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The violation of the Bell inequality is one of the hallmarks of quantum mechanics and can be used to rule
out local deterministic alternative descriptions. We utilize the data analysis published by the LHCb
Collaboration on the helicity amplitudes for the decay B0 → J=ψK�ð892Þ0 to compute the entanglement
among the polarizations of the final vector mesons and the violation of the Bell inequality that it entails. We
find that quantum entanglement can be detected with a significance well above 5σ (nominally 84σ) and Bell
inequality is violated with a significance well above 5σ (nominally 36σ)—thereby firmly establishing these
distinguishing feature of quantum mechanics at high energies in a collider setting and in the presence of
strong and weak interactions. Entanglement is also present and the Bell inequality is violated in other
decays of the B mesons into vector mesons, but with lesser significance.
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Introduction. The violation of the Bell inequality [1] is a
phenomenon that shows that quantum mechanics cannot be
explained by any local hidden variable theory, which
assumes that physical systems have definite properties
independent of measurement. It has been verified experi-
mentally with the polarizations of low-energy (that is, few
eV) photons in [2,3]: two photons are prepared into a
singlet state and their polarizations measured along differ-
ent directions to verify their entanglement [4] and the
violation of the Bell inequality.
Verifying quantum entanglement and the violation of the

Bell inequality in the presence of strong and weak
interactions would tell us whether these fundamental forces
of nature exhibit quantum correlations and nonlocality,
which would have profound implications for our under-
standing of reality. In order to test the inequality at higher
energies, we need a sufficiently heavy scalar (or pseudo-
scalar) particle decaying into two spin-1=2 or spin-1 states.
While we do not know of any data in the case of fermions,
these are available for the two final states being massive
vectorlike particles. The setup in the latter case closely
resembles that in which the polarizations of two photons
prepared into a singlet state are measured—except that the
photon polarizations are described by a two-value quantum

state, or qubit, while those of the massive spin-1 state have
three values and are described as qutrits.
The most promising examples can be found among B

mesons decaying into comparatively heavy final states with
approximately equal shares of longitudinal and transverse
polarizations. In addition, larger branching fractions make
for better statistics. These requirements single out the decay
B0 → J=ψK�ð892Þ0 as the best candidate. The data analy-
sis of the LHCb collaboration for this decay [5] provides
the helicity amplitudes necessary for the test. They make it
possible to extend the testing of the violation of Bell
identities to energies of the order of 5 GeV—which are a
billion times larger than those utilized in [2,3,6]. The same
decay has previously been studied by the experiments
CLEO [7], CDF [8], Belle [9], BABAR [10], and D0 [11].
We only use the most recent analysis because it is the most
precise.
In this Letter, we explain why the B0 → J=ψK�ð892Þ0

decay provides a most favorable setting, introduce two
operators to quantify entanglement and violation of the Bell
inequality for a two-qutrit system, compute the expectation
values of these two operators using the polarization
amplitudes provided in [5], and show that quantum
entanglement is present with a significance well above
5σ (nominally 84σ) and the Bell inequality is violated with
a significance well above 5σ (nominally 36σ). This result
firmly establishes this quantum mechanical hallmark for a
system of two qutrits, and it does it at high energies and in
the presence of strong and weak interactions—thereby
extending what is known to be true for qubits, at low
energies and for electromagnetic interactions.
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We also analyze the decays B0 → ϕK�ð892Þ0,
B0 → ρK�ð892Þ0, Bs → J=ψϕ, and Bs → ϕϕ, which have
sizable transverse polarizations, and find that quantum
entanglement is present with a significance of 5.35σ,
5.84σ, 22.8σ, and 19.8σ, respectively, and they violate
the Bell inequality with a significance of 1.1σ, 1.4σ, 5.8σ,
and 8.2σ, respectively.
Previous inquiries about Bell inequality violations with

data from heavy-particle physics have been presented for
kaons [12] and for the B0-B̄0 system [13]. Both of
these examples, though providing important clues, are
indirect tests: the first relies on the measure of the CP
violating parameter ε0=ε, the second on oscillations in
flavor space.

