level of a few percent over the full charged Higgs-mass range
and reduce the theoretical uncertainties related to the scale choice to the percent level.
The analogous picture emerges for the subleading decay modes H+ → cb̄ and H+ → cs̄,
as can be inferred from Fig. 12 that includes the analogous SUSY–QCD corrections to
the charm and strange Yukawa couplings.

4 Conclusions

In this work we have re-examined the charged Higgs-boson decays into heavy quarks
within the MSSM. We rederived the genuine NLO SUSY–QCD corrections and combined
them with the usual QCD corrections in a factorized form. We discussed the role of intro-
ducing effective down-type and up-type Yukawa couplings that constitute the dominant
contributions to the genuine SUSY–QCD corrections and analyzed the accuracy of this
approximation to the full contributions. Since the SUSY-remainder beyond the effective
Yukawa couplings turned out to be small at NLO and we expect the same to be valid
beyond NLO, we can obtain approximate NNLO results for the genuine SUSY–QCD cor-
rections by evaluating these corrections to the effective Yukawa couplings. This amounts
to calculating the down-type ∆D and up-type ∆U corrections at NNLO. The NNLO cal-
culation to ∆U is new in our work. Combining these approximate NNLO SUSY–QCD
corrections with the usual QCD corrections that are known up to N4LO for large Higgs
masses, we have obtained an approximate NNLO result for charged Higgs-boson decays
into heavy quarks. We have applied our calculation to the charged Higgs-boson decays
H+ → tb̄, cb̄, cs̄ in particular, but have implemented these corrections in the public code
Hdecay [19] for all charged Higgs decays into quarks. This makes the theoretical predic-
tions of the charged Higgs decays more precise than previously. The new implementations
in Hdecay will be made public soon.

Our calculation can easily be extended to non-minimal supersymmetric models as
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Figure 11: Partial decay width of H+ → tb̄ at different orders of the SUSY–QCD cor-
rections. The dotted (green) lines include the usual QCD corrections involving the MS
Yukawa couplings, but no genuine SUSY–QCD corrections. The dashed (blue) lines in-
volve the full NLO SUSY–QCD remainders in addition to the effective Yukawa couplings
that have been used at the 1-loop level in SUSY–QCD. The full (red) lines display the ap-
proximate results (aNNLO) including the 2-loop SUSY–QCD corrections to the effective
Yukawa couplings.
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Figure 12: Same as Fig. 11 but for H+ → cb̄ (top) and H+ → cs̄ (bottom) for tgβ = 40.
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e.g. the next-to-MSSM (NMSSM). This requires taking into account an extended Higgs
sector involving more mixing angles than in the MSSM. The translation is straightfor-
ward, as demonstrated for the public code NMSSMCALC [33] that computes the radiatively
corrected Higgs masses and decay width including all available higher-order corrections.
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