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The impact of light scalars coupled conformally and disformally to matter on the geodetic and frame-
dragging precessions is calculated. For larger frequencies the disformal interaction becomes increasingly
relevant. We use several satellite experiments and pulsar time of arrival measurements to derive bounds on
the couplings, combining the Gravity Probe B, LARES, LAGEOS and GRACE results with pulsar timings.
Forecasts for future constraints on the conformal and the disformal couplings based on the GINGER
experiment, i.e. a future measurement of the Sagnac effect on Earth, the motion of S stars around the
Galactic Center and future pulsar timing observations are presented.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been
probed using gravitational tests in the solar system
and within galactic environments—most recently by the
gravitational wave detection. Despite its resounding
success in describing the present day Universe, GR’s
connection to both early and late time phenomena is
problematic. Examples can be found in the early Universe
with the unexplained nature of the big bang singularity or
the initial conditions that would give rise to the standard
model of big bang cosmology. Another area where GR
does not give a definite answer is the nature of the
accelerated expansion of the Universe [1,2]. The famous
and mysterious component of the Universe called dark
energy does not have a consistent microscopic model
within quantum field theory and GR [3]. Both of these
reasons have motivated the study of extensions of GR in
different astrophysical systems [4,5].

The class of theories we are broadly interested in here
can obey current observational constraints and mimic GR
when they exhibit screening effects whereby the modifi-
cations to GR are hidden at small scales. Observed large
scales are mostly unaffected by the modification of gravity
apart from some interesting and small effects on the growth
of structure. More specifically, in this paper we focus on
theories where the conformal coupling to matter depends
on the environment, i.e. the distribution of matter around
the considered objects, e.g. satellites in the Earth’s atmos-
phere or pulsars in the Milky Way.1 The most general
coupling of a scalar field to matter is obtained via the
conformal and disformal terms as appearing in the Jordan
frame metric as shown by Bekenstein in [7]. Such theories
give rise to fifth forces generically, which are subject to
strict limits by solar system tests of GR [8]. Consequently,
the effect of fifth forces need to be screened in the solar
system, giving rise to screened modified gravity models.
Such models can be screened via various mechanisms
[9–14]. All rely in different ways on the environment and
are such that the fifth force is screened in the solar system,
i.e. the theory evades all solar system tests, and can give rise
to modifications to GR on cosmological scales. Similarly
the disformal coupling to matter gives rise to modifications
to GR which can be constrained from the solar system to
collider physics [15,16]. This results in constraints on the
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1For a description of these models and a comparison with
scalarization, see [6].
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disformal coupling to matter [17–25] and forecasts for
future satellite experiments [26,27].
We analyze the effect of both the conformal and disformal

couplings on the geodetic and frame-dragging (FD) pre-
cessions. Current astrophysical observations are used to
constrain the coupling strengths in the conformal and
disformal cases. In practice, we consider scalar-tensor
theories of gravity and their effect on the precession
frequency of rotating gravitating objects [28]. The Jordan
metric gJμν is related to the Einstein metric thanks to the
metric transformation [7,19,23,29]:

gðJÞμν ¼
�
1þ 2β

ϕ

mPl

�
gðEÞμν þ 2

m2
PlΛ2

∂μϕ∂νϕ; ð1Þ

where gðJÞμν is the metric in Jordan frame and gðEÞμν is the
metric in the Einstein frame. β is conformal coupling
strength with matter, which will depend on the environment,
and Λ is the disformal coupling strength with matter. We
have denoted by mPl the Planck mass. Notice that β is
dimensionless andΛ has dimension of mass. Recently, light
scalar fields have also been suggested as possible candidates
for dark matter [30]. The coupling of such dark matter fields
to matter is also crucial for their dynamics and their eventual
detection [31–33].
These theories can be tested using gravitational meth-

ods as shown by earlier studies which focused on two
bodies in an orbital motion [34–41], a well studied
example in GR, from which similar properties can be
inferred for light scalars with conformal and disformal
couplings [6,15,42–48].
We will focus on tests of the geodetic and the FD effects.

The geodetic effect [or de Sitter (dS)] follows from the
curvature of spacetime predicted by general relativity, and
the way it acts on a vector carried along with an orbiting
body [49,50]. The FD, or Lense-Thirring, effect is one of
the main predictions of Einstein’s theory of gravitation in
the limit of weak field and slow motion, i.e. it represents a
tiny relativistic precession of the orbital plane of a satellite
produced by the angular momentum of the primary object
[51–57]. The difference between the geodetic and FD
effects is that the de Sitter one is due simply to the
presence of a central mass, whereas FD precession is
due to the rotation of the central mass. The total precession
is calculated by combining the de Sitter precession with the
FD precession. The precessions read in GR

ΩdS ¼
3Gnb

2ac2ð1 − e2Þ
m2ð4m1 þ 3m2Þ
ðm1 þm2Þ4=3

; ð2aÞ

ΩFD ¼ 3GS

2ac2ð1 − e2Þ3=2 ; ð2bÞ

where G is the Newtonian constant, nb ¼ 2π=Pb is the
orbital frequency, a is the semimajor axis, c is the speed of

light, e is the eccentricity, S is the spin of the central body
and m1;2 are the masses of the bodies. The directions of the
vectors are

Ω⃗dS ¼ ΩdSk⃗; Ω⃗FD ¼ ΩFDðs⃗0 − 3ðk⃗ · s⃗0Þk⃗Þ; ð3Þ

where k⃗ ¼ J⃗=J is the unit vector along the orbital angular
momentum, J⃗ is the orbital angular momentum and s⃗ is the
spin vector of the companion body.
Reference [15] has extended the leading order calcu-

lations in GR to include both conformal and disformal
couplings to matter in scalar-tensor theories applied to
the two-body problem in the post-Newtonian expansion.
This enables one to test these theories in new regimes, such
as the Galactic Center where stars and the supermassive
black hole orbit around each other [58]. Reference [6]
derives the corresponding post-Keplerian parameters and
the influence of the conformal and disformal couplings.
The higher derivative nature of the disformal interaction is
parametrized using the dimensionless quantity ϵΛ which
relates the disformal coupling interaction to the frequency

ϵΛ ¼ ðβ · nb=ΛÞ2
ð1 − e2Þ3 ; ð4Þ

where nb ¼ 2π=Pb is the frequency of the motion and Pb is
the period of the motion. ϵΛ parametrizes the contributions
of the disformal interaction to the post-Keplerian param-
eters (PKP). As we will see, this parameter also appears
naturally in the geodetic and in the FD terms. Figure 1
compares the experiment that we discuss in this paper and
in particular the relative error of the precession rate vs the
orbital period. For larger nb with lower errors the bound on
the disformal coupling is expected to be the strongest.
Notice that the bounds derived here from satellite

experiments are not as strong as the ones obtained in

FIG. 1. Comparison of the geodetic and the frame dragging
measurements from different datasets that are discussed in this
paper: We give the accuracy of the experiment vs the orbital
frequency.

