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We study quantum reflection of antihydrogen atoms from matter slabs due to the van der
Waals/Casimir-Polder (vdW/CP) potential. By taking into account the specificities of antihydrogen
and the optical properties and width of the slabs we calculate realistic estimates for the potential
and quantum reflection amplitudes. Next we discuss the paradoxical result of larger reflection co-
efficients estimated for weaker potentials in terms of the Schwarzian derivative. We analyze the
limiting case of reflections at small energies, which are characterized by a scattering length and have
interesting applications for trapping and guiding antihydrogen using material walls.

PACS numbers: 36.10.Gv, 34.35.+a, 12.20Ds

I. INTRODUCTION

Quantum reflection is the process of reflecting parti-
cles from an attractive but rapidly varying potential. It
has been studied since the early days of quantum the-
ory [1]. On the other hand it is well known that atoms
in the vicinity of a surface experience the long-range
van der Waals/Casimir-Polder potential (vdW/CP) [2].
Quantum reflection occurs here if the atom enters a re-
gion where the potential varies rapidly compared with
the atom’s wavelength. Experimentally quantum reflec-
tion on the vdW/CP potential has been observed with
slow atoms reflected from a liquid Helium surface [3–
5] or from solid surfaces [6, 7]. More recent efforts
have focused on quantum reflection from rough or micro-
/nanostructured surfaces [8–10] and on quantum reflec-
tion of Bose-Einstein condensates on flat or nanostruc-
tured silicon [11, 12].

The theoretical description of quantum reflection has
been the topic of numerous contributions in the past [13–
18], which are presented in some detail in [19]. The par-
ticular case of reflection on a vdW/CP potential created
by thin slabs or graphene sheets has been studied recently
in [20]. In addition it has been put forward that quantum
reflection coefficients can be tuned using external optical
fields [21] or via thermal non-equilibrium effects [22].

In the present paper, we will study the quantum reflec-
tion of antihydrogen atoms H falling on material walls.
As H atoms are annihilated in contact with matter, this
case enforces specific boundary conditions at the material
surface [23]. In particular the behavior of the short-range
atom-wall potential becomes irrelevant as all antiatoms
that come close enough to the surface are annihilated.
This topic is important to the GBAR collaboration which
aims to measure the gravitational behavior of H by study-
ing its time of free fall from a well-defined trap to a mat-
ter plate [24]. We will give accurate estimations for the
van der Waals/Casimir-Polder (vdW/CP) potential be-
tween the antiatoms and the surface as well as for the
associated quantum reflection.

A number of different methods are available to calcu-

late atom-surface dispersion forces [25–28] (see [29] for a
detailed bibliography). Here we will use the scattering
approach [30, 31] which has been developed to calculate
Casimir forces in arbitrary geometries and which can be
applied to the study of vdW/CP forces between an atom
and flat or nanostructured surfaces [32]. In order to ob-
tain accurate estimations, it will in particular be neces-
sary to take into account the material properties and the
finite thickness of the slabs [33].

In order to explain the paradoxical result that larger
reflections are obtained for weaker potentials, we will
discuss how the quantum reflection occurs when the
atoms approach the surface and draw a relation to the
Schwarzian derivative. We will finally analyze the limit-
ing case of reflections at small energies, which have inter-
esting applications for trapping and guiding antihydrogen
with material walls [34, 35]. Quantum reflection is char-
acterized by a scattering length which we will calculate
for different materials and different slab widths. We note
at this point that quantum reflection is calculated in the
present paper from a static potential, so that the role of
dissipation in matter is neglected [36].

