
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012013

IOP Publishing
doi:10.1088/1742-6596/2438/1/012013

1

C++ Code Generation for Fast Inference of Deep Learning

Models in ROOT/TMVA

Sitong An1,2, Lorenzo Moneta1, Sanjiban Sengupta3, Ahmat Hamdan4, Federico

Sossai5, Aaradhya Saxena6

1 CERN, Esplanade des Particules 1, 1211 Meyrin, Geneva, Switzerland
2 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, U.S.
3 IIT Bhubaneswar, Gothapatana, Malipada, Bhubaneswar, Odisha 751029, India
4 ISSEA, Rue Pasteur, Yaoundé, Cameroon
5 University of Padova, Via VIII Febbraio, 2, 35122 Padova PD, Italy
6 IIT Roorkee, Roorkee - Haridwar Highway, Roorkee, Uttarakhand 247667, India

s.an@cern.ch

Abstract. We report the latest development in ROOT/TMVA, a new tool that takes trained ONNX deep

learning models and emits C++ code that can be easily included and invoked for fast inference of the model,

with minimal dependency. An introduction to SOFIE (System for Optimized Fast Inference code Emit) is

presented, with examples of interface and generated code. We discuss the latest expanded support of a

variety of neural network operators, including convolutional and recurrent layers, as well as the integration

with RDataFrame. We demonstrate the latest performance of this framework with a set of benchmarks.

1. Introduction

Since 2005, as part of the ROOT Data Analysis Framework [1], the Toolkit for Multivariate Analysis

(TMVA) [2] has provided an environment for the training and evaluation of a large variety of machine

learning methods for data analysis in High Energy Physics and other scientific fields. For example,

TMVA provides the training and inference of boosted decision trees (BDTs), which have been a popular

algorithm for classification and regression among high energy physicist, contributing even to the Higgs

discovery in 2012 [3-6].

The emergence of contemporary neural network design has revolutionized machine learning in recent

years. With the emergence of deep learning, large technological companies' software solutions, such as

TensorFlow, MXNet, and PyTorch [7-9], began to emerge and gradually dominated the landscape.

Nowadays, numerous high-energy physics workflows, such as the CMSSW [10], have embraced and

integrated these external technologies.

SOFIE [11], the latest development work in ROOT/TMVA, aims to provide a convenient solution

for users to conduct inference of deep learning models trained by these frameworks in a C++ based

production environment. It takes a trained ONNX [12] model as input and outputs snippets of C++ code

that hard-code the inference function in a header file. This function can therefore be readily included

and run from any C++ project, with the only dependency on linear algebra libraries such as BLAS (Basic
Linear Algebra Subprograms). A dependency on Google Protocol Buffers (protobuf) is required for

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012013

IOP Publishing
doi:10.1088/1742-6596/2438/1/012013

2

parsing the ONNX model file, although it is not required for using the output C++ code. This allows for

an easy integration of the generated code in other C++ based HEP software frameworks.

There have been plenty of effort in this area, including frameworks developed by tech companies

such as ONNX Runtime [13] as well as solutions developed by the high energy physics community,

such as Lightweight Trained Neural Network (lwtnn) [14]. Aside from software that provides inference

on CPUs and GPUs, inference tools that specialize on other hardware, such as hls4ml [15], which emits

FPGA implementations of machine learning algorithms, have been developed in recent years. Another

train of thought is to provide inference as a service with integrated GPUs and FPGAs, such as SONIC

[16]. Despite the many options available, many of the solutions still have a lot of dependencies or come

with a runtime that is memory-heavy. SOFIE provides an alternative lightweight, plug-and-use solution

in this front.

In particular, SOFIE now accepts ONNX, Keras, PyTorch and ROOT models. We have also

expanded the supported operators to include Conv, Pool, RNN, GRU, LSTM, BatchNorm others. Note

that SOFIE is designed to be modular, so that users can easily contribute to it by adding custom operators

without having to understand the core of the framework. SOFIE is also designed to be thread-safe so

that multi-threaded support could be vastly expanded in the future.

2. Examples of Interface and Generated Code

SOFIE is easy to use. To generate code, the user first needs to use a parser to parse the neural network

format into an RModel object. Different parsers are being developed to support ONNX, ROOT, Keras

and PyTorch formats to varying degrees. From the RModel object, we can easily generate code.

 Fig. 1. Code snippet demonstrating the interface of SOFIE for generating code.

As this code is run a header file named “model.hxx” is generated. To infer with this generated code,

simply include it and call the pre-defined function.

 Fig. 2. Code snippet demonstrating the use of the generated inference code.

A closer look into the generated code reveals that SOFIE works by unrolling the logics of each

operator to plain C++ code that allows maximal compiler optimization. For example, the new inference

engine parses a general transpose operator as described by the ONNX Operator standard, with the

hyperparameter permutation set to [3,2,1,0] (i.e., it permutes a tensor of shape [1,2,3,4] to a new shape

of [4,3,2,1]), and emits the code snipper below.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012013

IOP Publishing
doi:10.1088/1742-6596/2438/1/012013

3

Fig. 3. Code snippet demonstrating the use of inference code generation on a transpose operator, with permutation set to

[3,2,1,0]. For this operator, it has an input size of [1,2,3,4] and an output size of [4,3,2,1].