Materials. The analysis of the decay B0 → J=ψK�ð892Þ0
in [5] is based on the data sample collected in pp
collisions at 7 TeV (part of run 1 of the LHC) with the
LHCb detector and corresponds to an integrated luminosity
of 1 fb−1. The branching fraction for this decay is
ð1.27� 0.05Þ×10−3 [14].
The selection ofB0 → J=ψK�ð892Þ0 events, as explained

in [5], is based upon the combined decays of the
J=ψ → μþμ− and K�ð892Þ0 → Kþπ− final states. The
muons, as they leave two oppositely charged tracks origi-
nating from a common vertex, are selected by taking their
transverse momentum pT > 500 MeV=c. The invariant
mass of this pair of muons is required to be in the range
between 3030 and 3150 MeV=c2. The kaon and the pion
leave two oppositely charged tracks that originate from the
same vertex. It is required that the K�ð892Þ0 has transverse
momentum pT > 2 GeV=c and invariant mass in the range
826–966 MeV=c2. The B0 are reconstructed from the J=ψ
and K�ð892Þ0 candidates, with the invariant mass of the
μþμ− pair constrained to the J=ψ mass. The resulting B0

candidates are required to have an invariant mass of the
system J=ψKþπ− in the range 5150–5400 MeV=c2.
The polarizations of the spin-1 massive particles J=ψ

and K�ð892Þ0 can be reconstructed using the momenta of
the final charged mesons and leptons in which they decay.
The differential decay rate is described in terms of three
angles: two angles are defined by the direction of the μþ
momentum with respect to the z and x axes in the J=ψ rest
frame, and one by the direction of the momentum of theKþ
with respect to the opposite direction of the momentum of
the J=ψ in the K�ð892Þ0 → Kþπ− rest frame, as shown in
Fig. 2 of [5]. The longitudinal polarization amplitudes A0

and the two transverse amplitudes A⊥ and Ak are found as
coefficients of combinations of trigonometric functions of
these three angles [15].
The analysis in [5] gives the two complex polarization

amplitudes Ak and A⊥ as well as the nonresonant amplitude
As. We need only the former two and take the following

values for the squared moduli and phases of these polari-
zation amplitudes:

jAkj2 ¼ 0.227� 0.004ðstatÞ � 0.011ðsystÞ;
jA⊥j2 ¼ 0.201� 0.004ðstatÞ � 0.008ðsystÞ;
δk½rad� ¼ −2.94� 0.02ðstatÞ � 0.03ðsystÞ;
δ⊥½rad� ¼ 2.94� 0.02ðstatÞ � 0.02ðsystÞ; ð1Þ

with jA0j2 þ jA⊥j2 þ jAkj2 ¼ 1, and we can take δ0 ¼ 0

because there are only two physical phases. The correla-
tions among the amplitude and phase uncertainties are
also provided in [5]. The polarization amplitudes are
complex mostly because of the final-state interactions
(see, for instance, [16]). The values in Eq. (1) have errors
that are 2 or 3 times smaller than those of the previous
analyses [7–11].
The decays of the J=ψ and K� take place well outside of

the range of the strong interactions ongoing at the time
of their production (which is due to gluons exchange and is
about 3 × 10−5 fm [17]) as well as of the final-state
interactions. The distance between the two mesons, at
the time they both have decayed, can be estimated to be
d ≃ 1.1 × 103 fm. This distance must be compared with the
typical range of the virtual meson exchange, that is, at most
equal to λπ ¼ 1.5 fm. We thus obtain that d=λπ ≃ 750,
indicating the impossibility of any strong interaction
exchange between the two decaying particles. About the
same distance is found for the decay into J=ψϕ, while
values of d between 100 and 10 are found for the other
decays, namely ϕϕ, ϕK�, and, with the least separa-
tion, ρK�.