II. CASIMIR-POLDER POTENTIAL

We use the scattering formalism [30, 31] applied here
to the Casimir-Polder potential between an atom and a
plate :

V (z) = ~
∫ ∞
0

dξ

2π
Tr ln

(
1−RPe

−κzRAe
−κz) . (1)

As the quantum reflection process is expected to occur
at distances smaller than 1µm (more discussions below),
and thus smaller than the typical thermal wavelength,
this formula has been written at zero temperature. The
matrices RP and RA describe the reflection of the elec-
tromagnetic vacuum fields on the plate and atom respec-
tively. They are calculated for a Wick rotated complex
frequency ω = iξ with the trace (Tr) bearing on trans-
verse wave vectors k and polarizations p = TE,TM. The
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factor e−κz accounts for propagation between the atom
and plate where κ =

√
k2 + ξ2/c2 is the Wick rotated

complex longitudinal wavevector.
We may safely neglect all multiple reflections between

the atom and the surface and thus expand the general
scattering formula (1) to first order in RA. When the
scattering on the atom is described in the dipolar approx-
imation [32], the potential is read in terms of a dynamic
atomic polarizability α, given in units of a volume:

V (z) =
~
c2

∫ ∞
0

dξξ2α(iξ)

∫
d2k

(2π)2
e−2κz

κ

×
[
ρTE −

(
1 +

2c2k2

ξ2

)
ρTM

]
. (2)

The ρp denote the electromagnetic reflection amplitudes
for the two polarizations p = TE,TM. We study first
the case of reflection from a semi-infinite bulk, described
by the Fresnel laws expressing continuity relations at the
interface :

ρTE
bulk =

κ−K
κ+K

, ρTM
bulk =

ε(iξ)κ−K
ε(iξ)κ+K

, (3)

where K =
√

k2 + ε(iξ)(ξ/c)2 corresponds to the Wick
rotated longitudinal wavevector inside the medium, and
ε is the relative dielectric function of this medium (eval-
uated at the Wick rotated complex frequency).

The results presented below use the following optical
response properties :

1. The atomic polarizability is that of antihydrogen
(H), and is assumed to be the same as that of hy-
drogen (H) [37].

2. Perfect mirrors have been used in previous calcula-
tions [18, 23, 37]

ρTE ≡ −1 , ρTM ≡ 1 ; (4)

they are considered here for the sake of compari-
son with results obtained with the real materials
discussed below.

3. Mirrors made of intrinsic silicon are described by a
Drude-Lorentz model [32, 33] :

ε(iξ) = ε∞ +
(ε0 − ε∞)ω2

0

ξ2 + ω2
0

, (5)

with the parameters ε0 = 11.87, ε∞ = 1.035,
ω0 = 6.6× 1015 rad.s−1.

4. Mirrors made of amorphous silica are described by
a simple Sellmeier model [38] :

ε(iξ) = 1 +
∑

i=1,2,3

Bi
1 + (ξ/ωi)2

, (6)

with the parameters B1,2,3 = 0.696749, 0.408218,
0.890815 and ω1,2,3 = 27.2732, 16.2858, 0.190257
× 1015rad.s−1.

5. The electronic properties of graphene are described
by a Dirac model leading to reflection coefficients
given in [39].

The potential (2) has well-known asymptotic behaviors
at short and long distances

V (z) →
z�`
−C3

z3
, V (z) →

z�`
−C4

z4
. (7)

where ` is a distance scale determined by the charac-
teristic atomic frequencies which enter the expressions
of polarizability or dielectric function. The short dis-
tance limit is identical to the famous London/Van der
Waals result while the long distance limit is the so-called
retarded Casimir-Polder interaction which takes into ac-
count that the finite speed of light comes into play at
large separations [2]. The values given in Table I are ob-
tained from the exact vdW/CP potential (2) and given
in atomic units.

perfect silicon silica
C3 0.25 0.10 0.05
C4 73.6 50.3 28.1

TABLE I. Coefficients C3 and C4 for the vdW/CP interaction
for H atoms above perfect mirrors, silicon and silica bulks ;
the values are given in atomic units Ehan0 for Cn (Hartree
energy Eh ' 4.3597aJ ; Bohr radius a0 ' 52.917pm).

100 101 102 103 104 105 106

z (atomic units)

10-3

10-2

10-1

100

V
/
V

∗

FIG. 1. (Color online) Casimir-Polder potential for H in the
vicinity of a material bulk, drawn as a ratio V/V ∗ to the re-
tarded potential V ∗ for a perfect mirror ; from top to bottom,
perfect mirror (blue), silicon (green), silica (red).