BENISTY, BRAX, and DAVIS PHYS. REV. D 108, 063031 (2023)

063031-2



particle physics [16] or even with pulsar timings [6]. The
particle physics and pulsar timing results involve energies
and environments which differ from the ones in the solar
system tests. As such the results presented here comple-
ment the known bounds on the conformal and disformal
couplings and are environment specific.2

The structure of this paper is as follows: Section II
calculates the geodesic and the frame-dragging effects for
scalar tensor theories with conformal and disformal inter-
actions. Section III describes the constraints on the inter-
actions from current and future satellites experiments.
Section IV discusses the GINGER experiment in details.
Section V considers the binary pulsars and their current and
future constraints. Section VI discusses the possible detec-
tion of effects in the Galactic Center, and finally Sec. VII
summarizes current and future results.

II. LIGHT SCALARS INTERACTING
WITH MATTER

A. The interactions

The dynamics of gravity interacting with a massless
scalar field are described by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl
R
2
−
1

2
gμνϕ;μϕ;ν

�
þSmðψ i;gJμνÞ; ð5Þ

where matter fields are denoted by ψ i and their action by
Sm. In the following we will take the matter action to be the
one of pointlike particles and the scalar potential to be
vanishing. In particular, we take the mass of the scalar field
to be vanishing. In practice, we assume that the Compton
wavelength 1=m of the scalar field, where m is the scalar
mass, is much larger than the scales we are considering.
Typically, scalar effects are Yukawa suppressed by an
exponential term e−mr, where r is the distance to a
gravitational source and therefore no scalar effects are
expected if r≲m−1. We focus on the regime where the
dynamics of the scalar are not Yukawa suppressed and thus
will simply take the mass to be vanishing. This will provide
an appropriate description of the dynamics of macroscopic
objects like neutron stars as long as finite size effects can be
neglected. This setting can also apply to screened models
where the scalar field between massive objects is assumed
to be very light and the coupling to matter reduced by the
appropriate screening mechanism in order to pass solar
system tests of gravitation. In particular, we consider that β
depends on the environment, i.e. it could be different
around a pulsar and in the solar system, see [6] for a more
thorough discussion, hence the bounds that we will deduce
are specific to the given environment of each of the

considered binary systems. Here we take β to be universal,
i.e. it does not depend on the nature of the objects but only
of their environment. The case of nonuniversal couplings
proportional to the inverse compactness of the objects is
highly relevant to the screened phase of modified gravity
models [6]. One of the main effects of taking nonuniversal
couplings for different objects would be the dipolar power
loss for the binary system which would not vanish and
would affect the time evolution of binary pulsars. This
would of course affect the parameter space of the models.
This is left for future work.
In the following, we will be interested in precession

effects for bound orbits, e.g. binary systems. The metric
and the scalar field will be treated in perturbation theory
where several parameters govern the corresponding expan-
sions. First of all, we will expand in the conformal coupling
β2 which is considered to be small. We will also consider
the post-Newtonian expansion (PN) in the small velocities
v2 ≃GM=r for bound orbits where v is a typical speed,M a
typical mass and r is the size of the orbit. The disformal
interactions will also be taken perturbatively in a ladder
expansion [15]. This expansion is valid when the ladder
parameter

ϵL ¼
�
v
c

�
2 GM
r3Λ2

ð6Þ

is small. When this is not the case, a summation of the
ladder contributions must be performed as in [59]. Here we
will consider situations where v=c ≪ 1 and the Newtonian
potentials are GM=r ≪ 1 on the orbits of the binary
systems. Moreover, Λ plays the role of a ultraviolet cutoff
of the theory above which higher order derivative correc-
tions to the disformal coupling are expected. As a result we
focus on the low energy regime rΛ ≫ 1 implying that the
ladder parameter is safely lower than unity. Finally, we only
consider spin effects at leading order.

B. Spin precession of coupled scalars

General relativity predicts the rotational drag of inertial
frames in the vicinity of a rotating object. The precession
caused by this rotational drag in the motion of a rotating
object is the FD effect. Gyroscopes are test objects
which are sensitive to this effect. A gyroscope is nothing
but a rotating test particle with spin and we can derive the
precession of the spin vector using the Mathisson-
Papapetrou-Dixon equations as done in [28,60]. The
evolution equation for the dynamics of a spinning test
body is given by

ṗμ ¼ −
1

2
RJ
μνρσuνSρσ ð7Þ

and

2This is particularly relevant for models where the couplings
are environment dependent such as symmetrons [11], for
instance.
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Ṡμν ¼ 2p½μuν�; ð8Þ

where pμ is the 4-momentum, uμ is the 4-velocity, Sμν is
the spin angular momentum, and Rμνρσ

J is the Riemann
tensor of the Jordan frame metric, i.e. the metric felt
by the spinning particle. The time derivative is taken
along the particle world line as d

dτ ¼ uμ∇μ, where τ is the
proper time.
We can eliminate the gauge degrees of freedom by

imposing the spin supplementary condition (SSC) [28,61,62],
Sμνpν ≈ 0. At leading order in the spin we can write the
first step of an iteration scheme as follows [63]:

u̇μ ¼ 0þ � � � ð9Þ

and

Ṡμν ¼ 0þ � � � ; ð10Þ

where the neglected terms are of higher order in the spin.
This implies that the spin is parallel transported. This also
simplifies the SSC to