Methods. There are three helicity amplitudes for the decay
of a scalar, or pseudo-scalar, into two massive spin-1
particles:

hλ ¼ hV1ðλÞV2ð−λÞjHjBi with λ ¼ ðþ; 0;−Þ; ð2Þ

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we
use the direction of the momenta of the decay products
in the B0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and ðþ; 0;−Þ is a shorthand for
ðþ1; 0;−1Þ.
The polarizations in the decay are described by a

quantum state that is pure for any values of the helicity
amplitudes [22,23]. This state can be written as
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jΨi ¼ 1
ffiffiffiffiffiffiffiffiffi

jHj2
p

�

hþjV1ðþÞV2ð−Þi

þ h0jV1ð0ÞV2ð0Þi þ h−jV1ð−ÞV2ðþÞi�; ð3Þ

with

jHj2 ¼ jh0j2 þ jhþj2 þ jh−j2: ð4Þ

The relative weight of the transverse components
jV1ðþÞV2ð−Þi and jV1ð−ÞV2ðþÞi with respect to the
longitudinal one jV1ð0ÞV2ð0Þi is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs to
the Jz ¼ 0 component of the S ¼ 0, 1, or 2 state.
The polarization density matrix ρ ¼ jΨihΨj can be

written in terms of the helicity amplitudes as

ρ ¼ 1

jHj2
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ð5Þ

on the basis given by the tensor product of the polarizations
ðþ; 0;−Þ of the produced spin-1 particles.
The helicity amplitudes are mapped into the polarization

amplitudes used in Eq. (1) by the correspondence

h0
jHj ¼ A0;

hþ
jHj ¼

Ak þA⊥
ffiffiffi

2
p ;

h−
jHj ¼

Ak −A⊥
ffiffiffi

2
p : ð6Þ

Having written the density matrix, we can study the
entanglement among the polarizations of the two massive
vector particles by means of a simple observable.
For a bipartite pure state, like the one in Eq. (5), the
von Neumann entropy [4]

E ¼ −Tr
�

ρSA ln ρSA
� ¼ −Tr

�

ρSB ln ρSB
� ð7Þ

quantifies entanglement; in Eq. (7), ρSA and ρSB are the
reduced density matrices for the two subsystems SA
and SB, which are the two spin-1 mesons in the decay
under consideration. The von Neumann entropy of
a two-qutrit system satisfies 0 ≤ E ≤ ln 3. The first
equality is true if and only if the bipartite state is

separable, the second if the bipartite state is maximally
entangled.
The optimal generalization of the Bell inequality in the

case of a bipartite system made of two qutrits is the Collins,
Gisin, Linden, Massar, and Popescu (CGLMP) inequality
[24,25]. In order to explicitly write this condition, consider
again the components SA and SB of the bipartite qutrit
system. For the qutrit SA, select two spin measurement
settings, ŜA1

and ŜA2
, which correspond to the projective

measurement of two spin-1 observables having each three
possible outcomes f0; 1; 2g—that, in our case, take values
in fþ1; 0;−1g. Similarly, the measurement settings and
corresponding observables for the other qutrit SB are ŜB1

and ŜB2
. Then, denote by PðAi ¼ Bj þ kÞ the probability

that the outcome SAi
for the measurement of ŜA1

and SBj
for

the measurement of ŜBj
, with i, j either 1 or 2, differ by k

modulo 3. One can then construct the combination:

I3 ¼ PðA1 ¼ B1Þ þ PðB1 ¼ A2 þ 1Þ þ PðA2 ¼ B2Þ
þ PðB2 ¼ A1Þ − PðA1 ¼ B1 − 1Þ − PðA1 ¼ B2Þ
− PðA2 ¼ B2 − 1Þ − PðB2 ¼ A1 − 1Þ: ð8Þ

For deterministic local models, this quantity satisfies the
generalized Bell inequality

I3 ≤ 2; ð9Þ

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechanics. In
quantum mechanics, I3 in Eq. (8) can be expressed as an
expectation value of a suitable Bell operator B as

