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Abstract. We report the latest development in ROOT/TMVA, a new tool that takes trained ONNX deep 

learning models and emits C++ code that can be easily included and invoked for fast inference of the model, 

with minimal dependency. An introduction to SOFIE (System for Optimized Fast Inference code Emit) is 

presented, with examples of interface and generated code. We discuss the latest expanded support of a 

variety of neural network operators, including convolutional and recurrent layers, as well as the integration 

with RDataFrame. We demonstrate the latest performance of this framework with a set of benchmarks. 

1.  Introduction 

Since 2005, as part of the ROOT Data Analysis Framework [1], the Toolkit for Multivariate Analysis 

(TMVA) [2] has provided an environment for the training and evaluation of a large variety of machine 

learning methods for data analysis in High Energy Physics and other scientific fields. For example, 

TMVA provides the training and inference of boosted decision trees (BDTs), which have been a popular 

algorithm for classification and regression among high energy physicist, contributing even to the Higgs 

discovery in 2012 [3-6]. 

 

The emergence of contemporary neural network design has revolutionized machine learning in recent 

years. With the emergence of deep learning, large technological companies' software solutions, such as 

TensorFlow, MXNet, and PyTorch [7-9], began to emerge and gradually dominated the landscape. 

Nowadays, numerous high-energy physics workflows, such as the CMSSW [10], have embraced and 

integrated these external technologies. 

 

SOFIE [11], the latest development work in ROOT/TMVA, aims to provide a convenient solution 

for users to conduct inference of deep learning models trained by these frameworks in a C++ based 

production environment. It takes a trained ONNX [12] model as input and outputs snippets of C++ code 

that hard-code the inference function in a header file. This function can therefore be readily included 

and run from any C++ project, with the only dependency on linear algebra libraries such as BLAS (Basic 
Linear Algebra Subprograms). A dependency on Google Protocol Buffers (protobuf) is required for 
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parsing the ONNX model file, although it is not required for using the output C++ code. This allows for 

an easy integration of the generated code in other C++ based HEP software frameworks. 

 

There have been plenty of effort in this area, including frameworks developed by tech companies 

such as ONNX Runtime [13] as well as solutions developed by the high energy physics community, 

such as Lightweight Trained Neural Network (lwtnn) [14]. Aside from software that provides inference 

on CPUs and GPUs, inference tools that specialize on other hardware, such as hls4ml [15], which emits 

FPGA implementations of machine learning algorithms, have been developed in recent years. Another 

train of thought is to provide inference as a service with integrated GPUs and FPGAs, such as SONIC 

[16]. Despite the many options available, many of the solutions still have a lot of dependencies or come 

with a runtime that is memory-heavy. SOFIE provides an alternative lightweight, plug-and-use solution 

in this front. 

 

In particular, SOFIE now accepts ONNX, Keras, PyTorch and ROOT models. We have also 

expanded the supported operators to include Conv, Pool, RNN, GRU, LSTM, BatchNorm others. Note 

that SOFIE is designed to be modular, so that users can easily contribute to it by adding custom operators 

without having to understand the core of the framework. SOFIE is also designed to be thread-safe so 

that multi-threaded support could be vastly expanded in the future. 

2.  Examples of Interface and Generated Code 

 

SOFIE is easy to use. To generate code, the user first needs to use a parser to parse the neural network 

format into an RModel object. Different parsers are being developed to support ONNX, ROOT, Keras 

and PyTorch formats to varying degrees. From the RModel object, we can easily generate code. 

 

 
 Fig. 1. Code snippet demonstrating the interface of SOFIE for generating code. 

  

As this code is run a header file named “model.hxx” is generated. To infer with this generated code, 

simply include it and call the pre-defined function. 

 

 
 Fig. 2. Code snippet demonstrating the use of the generated inference code. 

  

A closer look into the generated code reveals that SOFIE works by unrolling the logics of each 

operator to plain C++ code that allows maximal compiler optimization. For example, the new inference 

engine parses a general transpose operator as described by the ONNX Operator standard, with the 

hyperparameter permutation set to [3,2,1,0] (i.e., it permutes a tensor of shape [1,2,3,4] to a new shape 

of [4,3,2,1]), and emits the code snipper below. 
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Fig. 3. Code snippet demonstrating the use of inference code generation on a transpose operator, with permutation set to 

[3,2,1,0]. For this operator, it has an input size of [1,2,3,4] and an output size of [4,3,2,1].  

3.  Integration with Datagram 

 

As part of modern analysis workflow in ROOT, users can easily carry out multi-threaded inference of 

their deep learning models on data in RDataFrame. 

 

 
Fig. 4. Code snippet demonstrating the integration of SOFIE with RDataFrame.  

 

With the functor defined as: 

 
Fig. 5. Code snippet demonstrating the functor that wraps SOFIE session for RDF inference. 

 

A preliminary benchmark for inference on RDataFrame has been conducted, with a model that 

consists of 7 inputs, 5 fully connected layers of 200 units with RELU activation functions. The model 

is evaluated in a single thread using RDataFrame and SOFIE, ONNX Runtime or LWTNN as inference 

engine. 
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Fig. 5. Benchmark results for conducting inference on RDataFrame data with SOFIE and other frameworks. 

4.  Performance Benchmark 

 

Performance benchmark of SOFIE on linear/dense/fully connected layers has been demonstrated before 

and presented at CHEP 2021 [17]. Here we reproduce the results performed on a fully connected 

network with 10 layers of 50 neurons wide each, coupled with the ReLu activation function. 

  

 
Fig. 5. Benchmark results for dense layers. 

 

Our latest development work on SOFIE included expanded support for convolutional neural network. 

Here, we performed inference on a convolutional network of filter size (5,5) and channel number varying 

from 1 to 128, on input data consisting of images of size (100,100). We have also performed benchmark 

on a full-fledge CNN architecture of resnet18. 

 

 
Fig. 6. Benchmark results for conv layers. 

 

Here, a similar pattern to that of linear layers emerge. For simpler models like a 1-layer conv-based 

network, we achieved better performance than ONNX Runtime. For more complex models with higher 

no. of layers and more complicated flow of data through the network operators, we achieve slightly 

worse performance comparable with ONNX Runtime. The likely reason for this pattern is that ONNX 
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Runtime maintains a running process during inference process that allows for greater optimization, but 

at a cost of greater overhead. For larger, more complex model, this is more likely to pay off. 

5.  Conclusion and Future Work 

 

We reported the latest development work regarding the inference code generation engine SOFIE in 

ROOT/TMVA. Specifically, we reported on the expanded support for input data format (ROOT, Keras, 

PyTorch) and operators (Conv, RNN, LSTM, GRU, BatchNorm…) as well as integration with 

RDataFrame for convenient inference of data in modern ROOT data analysis workflow. The latest 

SOFIE has been included in ROOT 6.24 experimental. 

 
As the next step in our plan of development, we aim to invest greater effort in further inference speed 

optimization, including deeper investigation of operator-level optimization and compiler optimization. 
We would also like to expand operator support according to our users’ feedback and demand. Finally, 

we intend to improve interoperability with other ROOT modern analysis facilities such as RDataFrame.  
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