Sμνuν ≈ 0 ð11Þ

which is preserved along the particleworld line d
dτðSμνuνÞ¼0

guaranteeing that the correct number of degrees of freedom
is preserved. Indeed, the spin tensor can be projected onto
the Pauli-Lubanski vector as

Sμ ¼ −
1

2
ϵμνρσuνSρσ: ð12Þ

This encodes the three independent degrees of freedom
which remain after imposing the SSC. We will focus
on the components of the spin vector in a comoving tetrad
frame. For the weakly rotating bodies that are considered
here we have

gJμν ¼ ημν þ hJμν ð13Þ

and the tetrad vectors

e0
î
¼
�
1þ1

2
v2þhJ00

�
viþ

1

2
hJijv

jþh0i;JþOðv5Þ ð14Þ

ei
ĵ
¼ δij þ

1

2
ðvivj − hij;JÞ þOðv4Þ; ð15Þ

where eμ
0̂
¼ uμ, vμ ¼ uμ=u0 and the hatted indices apply to

the local frame. This allows one to project onto the comoving
frame. In this case, the spin evolution equation in the
comoving frame (10) becomes

d
dτ

Sî ¼ ðΩ × SÞî ð16Þ

and the resulting precession [28,60]

Ωî
A ¼ 1

4
ϵijk

�
vjA∂kh

J
00 − 2vμA∂jh

J
kμ

�
ð17Þ

as a function of the velocity of the spinning particle A. This
can be separated, at leading order in the velocity, as

Ω⃗G
A ¼ 1

4
v⃗A × ∇⃗hJ00 ð18Þ

which would correspond to the geodetic precession in GR.
Similarly, one can introduce the analog of the FD as it would
appear in GR:

Ω⃗FD
A ¼ −

1

2
v0Að∇⃗ × A⃗JÞ; ð19Þ

where we have introduced the vector Ai
J ¼ hJ0i. When the

scalar field couples to matter, the metric is influenced by the
conformal and disformal terms. Decomposing the metric and
the scalar field around a flat background

gμν ¼ ημν þ hμν; ϕ ¼ 0þ φ; ð20Þ

the Jordan metric becomes

gJμν ¼ ημν þ hJμν; ð21Þ

where we have introduced

hJμν ¼ hμν þ 2β
φ

mPl
ημν þ

2

m2
PlΛ2

φ;μφ;ν þ � � � : ð22Þ

At leading order we have for an N-body system

φ ¼ −
β

4πmPl

X
A

mA

jr⃗ − r⃗Aj
; ð23Þ

where the bodies are located at r⃗A. For a two-body system,we
find that the total precession of the first body induced by the
scalar field, excluding the spin effects that we will discuss
below, is proportional to the angular momentum of the body,

ΔΩ⃗dS ≡ Ω⃗G þ Ω⃗FD ¼ β2Gm2
2

�
−

r3

m1 þm2

þ 4G
Λ2r6

�
l⃗;

ð24Þ

where r is the distance between the twobodies and l⃗ ¼ r⃗ × v⃗.
This is a spin-orbit effect. Notice that there are two con-
tributions including one involving the disformal coupling.
We retrieve the result of [28] where
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c̄ ¼ 2β;
d̄
M4

¼ 2

m2
PlΛ2

¼ 4πG
Λ2

: ð25Þ

This de Sitter effect is complemented by the frame-dragging
effect whose origin follows from theway the spin sources the
scalar field in the Klein-Gordon equation.
The FD effect due to the spins of the bodies affects

the precession vector. This contribution is mediated by the
scalar field via hJ00 and its dependence on the spin of the
objects which sources the scalar field [28] via the disformal
interaction. In the case of a satellite revolving around the
Earth, the extra precession is given by

ΔΩ⃗FD ¼ −
4β2G2ms

r6Λ2

h
ðS⃗ · v⃗Þv⃗ − v2S⃗

i
; ð26Þ

where v⃗ is the speed of the satellite of mass ms and S⃗ is the
spin vector of the Earth. This is a spin-spin effect. Notice
that this term does not have the dipolar nature of the usual
FD effect. This term differs from the de Sitter effect which
depends on the angular momentum of the bodies. Here the
FD effect is proportional to the spin of the bodies.
Surprisingly and contrary to GR, the de Sitter effect

coming from the scalar field follows from both the
curvature in the Jordan frame hJ00 and the gravitomagnetic
field A⃗J. The FD effect itself follows from the curvature hJ00
sourced by the spin of the rotating bodies in the Klein-
Gordon equation of the scalar field. However, we can still
separate the de Sitter and FD contributions from the fact
that the former depends on the angular momentum of the
system and the latter on the spins.

C. Spin-orbit precession

In the following, we will compare the corrections to the
spin-orbit and spin-spin precessions using diverse projec-
tions of the time-averaged precession vectors over a period.
Defining by h·i this averaging procedure, we obtain

hΔΩii ¼ β2Gm2
2ϵ

ijk

�
−

1

m1 þm2

Ljk
3 þ 4G

Λ2
Ljk
6

�
; ð27Þ

where we have defined the tensors

Lij
n ¼

�
rivj

rn

�
: ð28Þ

The angular momentum always points in the normal
direction n⃗ to the orbital plane and we obtain

hΔΩ⃗i ¼ ΔΩn⃗; ð29Þ

where

ΔΩ ¼ β2Gm2
2

�
−

1

m1 þm2

L3 þ
4G
Λ2

L6

�
: ð30Þ

We set the normal vector n⃗ along the z axis and use Ln for
the time average of the magnitude of the angular momen-
tum (i.e. Lij ¼ ϵijkLk). We can choose the orbital plane to
be at z ¼ 0. As a result, the component of the angular
momentum along the z direction is given by

Ln ¼
�
rxvy − ryvx

rn

�
: ð31Þ

The Keplerian solution reads

r
a
¼ 1 − e2

1þ e cos θ
; θ̇ ¼ nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e2Þ

p
ðr=aÞ2 ;

where θ is the true anomaly. Using this, we can get the
velocities as a function of θ:

vx ¼ ṙcosθþ rθ̇ sinθ¼ nbaffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p sinθð2ecosθþ1Þ;

vy ¼ ṙsinθ− rθ̇cosθ;¼−
nbaffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p ðecos2θþ cosθÞ: ð32Þ