Figure 1 displays the exact vdW/CP potentials ob-
tained from (2) for H atoms on perfect mirrors and bulk
mirrors made of intrinsic silicon or amorphous silica, de-
scribed by eqs. (4), (5) and (6) respectively. All cases are
drawn as ratios V (z)/V ∗(z) to the retarded CP limit cal-
culated for a perfectly reflecting wall V ∗ = −C∗4/z4 with
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C∗4 = 2.5 · 10−57J m4 (=73.6a.u., see Table I). The ra-
tios tend to constant values C4/C

∗
4 at large distances and

linear variations C3z/C
∗
4 at small distances. Of course,

lesser and lesser reflective materials produce weaker and
weaker CP potentials, from perfect mirrors to silicon and
silica plates.

III. QUANTUM REFLECTION OF H

We will now solve the problem of quantum reflection of
H atoms from the CP potential calculated in the previous
section, starting from free atoms with an energy E > 0
just before they feel the CP potential. We will also use
below the notation h for the height of free fall of the
atoms with the correspondence E = mgh (supposing h
much larger than tens of microns).

The Schrödinger equation may be written :

ψ′′(z) +
p2(z)

~2
ψ = 0 , (8)

where primes denote derivations with respect to z while
p2 is the square of the semiclassical momentum

p(z) =
√

2m (E − V (z)) . (9)

The general solution can be expressed, without approxi-
mation, as a superposition of the two WKB waves

ψ (z) =
c+(z)√
|p(z)|

eiφ(z) +
c−(z)√
|p(z)|

e−iφ(z) , (10)

where φ is the WKB phase (z0 arbitrary)

φ (z) =

∫ z

z0

p(z′)dz′

~
. (11)

The Schrödinger equation (8) is obeyed when the ampli-
tudes c± verify the coupled first-order equations [13]

c′±(z) = e∓2iφ(z)
p′(z)

2p(z)
c∓(z) . (12)

As H annihilates as soon as it touches the wall, there
cannot be any wave reflected immediately from the sur-
face z = 0 of the material boundary [23]. This full ab-
sorption condition imposes c+(z = 0) = 0 and we are
then free to fix c−(z = 0) = 1. The quantum reflection
amplitude r is thus given by the ratio of the amplitudes
c+(z) and c−(z) at the limit z → ∞ (see equation 10).
Finally, the quantum reflection probability discussed be-
low is the squared modulus of this amplitude |r|2.

In order to numerically integrate the preceding equa-
tions, it remains to fix the problems arising from the
divergence of the potential in the vicinity of the surface.
It will result from forthcoming discussions that the WKB
waves are well defined near the wall. However a difficulty
arises from the divergence of the WKB phase φ there. To
fix this difficulty, we proceed as in [23] by studying the

analytical form of the solution for c± close enough to the
wall. The potential there takes its van der Waals approx-
imated form while the energy E becomes negligible when
compared to the potential.

In this limit the functions f±(t) defined by

c±(z) = x3/2f±(t), x =
√

8mC3/z and t = ±2ix sat-
isfy the Kummer equation:

tf ′′±(t) + (b− t) f ′±(t)− af±(t) = 0 (13)

with parameters a = 3/2 and b = 4. A pair of inde-
pendent solutions is given by Kummer’s confluent hy-
pergeometric functions M(a, b, t) and U(a, b, t) [40]. On
the other hand the Schrödinger equation (8) can also be
solved close to the wall. The two counterpropagating
waves can be expressed in terms of the Hankel functions

as H
(1)
1 (x)/x and H

(2)
1 (x)/x and the full absorption con-

dition imposes that the second wave has a null amplitude
[23]. By comparing this expression of the wave function
with (10) we find that

c+(x) = −2(1 + i)x3/2
[
U

(
3

2
, 4, 2ix

)
(14a)

− i
√
π

8
M

(
3

2
, 4, 2ix

)]
e−2ix0

c−(x) = −2(1 + i)x3/2U

(
3

2
, 4,−2ix

)
(14b)

A better behavior of the functions is thus obtained by
changing the variables z → x in the vicinity of matter and
matching the numerical solutions to the known analytical
solutions (14). The results shown below are obtained in
this manner close to the wall, while variables are switched
back to z when the potential becomes comparable to the
energy.