3. Integration with Datagram

As part of modern analysis workflow in ROOT, users can easily carry out multi-threaded inference of

their deep learning models on data in RDataFrame.

Fig. 4. Code snippet demonstrating the integration of SOFIE with RDataFrame.

With the functor defined as:

Fig. 5. Code snippet demonstrating the functor that wraps SOFIE session for RDF inference.

A preliminary benchmark for inference on RDataFrame has been conducted, with a model that

consists of 7 inputs, 5 fully connected layers of 200 units with RELU activation functions. The model

is evaluated in a single thread using RDataFrame and SOFIE, ONNX Runtime or LWTNN as inference

engine.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012013

IOP Publishing
doi:10.1088/1742-6596/2438/1/012013

4

Fig. 5. Benchmark results for conducting inference on RDataFrame data with SOFIE and other frameworks.

4. Performance Benchmark

Performance benchmark of SOFIE on linear/dense/fully connected layers has been demonstrated before

and presented at CHEP 2021 [17]. Here we reproduce the results performed on a fully connected

network with 10 layers of 50 neurons wide each, coupled with the ReLu activation function.

Fig. 5. Benchmark results for dense layers.

Our latest development work on SOFIE included expanded support for convolutional neural network.

Here, we performed inference on a convolutional network of filter size (5,5) and channel number varying

from 1 to 128, on input data consisting of images of size (100,100). We have also performed benchmark

on a full-fledge CNN architecture of resnet18.

Fig. 6. Benchmark results for conv layers.

Here, a similar pattern to that of linear layers emerge. For simpler models like a 1-layer conv-based

network, we achieved better performance than ONNX Runtime. For more complex models with higher

no. of layers and more complicated flow of data through the network operators, we achieve slightly

worse performance comparable with ONNX Runtime. The likely reason for this pattern is that ONNX

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012013

IOP Publishing
doi:10.1088/1742-6596/2438/1/012013

5

Runtime maintains a running process during inference process that allows for greater optimization, but

at a cost of greater overhead. For larger, more complex model, this is more likely to pay off.

5. Conclusion and Future Work

We reported the latest development work regarding the inference code generation engine SOFIE in

ROOT/TMVA. Specifically, we reported on the expanded support for input data format (ROOT, Keras,

PyTorch) and operators (Conv, RNN, LSTM, GRU, BatchNorm…) as well as integration with

RDataFrame for convenient inference of data in modern ROOT data analysis workflow. The latest

SOFIE has been included in ROOT 6.24 experimental.

As the next step in our plan of development, we aim to invest greater effort in further inference speed

optimization, including deeper investigation of operator-level optimization and compiler optimization.
We would also like to expand operator support according to our users’ feedback and demand. Finally,

we intend to improve interoperability with other ROOT modern analysis facilities such as RDataFrame.

References

[1] R. Brun, F. Rademakers, Nucl.Instrum.Meth.A 389 (1997) 81-86

[2] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli,

O. Cohen, A. Christov et al., TMVA - Toolkit for Multivariate Data Analysis (2007),

physics/0703039

[3] S. Chatrchyan et al. (CMS), Phys. Lett. B710, 403 (2012), 1202.1487

[4] The ATLAS collaboration, Evidence for Higgs Boson Decays to the τ+τ− Final State with the

ATLAS Detector (2013)

[5] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo, T. Bergauer,

M. Dragicevic, J. Erö, C. Fabjan et al., Physics Letters B 716, 30–61 (2012)

[6] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim, O. Abdi- nov, R.

Aben, B. Abi, M. Abolins et al., Physics Letters B 716, 1–29 (2012)

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard et al., TensorFlow: A system for large-scale machine learning (2016)

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep Learning

Library (2019)

[9] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems

(2015), 1512.01274

[10] CMSSW, GitHub repository, http://cms-sw.github.io

[11] ROOT/SOFIE, GitHub repository, https://github.com/root-project/root/tree/master/tmva/sofie

[12] B. Junjie, L. Fang, Z. Ke et al, ONNX: Opern Neural Network Exchange (2019)

[13] ONNX Runtime Developers, ONNX Runtime (2021), https://onnxruntime.ai/

[14] D. Guest, J. Smith, M. Paganini, M. Kagan, M. Lanfermann, A. Krasznahorkay, D. Marley, A.

Ghosh, B. Huth, Lightweight Trained Neural Network (2020), DOI 10.5281/zenodo.4310003.

GitHub repository, https://github.com/lwtnn/lwtnn.

[15] J. Duarte et al., JINST 13 P07027 (2018), Fast inference of deep neural networks in FPGAs for

particle physics

[16] K Pedro, SonicCMS. GitHub repository, https://github.com/cms-

sw/cmssw/tree/master/HeterogeneousCore/SonicCore.

[17] S.An, L. Moneta, C++ Code Generation for Fast Inference of Deep Learning Models in

ROOT/TMVA, EPJ Web Conf. 251 (2021), CHEP 2021

http://cms-sw.github.io/
https://github.com/root-project/root/tree/master/tmva/sofie