We obtain the value of Ln by the average over the
unperturbed trajectories,

hAi ¼ 1

2π

Z
2π

0

dθ
ð1 − e2Þ3=2
ð1þ ecÞ2 A;

which gives

L3 ¼
nb
a

1

1 − e2
; L6 ¼

nb
a4

1þ 3e2 þ 3
8
e4

ð1 − e2Þ4 :

In the case of circular orbits we have the explicit expression

Ln ¼
v

rn−1
¼ nba

rn−1=2
: ð33Þ

The general solution for the spin-orbit precession contri-
bution gives

hΔΩdSi ¼ −
m2

2

ðm1 þm2Þ1=2
G3=2

a5=2ð1 − e2Þ

×

	
β2 − ϵΛ

�
1þ 3e2 þ 3

8
e4
�


; ð34Þ

where ϵΛ quantifies the disformal strength, as in Eq. (4).
The disformal strength is affected by the frequency of
the orbital motion, where higher frequencies give larger
disformal contributions. This follows from the higher
derivative nature of the disformal interaction. In the
corresponding astronomical units
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ΔΩdS ¼ −
T2=3
⊙ n5=3b

1 − e2
m2

2

ðm1 þm2Þ4=3

×

	
β2 − ϵΛ

�
1þ 3e2 þ 3

8
e4
�


; ð35Þ

where m≡m=M⊙ is the mass of the object in solar mass
units and T⊙ ¼ GM⊙=c2 is the scale of the period. In order
to compare the contribution of the conformal and the
disformal coupling to the GR one, we calculate the ratio
between the de Sitter precession with the conformal and

disformal interactions λdS ≔ ΔΩdS=Ω
ðGRÞ
dS to get

λdS ¼ −
2m1

3m1 þ 4m2

	
β2 − ϵΛ

�
1þ 3e2 þ 3

8
e4
�


: ð36Þ

In the following section, we will analyze the complemen-
tary contribution coming from the FD effect. The left
panel of Fig. 2 shows a contour plot of the geodetic
effect. The contour shows the logarithm of the modification
of the geodetic effect for different values of conformal and
disformal interactions, with e → 0 and m1 ≫ m2. For the
limit m2 ≪ m1, the prefactor in the previous expression

becomes 2=3 and for the casem2 ∼m1 it is 2=7. Finally, we
notice that a nonvanishing eccentricity only enhances the
contribution from the disformal coupling.
Let us comment on the PN corrections to this result

compared to the disformal effect. In (36), the term in β2

should be corrected at the next PN order by a term in β2v2

where v ≪ 1 is a typical velocity of the gyroscope. This
term is negligible compared to the β2 contribution but could
compete with the disformal effect in ϵΛ. If β2v2 ≪ ϵΛ, the
disformal effect dominates over the conformal effect at
the next PN order. On the other hand, when ϵΛ ≲ β2v2, the
disformal effect is negligible compared to the leading β2

contribution. In all cases, we can trust formulas like (36) as
the next PN order in β2v2 does not play a significant role.

D. Frame-dragging precession

Similarly for the FD (or spin-spin) precession we
introduce the tensor Tij ¼ vivj=r6 such that

hΔΩi
FDi ¼ −

4β2G2ms

Λ2
½SjhTiji − hTiSi�; ð37Þ

where T ¼ Ti
i is the trace of the matrix Tij which reads

hTiji ¼ GMðecþ 1Þ6
a7ð1 − e2Þ7

0
BB@

ðsþ es2Þ2 −ð2ceþ 1Þðcþ c2eÞs 0

−ð2ceþ 1Þðcþ c2eÞs ðcþ c2eÞ2 0

0 0 0

1
CCA; ð38Þ

where sin θ ¼ s, cos θ ¼ c, sin 2θ ¼ s2 and cos 2θ ¼ c2. The average gives

hTiji ¼ GM

2a7ð1 − e2Þ11=2

0
BB@

5e6
16

þ 41e4
8

þ 13e2
2

þ 1 0 0

0 7e6
16

þ 61e4
8

þ 19e2
2

þ 1 0

0 0 0

1
CCA: ð39Þ

FIG. 2. Contour plots of the geodetic (left) and the frame-dragging effects (right). The contour shows the logarithm of the
modification of the geodetic and the frame-dragging effects for different values of the conformal and disformal interactions, with
e → 0 and m1 ≫ m2.
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For circular orbits e≡ 0 this reduces to

hTiji ¼ Gðm1 þmsÞ
2r7

ðδij − ninjÞ; ð40Þ

where n⃗ is perpendicular to the orbit. This implies that

hΔΩ⃗FDi ¼
2β2G3msðm1 þmsÞ

r7Λ2

h
ðS⃗ · n⃗Þn⃗þ S⃗

i
: ð41Þ

With the ansatz for the spin vector S⃗ ¼ Sz⃗, we obtain the
FD contribution from the disformal coupling

hΔΩFDi ¼ 2β2G3ðm1 þmsÞmsS
a7Λ2

×
1þ 8e2 þ 51

8
e4 þ 3

8
e6

ð1 − e2Þ11=2 sinψ : ð42Þ

This can be rewritten as

hΔΩFDi ¼ ϵΛ

�
Gms

ac2

�
GS
a3

1þ 8e2 þ 51
8
e4 þ 3

8
e6

ð1 − e2Þ5=2 sinψ ;

ð43Þ

where ψ is the angle between the two spin vectors.
Therefore, the modification for the frame-dragging pre-

cession rate λFD ≔ ΔΩFD=Ω
ðGRÞ
FD gives

λFD ¼ ϵΛΦs
1þ 8e2 þ 51

8
e4 þ 3

8
e6

1 − e2
sinψ ð44Þ

with the potential Φs ¼ Gms=ðac2Þ of the satellite or the
companion mass.
The functional dependence of the FD effect on the

masses differs from the dS one. In particular, we see that
they enter now via two dimensionless parameters, i.e. ϵΛ
and Φs. The first one characterizes the ladder expansion
and is only sensitive to the total mass of the system,
whereas the second one is a characteristic of the satellite. In
the dS case, the masses appear only as a dimensionless ratio
m1=ð3m1 þ 4m2Þ which depends only on the mass ratio
m1=m2. Note too the increased sensitivity on the conformal
and disformal interactions for large eccentricities.
The right panel of Fig. 2 shows a contour plot of the FD

effect. The contour shows the logarithm of the modification
of the FD effect for different values of conformal and
disformal interactions with e → 0 and m1 ≫ m2.