We show in figure 2 the numerical solution for quantum
reflection probability obtained with the exact CP/vdW
potentials discussed in the preceding section for H atoms
falling to perfect mirrors and bulk mirrors made of silicon
or silica. It turns out that significant values are obtained
for the quantum reflection probability with the typical
numbers considered for the project GBAR as shown in
Table II.

perfect silicon silica

|r|2 14% 20% 32%

TABLE II. Reflection probabilities for a free fall height
h ∼ 10cm, which corresponds to an energy per unit mass
gh ∼ 1(m/s)2 at the matter plate.

These numbers highlight a striking result of the cal-
culations which is also emphasized by the use of the
same color codes in figures 1 and 2 : when going to
lesser and lesser reflective materials, i.e. weaker and
weaker CP/vdW interactions, one indeed obtains larger
and larger quantum reflection probability [12, 20]. This
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10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

h (m)

0.0

0.2

0.4

0.6

0.8

1.0
|r|

2

FIG. 2. (Color online) Quantum reflection probability |r|2
as a function of the free fall height h for H atoms on bulk
mirrors ; from bottom to top, perfect mirror (blue), silicon
(green), silica (red).

apparent paradox is analyzed in the next section, by tak-
ing a closer look at the region where quantum reflection
occurs.

IV. BADLANDS CONDITION

We now discuss the so-called badlands condition for ef-
ficient reflection, that is also for significant non adiabatic
transitions beyond the WKB approximation [13, 19].

To this aim, we recall that the WKB approximation ψ̃,
the wavefunction (10) with constant amplitudes c±, also
obeys a Schrödinger’s equation :

ψ̃′′(z) +
p̃2(z)

~2
ψ̃(z) = 0 ,

p̃2(z) ≡ p2(z) +
~2

2
Sφ(z) . (15)

The difference between (8) and (15) is the extra term
in p̃2 with respect to p2, proportional to the Schwarzian
derivative of the WKB phase :

Sφ(z) ≡ φ′′′(z)

φ′(z)
− 3

2

(
φ′′(z)

φ′(z)

)2

. (16)

This means that non adiabatic processes are character-
ized by this Schwarzian derivative, in a similar way to non
adiabatic emission of photons in vacuum after reflection
from moving mirrors [41, 42].

It follows that the WKB approximation is good when
the second term in p̃2 in (15) is much smaller than the
first one. It can be shown that this is the case for the
problem being studied in the present paper for short as
well as long distances, which means that left- and right-
wards propagation are well defined in both limits. The

non adiabatic processes giving rise to quantum reflection
occur in the intermediate distance range, and their effi-
ciency is significant for large values of the quantity :

Q(z) ≡ ~2Sφ
2p2

=
~2

2

p′′(z)

p(z)3
− 3~2

4

(
p′(z)

p(z)2

)2

. (17)

The adiabatic approximation breaks down in regions
where |Q(z)| ∼ 1, which have been dubbed the badlands.
Non adiabatic quantum reflection happens there, where
the notions of left- and rightwards propagation are no
longer well defined.

0 500 1000 1500 2000 2500
z (atomic units)

0.0

0.5

1.0

1.5

2.0

Q

FIG. 3. (Color online) Badlands function Q(z) as a function
of distance to the wall (atomic units) for H dropped from
h = 10cm on bulk mirrors ; from bottom right to top left,
perfect mirror (blue), silicon (green), silica (red).