I3 ¼ Tr½ρB�: ð10Þ

The explicit form of B depends on the choice of the four
measured operators Âi and B̂i. Hence, given the two-qutrit
state ρ, it is possible to enhance the violation of the Bell
inequality (9) through a specific choice of these operators.
The numerical value of the observable I3 is bound to be
less than or equal to 4. For the case of the maximally
entangled state, the problem of finding an optimal choice of
measurements has been solved [24]. By working in the
single spin-1 basis formed by the eigenstates of the spin
operator in the direction ẑ with eigenvalues fþ1; 0;−1g,
the Bell operator takes a particular simple form:
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after rotating it into the helicity basis from the so-called
computational basis employed in [26].
Within the choice of measurements leading to the Bell

operator, there is still the freedom of modifying the mea-
sured observables through local unitary transformations,
which effectively corresponds to local changes of basis in
the measurement of the polarizations. Correspondingly, the
Bell operator undergoes the change:

B → ðU ⊗ VÞ† · B · ðU ⊗ VÞ; ð12Þ

where U and V are independent 3 × 3 unitary matrices. In
the following we make use of this freedom to maximize the
value of I3.

Results. Our results can now be given in a very
concise form. The polarization amplitudes in Eq. (1)
determine the polarization density matrix in Eq. (5) for
the decay B0 → J=ψK�ð892Þ0. The density matrix makes it
possible to estimate the observables in which we are
interested.
We determine the rotation matrices U and V in the

optimization procedure of Eq. (12) by means of the central
values in Eq. (1).
We propagate the uncertainties in the polarization

amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entanglement
among the polarizations of the final mesons for the decay
B0 → J=ψK�ð892Þ0 is given by

E ¼ 0.756� 0.009: ð13Þ

The result in Eq. (13) represents a detection of the presence
of quantum entanglement with a significance well above 5σ
(nominally 84σ).
Propagating the uncertainties through the expectation

value of the Bell operator, while keeping the two matrices
U and V fixed, we determine that I3 for the decay
B0 → J=ψK�ð892Þ0 has expectation value

I3 ¼ 2.548� 0.015; ð14Þ

and therefore the CGLMP inequality I3 < 2 is violated
with a significance well above 5σ (nominally 36σ).
Other decays of B mesons provide polarization ampli-

tudes that can be used in similar fashion to test the Bell
inequality. We list in Table I the values for the entanglement
E and the Bell operator I3 for some of the decays we have
considered. Specifically, I3 < 2 is violated with a signifi-
cance of more than 5σ in the decays Bs → ϕϕ and
Bs → J=ψϕ.

Outlook. We have shown that quantum entanglement is
present and the Bell inequality is violated by the data on the
polarization amplitudes in the decay B0 → J=ψK�ð892Þ0,
and other similar decays. The presence of entanglement and
the Bell inequality violation have very large significance
and establish these property of quantum mechanics at high
energies in a collider setting and in a system in which all
standard model interactions are involved. It is the first
time that the violation of the inequality is shown to take
place in a system of two qutrits and between two different
particles.
We are aware that potential loopholes are present in any

test of the Bell inequality. These loopholes have been
closed in low-energy tests with photons [6,27] and in
atomic physics [28].
To close the locality loophole—which exploits events

not separated by a spacelike interval, as is the case for the
J=ψK� decays—one must consider decays in which the
produced particles are identical, as in the Bs → ϕϕ decay,
and therefore their lifetimes are also the same. The actual
decays take place with an exponential spread, with, in the
ϕϕ case, more than 90% of the events being separated by a
spacelike interval.
The presence and relevance of other possible loopholes

is still an open question in the high-energy setting and is
beyond the scope of the present Letter.

Acknowledgements.We thankM. Dorigo for discussions on
various aspects of B-meson physics. L. M. is supported by
Estonian Research Council Grant No. PRG356.

TABLE I. Entanglement and Bell operator I3 for some
B-meson decays. An asterisk indicates that the correlations in
the uncertainties of the polarization amplitudes are not given in
the corresponding reference and therefore only an upper bound
on the propagated uncertainty can be computed.

E I3

• B0 → J=ψK�ð892Þ0 [5] 0.756� 0.009 2.548� 0.015
• B0 → ϕK�ð892Þ0 [18] 0.707� 0.133� 2.417� 0.368�
• B0 → ρK�ð892Þ0 [19] 0.450� 0.077� 2.208� 0.151�
• Bs → ϕϕ [20] 0.734� 0.037 2.525� 0.064
• Bs → J=ψϕ [21] 0.731� 0.032 2.462� 0.080
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