E. The prior and the likelihood

We perform a full Markov-chain Monte-Carlo (MCMC)
analysis for different experiments. The parameter ϵΛ
quantifies the contribution of the disformal interaction
and depends on the orbital frequency of the body. Our

prior is a flat prior with β2 ∈ ½0; 1� and Λ−1 ∈ ½0; n−1b � where
nb is the orbital period of the system. We use an affine-
invariant MCMC sampler for the minimization of our
likelihoods via the implementation of the open-source
package POLYCHORD [64]. Based on Ref. [65], the
POLYCHORD estimates the evidence. One begins by drawing
400 live points uniformly from the prior. After some
iterations, the point with the lowest likelihood is replaced
by a new live point drawn uniformly from the prior with the
constraint. The convergence is reached when the new
evidence Zlive is some small fraction of the original one.
The standard fraction of the POLYCHORD is ϵ < 0.01.
The geodetic modification effect includes the conformal

and the disformal couplings in two different parts, while the
FD modification includes the conformal and the disformal
contributions as a multiplicative factor. The FD experi-
ments constrain the ratio β=Λ directly. In order to find a
lower bound on Λ, we combine the FD results with the
strong bound from the Cassini experiment taken as a
Gaussian prior [8]. The bound reads

β2 ¼ ð2.1� 2.3Þ × 10−5; ð45Þ

where radio signals were sent from the Earth to the Cassini
satellite and the Shapiro time delay was analyzed. In this
case we take the conformal coupling β to be the same in the
binary system environment and in the solar system. In the
geodetic case the bound on β is independent of the Cassini
bound. Similarly, in the analysis of Gravity Probe B, the
experiment is embedded in the solar system so the bounds
on β from this experiment can be compared directly to that
of Cassini.
Finally, all our results depend on the ladder expansion of

the disformal interaction. This requires that ϵL ≪ 1. We
have checked that this is the case in our analyses. As ϵΛ ≃
v2n2b=Λ2 and as we impose a prior where Λ−1 ∈ ½0; n−1b �, we
see that ϵΛ ≪ 1 in all of the cases that we consider.
The likelihood for different experiments reads

−2 lnLðβ;ΛÞ ¼
XNPSR

i¼1

�
ξðβ;ΛÞ − ξob

δξob

�
2

; ð46Þ

where ξob � δξob is the observed precession vs the theo-
retical prediction ξðβ;ΛÞ from the modified model with its
dependence on the conformal and the disformal couplings.

III. SATELLITE EXPERIMENTS

In this section we discuss the bounds from current and
future satellite experiments. Since the periods of these
systems are in the same range, we expect to get similar
bounds on the disformal coupling. As these experiments are
all within the solar system, the bounds obtained here are on
the couplings in this particular environment. In particular,
when constraining the couplings using FD experimental
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results, we will complement the measurements with the
Cassini bound to deduce solar system constraints on the
disformal coupling.

A. Gravity Probe B

Gravity Probe B (GPB) was a satellite-based experiment
designed to test the geodetic and the FD effects. This was to
be accomplished by measuring very precisely tiny changes
in the direction of the spin of four gyroscopes contained in
an Earth-orbiting satellite at 650 km. Reference [66] reports
that analyses of the data from all four gyroscopes result in a
geodetic drift rate of −6601.8� 18.3 mas=yr3 and a FD
drift rate of −37.2� 7.2 mas=yr, in good agreement with
the general relativity predictions of −6606.1� 0.28 and
−39.2� 0.19 mas=yr, respectively.
This provided a way to test different theories of gravity

such as Yukawa-type potentials [67], Horava-Lifshitz
gravity [68], light scalars or pseudoscalars coupled to
leptons and affect the precessional [69]. and the first
constraints on conformal and disformal interactions [28].
Since the orbital radius of the satellite is 7027.4 km, the
orbital period is 0.0107 Hz ¼ 7 × 10−19 eV. The posterior
distribution of GPB is presented in Fig. 3. The complete
MCMC yields a fit of

β2 ¼ ð2.963� 2.045Þ × 10−3 ð47Þ

on the conformal coupling, givingΛ > 3.92 × 10−19 eV on
the disformal coupling. The result is compatible with GR at
the 2σ level. Taking the Cassini bound on the β parameter
gives a bound of Λ > 5.33 × 10−21 eV on the disformal
coupling. Notice that this is much higher than the Hubble
rate now H0 ≃ 10−33 eV which would correspond to a
suppression scale of the disformal coupling at the dark
energy scale.4

B. LARES, LAGEOS and GRACE

The Laser Relativity Satellite (LARES)5 was launched
to measure the FD effect with an accuracy of about 10−2

[67,70–72]. The body of this satellite has a diameter of

about 36.4 cm and weighs about 400 kg. The satellite was
set on an orbit with an altitude of 1450 km, an inclination of
69.5� 1 degrees and eccentricity 9.54 × 10−4. Tests of the
FD precession consist of small secular precessions of the
orbit of a test particle in motion around a central rotating
mass. For example, this has been performed with the
LAGEOS satellites [73] where the satellite acts as the
particle moving around the earth. The orbital period of
these systems is about 9 × 10−4 Hz ¼ 6 × 10−19 eV. Since
these experiments constrain the FD effect we complement
them with the Cassini bound on the conformal coupling,
and from these satellite experiments we get a range of
Λ > 10−20 eV on the disformal coupling. Figure 4 sum-
marizes the different satellite experiments with the different
constraints. Notice that all these experiments do not
exclude the dark energy scale as a suppression scale for
the disformal interaction.

C. Gravity probe spin

In [74], it was suggested that future measurements of
relativistic FD and geodetic precessions should use the
intrinsic spin of the electron, hence called gravity probe
spin (GPS). Such a measurement would be possible by
using mm scale ferromagnetic gyroscopes in orbit around
the Earth. Figure 5 shows the lower bound on the disformal
coupling vs the future measurement error of the GPS
experiment which is of the order of 10−18 eV.