Figure 3 features the numerical evaluation of this bad-
lands function Q(z) as a function of distance z to the
wall (atomic units), for H dropped from h = 10cm on
perfect, silicon or silica mirrors (same color codes as in
figures 1-2). The plots clarify two features which explain
the apparent paradox discussed in the preceding section.
First, quantum reflection occurs closer and closer to the
wall for weaker and weaker CP/vdW interaction. Second,
the value reached by Q(z) is thus larger and larger, since
the CP interaction gets steeper and steeper when atoms
approach the wall. When considered together, these two
features explain why a weaker potential leads to a more
efficient reflection than a stronger one. In fact, the quan-
tum reflection probabilities |r|2 (see for example the num-
bers given in Table II) increase with increasing peak value
of the badlands function Q(z).

V. REFLECTION ON A THIN SLAB

This discussion suggests that one should try to weaken
further the CP/vdW interaction with the aim of enhanc-
ing quantum reflection [20]. In the present section, we
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analyze this idea by studying either slabs having a finite
thickness or a graphene layer.

The calculations proceed along the same lines as pre-
viously, except for the fact that slabs of finite thickness d
have smaller reflection amplitudes than the correspond-
ing bulks. There is a general relation between these am-
plitudes [33] :

ρpslab =

(
1− e−2Kd

)
ρpbulk

1− e−2Kd (ρpbulk)
2 . (18)

When the CP/vdW interaction is calculated at distances
z smaller than the thickness d, the results of the bulk are
recovered. This can be understood from the fact that
ρpslab goes to ρpbulk for large values of d (up to exponen-
tially small corrections). In contrast, the long-distance
behavior of the CP potential is completely changed be-
cause the exponential factor now plays an important role
in (18). Even the power law index is changed for the
potential which now varies as :

V (z) →
z�`,d

−C5

z5
. (19)

100 101 102 103 104 105 106

z (atomic units)

10-3

10-2

10-1

100

V
/V

∗

FIG. 4. (Color online) Casimir-Polder potential for H in the
vicinity of a silica slab, drawn as a ratio V/V ∗ ; from top to
bottom, the thickness is infinite (black), 50 nm (magenta), 20
nm (deep blue), 10 nm (light blue), 5 nm (deep green), 2 nm
(light green) and 1 nm (red).

Figure 4 shows the exact CP/vdW potentials obtained
from (2) for H atoms on slabs of amorphous silica, with
different values for the thickness d. All cases are drawn
as ratios of V (z) to the same reference potential V ∗ al-
ready used in figure 1. The ratios tend to the same lin-
ear variations C3z/C

∗
4 at small distances as for the silica

bulk (red curve in figure 1) and to inverse distance laws
C5/(C

∗
4z) at large distances with the value of C5 being

proportional to d. This behavior can be expected from a
simple argument where the potential Vslab(z) at distance

z from a slab of thickness d is obtained from the differ-
ence Vbulk(z) − Vbulk(z + d) with Vbulk the potential at
distance z from a bulk. The scaling given by this simple
argument is correct while the value of C5 is not exact.

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

h (m)

0.0

0.2

0.4

0.6

0.8

1.0

|r|
2

FIG. 5. (Color online) Quantum reflection probability |r|2 as
a function of the free fall height h for H atoms on silica slabs ;
from bottom to top, the thickness is infinite (black), 50 nm
(magenta), 20 nm (deep blue), 10 nm (light blue), 5 nm (deep
green), 2 nm (light green) and 1 nm (red). The dashed line
is the result for quantum reflection on non-doped graphene.

We depict in figure 5 the numerical solution for
quantum reflection probability obtained with the exact
CP/vdW potentials for H atoms falling to silica slabs
with various values of the thickness (same color code as
on figure 4). As expected, larger and larger values are ob-
tained for the quantum reflection probability on thinner
and thinner silica slabs, that is also steeper and steeper
CP/vdW potentials. For a free fall height h ∼ 10 cm

for example, the probability |r|2 reaches ∼ 50% for 3 nm
slabs while it is only 33% pour Silica bulks. For compar-
ison we also show the quantum reflection coefficient for
graphene. Interestingly the same high quantum reflec-
tion than on a (not realistic) 1 nm slab can be obtained
with the quantum reflection reaching 61% for non-doped
graphene. This value increases only slightly (≤ 2%) if
doping is included.