FIG. 3. Bounds on the conformal and the disformal couplings
from the Gravity Probe B experiment which tests the geodetic and
the FD effects and therefore gives a bound on the conformal
coupling ð2.963� 2.045Þ × 10−3 and the disformal coupling
Λ > 3.92 × 10−19 eV.

3The term mas stands for milli-arc-second.
4The preferred value for disformal theories with an effect on

the dynamics of the Universe is Λ ≃ 10−33 eV. This follows from
the presence of extra terms in the cosmological equations in ∂t=Λ,
i.e. time derivatives suppressed by the cutoff scale Λ. Typically,
one expects dynamical effects from the scalar field when these
terms are of order unity. Moreover, as the scalar field also evolves
on time scales of the order of the age of the Universe H−1

0 at late
times, i.e. when dark energy plays a role, this is only possible for
a cutoff scale Λ ≃H0. As can be seen, this regime with a low
cutoff scale is on the verge of the admissible energy range for a
low energy effective field theory as higher order terms in the
derivative expansion of the disformal term might be required.

5https://www.asi.it/scienze-della-terra/lares/.
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IV. GINGER

GINGER (gyroscopes in general relativity) relies on the
difference in time of flight of two counterpropagating
waves in a closed path, i.e. the Sagnac effect [75–81].
The effect depends on the lack of reciprocity of the two
directions and is related to the FD effect introduced by a
rotating object. The difference in the time of flight is
generated by the ring laser gyros which emit these counter-
propagating waves. GINGER will measure the difference
of time of flight with an accuracy down to ∼10−4 that will
be used to test GR and other theories of gravity [82]. For the
generic metric of a rotating gravitational object,

ds2 ¼ g00dt2 þ 2g0idtdxi þ gijdxidxj; ð48Þ

null geodesics are given by

dt ¼ −
g0i
g00

dxi −
1

g00
ððg0idxiÞ2 − g00gijdxidxjÞ1=2: ð49Þ

Parametrizing the path that light follows in space in terms
of a parameter l, and assuming a closed path of circum-
ference P, i.e. xiðlÞ ¼ xiðlþ PÞ, we have the equations of
the trajectory

dt
dl

¼ −
g0i
g00

dxi

dl
−

ϵ

g00

��
g0i

dxi

dl

�
2

− g00gij
dxi

dl
dxj

dl

�
1=2

;

ð50Þ
where g00 < 0 and dl ¼ ϵjdlj with our choice of signature.
We are interested in sending photons along the closed path
in the two opposite directions with (dl > 0) and (dl < 0),
respectively. The proper time delay between these two
trajectories is given by

Δτ ¼ −2
ffiffiffiffiffiffiffiffiffiffi
−g00

p I
g0i
g00

dxi

dl
dl: ð51Þ

The scalar field background influences this time delay as
the metric considered here is the Jordan metric. Using the
small field expansion, we get the leading order effect

Δτ ¼ 2

I
hJ0i

dxi

dl
dl ¼ −

4

m2
PlΛ2

I
∂0φ∂iφ

dxi

dl
dl ð52Þ

which only involves the disformal coupling. As an exam-
ple, a closed loop at the surface of a body considered as a
test body in the field of a larger one, e.g. the Earth with its
orbit around the Sun, will give rise to a time difference.
Let us expand the field

φðx̄þ xðlÞÞ ¼ φ̄þ xiðlÞ∂iφ̄þ � � � ; ð53Þ
where x̄ is the center of the loop while φ̄ and its derivatives
are their values at the center of the loop. The first non-
vanishing contribution to the time delay is given by

Δτ ¼ 4

m2
PlΛ2

ð∂0∂jφ̄∂iφ̄þ ∂0φ̄∂i∂jφ̄Þ
I

xj
dxi

dl
dl: ð54Þ

Now for closed planar loops we haveI
xj
dxi

dl
dl ¼ Aϵjiknk; ð55Þ

where nk is the unit vector orthogonal to the loop and A its
surface area. With this we obtain the contribution of the
disformal interaction to the time delay to be

Δτ
A

¼ 4

m2
PlΛ2

ϵijk∂0∂iφ̄∂jφ̄; ð56Þ

FIG. 5. The limit on the disformal coupling from the future
GINGER and the gravity probe spin experiments in addition to
the Cassini bound on the conformal coupling. The range is about
Λ > 10−17 eV for GINGER and Λ > 10−18 eV for the gravity
probe spin.

FIG. 4. The limit on the disformal coupling from the satellite
experiments complemented with the Cassini bound on the
conformal coupling. The range is compatible with Λ > 10−19 eV.
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where A is the area encircled by the light beams. In the case
of a loop at the surface of the Earth in the background of the
Sun which is static in first approximation this becomes

Δτ
A

¼ 128πG2m⊙m⊕β
2

Λ2r3d3
ϵijk

�
vi − 3

ðvjrjÞ
r2

ri

�
djnk; ð57Þ

where v⃗ is the velocity at the loop comprising the effects of
the Earth’s velocity in the heliocentric frame and the Earth’s
rotational velocity, r⃗ is the position of the center of the loop
on Earth and d⃗ is the position of the Earth compared to the
Sun. Using vectorial notation we have

Δτdis ¼
128πG2m⊙m⊕β

2

Λ2r3d2

�
ðv⃗ − 3vre⃗rÞ × d̄

�
· A⃗; ð58Þ

where vr ¼ v⃗:e⃗r and e⃗r ¼ r⃗
r. As expected, the time delay

scales with the surface area of the loop and involves the
projection of the angular momentum of the Earth around
the Sun d⃗ × v⃗ along the normal to the loop n⃗. Finally, we
denote by A⃗ ¼ An⃗ the surface vector pointing in the normal
direction to the loop. Based on [83] and performing the
calculation in linear approximation for an instrument with
its normal contained in the local meridian plane, the GR
result is

ΔτGR
4Ω⊕A

¼ cosðθ þ αÞ − 2
GM
R⊕c2

sin θ sin α

þ GI⊕
R3
⊕c

2
ð2 cos θ cos αþ sin θ sin αÞ; ð59Þ

where α is the angle between the local radial direction and
the normal to the plane of the instrument, measured in the
meridian plane, θ is the colatitude of the laboratory, andΩ⊕
is the rotation rate of the Earth as measured in the local
reference frame.
In order to determine the contribution of Δτdis we focus

of the partial ratio, which gives

Δτdis
ΔτGR

∼
32πG2m⊙m⊕β

2vE
Ω⊕Λ2R3

⊕d
2

: ð60Þ

Since the future error of the GINGER experiment
should be around 10−4 and taking the Earth velocity of
order 30 km=sec, the lower limit on Λ should be around
> 3.1 × 10−17 eV. In this case the dark energy scale would
be strongly disfavored as a suppression scale for the
disformal coupling. Figure 5 shows the lower bound on
the disformal coupling vs the future measurement error of
the GINGER experiment. This scaling assumption is
compatible with the ladder expansion since the velocity
we discuss here is much lower than the speed of light.

V. PULSARS

So far we have only considered satellites in the Earth’s
atmosphere. We change environment and consider preces-
sion effects further in the Milky Way where signals from
pulsars have been observed. A pulsar is a highly magnet-
ized rotating neutron star that emits radiation from its
magnetic poles. This radiation can be observed only when a
beam of emission is pointing towards the Earth (similar to
the way a lighthouse can be seen only when the light points
in the direction of an observer), and is responsible for the
pulsed appearance of emissions. Binary pulsars are one of
the best systems in astronomy in order to measure the post-
Keplerian parameters (PKP) such as the orbital period
decay Ṗ and the periastron advance ω̇. Reference [6]
constrains light scalars with conformal and disformal
interactions from the PKP. In the following we will assume
that the conformal coupling in the pulsar’s environment is
the same as in the solar system. This will allow us to impose
the Cassini bound on the conformal coupling when
computing the posterior distribution of the conformal
and disformal couplings.
The PKP which are accessible from the pulsar timings

are the Einstein γE parameter accounting for the time delay
due to the time dilation and the gravitational redshift of the
pulsar signal in the solar system, the Shapiro time delays
due to the crossing by the signal of the potential well of the
solar system (this includes both the Shapiro delay shape s
and the Shapiro delay range r, see [6] for their definition):

γE ¼ emc

ffiffiffiffiffiffiffiffiffi
T2
⊙

nbm
3

s
ð1þ 2β2Þ2=3

�
1þmc

m

�
;

s ¼ xp
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb

1þ 2β2
m2

T⊙

3

s
; r ¼ ð1þ 2β2ÞT⊙mc; ð61Þ

with the gravitational wave emission rate,

Ṗ ¼ −
195πT5=3

⊙

5n5=3b

mpmc

m1=3

	�
1þ β2

3

�
f1ðeÞ

þ 10

9
β2f2ðeÞ − ϵΛ

20

3
f3ðeÞ



; ð62Þ

where

f1ðeÞ ¼
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2 ; f2ðeÞ ¼ e2
1þ 1

4
e2

ð1 − e2Þ7=2

f3ðeÞ ¼ e2
1þ 37

4
e2 þ 59

8
e4 þ 27

64
e6

ð1 − e2Þ13=2 :

Finally we also include the periastron advance:
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ω̇ ¼ ðmT⊙Þ2=3
n5=3b

1 − e2

	
3 − 2β2 þ 5ϵΛ

2πT⊙Λ2



: ð63Þ

Heremp is the pulsar mass,mc is the companion mass,m¼
mpþmc is the totalmass of the systemand xp is the projected
semimajor axis. These PKP provide a significant test of the
conformal and disformal interactions leading to stringent
constraints on the couplings of light scalars to matter.
In this paper we are interested in precession effects. It

turns out that relativistic geodetic effects were detected and
constrained using different binary pulsars. For instance, the
pulsar PSR J1141-6545 gives results for the geodetic effect
[84,85]. PSR J0737-3039 is a double pulsar [86] that gives
a direct value for the geodetic precession [87,88]. We
include the geodetic precession in the likelihood analysis
that we perform in order to constrain the massesmp andmc
together with the couplings β and Λ. The PKP involve the
four unknown quantities mp, mc, β, Λ which should be
extracted from the observables nb, e, xp, r, s, Ṗb. This can
be achieved from the likelihood

−2 lnLðmp;mc; β;ΛÞ ¼
XNPSR

i¼1

�
ξðmp;mc; β;ΛÞ − ξob

δξob

�
2

;

ð64Þ

where ξ is one of the corresponding PKP taken from the list
ξ∈ ½ω̇; Ṗ; γE; r; s; q;ΩdS� with the error δξ. Here q is the

ratio of the masses q ¼ mp=mc. The priors we consider for
the PKP are Gaussian priors as reported in the original
papers. For the masses we put a uniform prior of ½0; 3�M⊙.
Since the conformal interaction could be present without
the disformal interaction, we test two different cases: only
the conformal interaction and the conformal with the
disformal interaction.
Figure 7 shows the posterior probability distribution

for the conformal and the disformal interactions from
two different analyses. As the PKP depend on the masses
of the pulsars and the companion star, the conformal and
the disformal interactions, one has to use at least four PKP
to extract constraints from data. The table and Fig. 7
shows the resulting constraints for the scalar interactions.
We include in our analysis the de Sitter precession ΩdS.
One can see that the resulting bounds are strong and
comparable to the Cassini bound (the gray line): β2 ¼
ð1.939� 0.724Þ × 10−5 and Λ > 1.62 MeV. This result is
compatible with GR at the 2σ level.
Figure 6 shows the mass-mass diagram of the double

pulsar. Any two lines give the contour of the corresponding

FIG. 6. The mass-mass diagram of the double pulsars PSR
J0737-3039 A/B with the post-Keplerian parameters. The contour
describes the post-Keplerian parameters and the width of each
curve indicates the measurement uncertainty of the corresponding
parameter.

FIG. 7. The posterior probability distribution for the conformal
and the disformal couplings (with 1σ and 2σ contours) after taking
into account the measurements from PSR J0737-3039 A/B (gray).
The forecast for future constraints on the conformal and the
disformal interactions are given from PSR J0737-3039 A/B (red)
and including future telescopes (blue). For future measurements,
the covered area reduces and the upper bound on the conformal
coupling and the lower bound on the disformal coupling changes.

MULTISCALE CONSTRAINTS ON SCALAR-FIELD COUPLINGS … PHYS. REV. D 108, 063031 (2023)

063031-11



PKP (with a 1σ error) for different masses (the pulsar mass
vs the companion star). In this case of coupled scalars, we
include the best values of the conformal and the disformal
interactions. Since the contours intersect at the same point
in the mass-mass diagram, the model predicts the masses of
the two pulsars and bounds the conformal and the disformal
interactions up to the limit of the posterior values.
Reference [89] states that with additional years of

timing measurements and new telescopes like the Square
Kilometre Array (SKA) and others, the precision of these
tests will increase and new effects like the FD precession of
the orbit will become measurable. In this way, one could
distinguish between the precession ω̇ and the FD preces-
sion ω̇FD giving stronger constraints on the conformal and
the disformal interactions.
Figure 7 shows the future constraint on the interactions

using the forecast from Ref. [89]. Reference [89] uses
simulations for future constraints with or without other
telescopes to reduce current uncertainties. We use the future
error that Ref. [89] estimates to be within reach in 2030 for
different PKP. Future constraints should improve the
bounds on the conformal and the disformal interactions,
i.e. the conformal interaction upper bound will be at the
10−6 level and 10−7 when other telescopes are taken into
account. The bound on the disformal interaction will be of
the same order (∼MeV) but stronger when other telescopes
are taken into account.

VI. S STARS IN THE GALACTIC CENTER

The center of the Milky Way hosts the closest super-
massive black hole, Sgr A�. The stars orbiting Sgr A� are
called S stars [58,90–99] with decades of monitoring
of their locations and velocities. A large fraction of
these stars have orbits with high eccentricities. Thus,
they reach high velocities at the pericenter and can be used
for constraining scalar interactions. There are a few
studies that discuss the FD precession in the S-stars
motion [100–104]. Reference [105] claims that the FD
effect is overwhelmed by the systematic uncertainties in
the Schwarzschild parameters due to the current errors in
the stars’ orbital parameters and the mass of Sgr A� itself.
References [90,106] claim that detection of FD precession
may be feasible after a few years’ monitoring with an
instrument like GRAVITY for orbits of some S stars.
Especially, the S2 star orbits with a period of 16 years and
it should be possible to constrain the angular momentum
of the black hole by observing the star over 32 to 48 years.
Reference [104] claims inconsistency between the current
measurements of the Event Horizon Telescope predictions
for the Sgr-A� spin and the bound from the S-stars orbits.
Using the known properties of the S stars (their masses

and periods as in Ref. [107]) we forecast a bound on the
disformal coupling, which depends on the errors of the
future measurements of the quantities appearing in
Eq. (44), i.e. the mass of the S stars, the eccentricity and

the angle ψ . Figure 8 shows that we obtain a lower
bound around Λ > 10−5 eV after imposing the Cassini
bound on the conformal coupling. We use the known
masses of these S stars and the predicted accuracies of the
future measurements. Other S stars around the galactic
center have shorter periods than the S2 star, such as the
S4711, S62, S4714 or S4716 [105,108] and will give
stronger constraints on the disformal interaction. However,
the masses of these stars are still unknown. This forecast
only applies if the supermassive black hole at the center of
the galaxy has a scalar charge. This could be the result of a
violation of the no-hair theorem by the time dependence
intrinsic to both the galactic and cosmological environ-
ments, see [109] for instance.

VII. DISCUSSION AND SUMMARY

In this paper we investigated the consequences of a light
scalar coupling to matter on the geodetic and the FD effects.
Both conformal and disformal couplings of the scalar field
to matter are considered and used to generate geodetic and
FD effects. To first order in post-Newtonian expansion, the
correction to the solution of the scalar field was obtained in
[15]. This was extended in [6] to the post-Keplerian
parameters with conformal and disformal interactions,
enabling our current study.
Equations (36) and (44) show the relative modification to

the geodetic and the FD precessions, respectively. If only
the conformal interaction is present, then the geodetic effect
is modified while the FD effect is affected only if both the
conformal and the disformal couplings exist. The geodetic
effect gives constraints on β directly and the FD effect gives
constraint on β=Λ. For the experiments that measure the FD
effect directly, we use the Cassini spacecraft bound on the
conformal coupling as a prior, and deduce constraints on
the disformal coupling.

FIG. 8. Forecast of the lower bound on the disformal coupling
from the frame dragging effect on some S stars in the galactic
center combined with the Cassini bound on β.
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The bounds on the coupling obtained from satellite
experiments are strictly solar system constraints. This is
why we can complement them with the Cassini bound. We
find a bound on the disformal scale of order Λ ≳ 10−18 eV
which is much smaller than the one from pulsar timing
Λ≳ 1 MeV or even particle physics Λ≳ 650 GeV. As the
energy scales and the environments involved in pulsars and
particle colliders are very different from the Earth’s
atmosphere, we simply notice that a strong variability with
the environment is allowed for the disformal coupling.
The satellite-based experiments measure directly the FD

effect while in the case of pulsars the effect is derived from
the pulses sent to earth. Since the disformal interaction
depends on the period, different systems with different
periods will give different bounds. However, the satellite
experiments have the advantage of measuring the FD effect
directly.
The strongest bound on the conformal and disformal

couplings from the geodetic effect is from the precession of
binary pulsars and especially from the double pulsar [6].
The current observations of the double pulsar give a known
bound on the geodetic precession value and in the near
future one will be able to measure the FD precession
directly [88]. Future measurements will help distinguish
between the first and the second post-Newtonian contri-
butions to the precessions and the FD contribution. With
this separation the constraints on the disformal coupling
should be more stringent with the increased precision on
both ω̇ and ω̇FD. This will allow for a stronger test of light
scalar couplings combining pulsar timing and precession
effects.
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APPENDIX: AVERAGES

We have defined the tensors Lij
n ¼ hrivj=rni and the

other cumulants that were not used in this paper, given by

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2ÞGðm1 þm2Þ

q
;

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

a
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