VI. LOW ENERGY LIMIT

We finally discuss the limit of near threshold quantum
reflection, where the incident atomic energy E goes to
zero. Quantum reflection is thus characterized by a scat-
tering length [23] which we will calculate in the present
section for the different cases discussed above, with the
aim of optimizing applications for manipulating antihy-
drogen with material walls [34, 35].

In order to conform to standard notation, we replace
p by ~k in this section (k not to be confused with the
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electromagnetic wavevector used in the beginning of this
paper). The reflection amplitude r is a function of k
which can be written in terms of a complex-valued func-
tion a(k) having the dimension of a length :

r(k) = − exp (−2ika(k)) . (20)

The real part of a(k) determines the phase at reflection
while its imaginary part determines the quantum reflec-
tion probability :

|r|2 = exp (4kIm(a(k)) . (21)

log
10 (ka

0 )

−5
−4

−3
−2

−1
Re(a(k)) 

(atomic units)−80−60−40−20020

Im
(a

(k
))

 (a
to

m
ic

 u
ni

ts
)

−500

−400

−300

−200

−100

FIG. 6. (Color online) 3D representation of the variation
of real and imaginary parts of a(k) versus wavevector for H
atoms on bulk mirrors ; from top left to bottom right, perfect
mirror (blue), silicon (green), silica (red).

We show in figure 6 the variations of real and imagi-
nary parts of a(k) versus wavevector (measured in atomic
units) for H atoms falling to perfect mirror, silicon and
silica bulks (same color codes as in figure 2). We see
that a(k) goes to a finite value a(0) when k → 0, which
is known as the scattering length; the values of a(0) are
collected in Table III.

perfect silicon silica graphene
Re(a) Im(a) Re(a) Im(a) Re(a) Im(a) Re(a) Im(a)
-53.0 -543.0 -97.2 -435.2 -77.0 -272.6 -15.4 -109.7

TABLE III. Real and imaginary parts of the scattering length
a(0) for H falling on perfect mirrors, silicon and silica bulks
and graphene (given in atomic units a0).

We also show in figure 7 the variations of real and
imaginary parts of a(k) versus wavevector (measured in
atomic units) for H atoms on silica slabs (same color
codes as in figure 5). Again, a(k) goes to a finite value
a(0) when k → 0, the real and imaginary parts of which
are collected in Table IV.

log
10 (ka

0 )

−5
−4

−3
−2

−1
Re(a(k)) 

(atomic units)
−70−60−50−40−30−20−10010

Im
(a

(k
))

 (a
to

m
ic

 u
ni

ts
)

−250

−200

−150

−100

−50

FIG. 7. (Color online) 3D representation of the variation of
real and imaginary parts of a(k) versus wavevector H atoms
falling to silica slabs ; from top right to bottom left, the thick-
ness is infinite (black), 50 nm (magenta), 20 nm (deep blue),
10 nm (light blue), 5 nm (deep green), 2 nm (light green) and
1 nm (red).

d (slab silicon silica
thickness) Re(a) Im(a) Re(a) Im(a)

1nm 3.0 -178.1 6.5 -97.9
2nm 1.6 -231.8 7.5 -130.3
5nm -6.5 -311.2 3.2 -181.9
10nm -21.8 -367.8 -9.3 -221.1
20nm -45.2 -408.0 -29.1 -250.1
50nm -73.1 -429.7 -53.3 -267.4
100nm -85.0 -433.7 -64.4 -271.2
bulk -97.2 -435.2 -77.0 -272.6

TABLE IV. Real and imaginary parts of the scattering length
of antihydrogen on silicon and silica slabs (given in atomic
units a0).

We observe large variations of these values, which can
have important applications for manipulating H with ma-
terial walls. By considering quantum gravitational traps
for H bounded below by the quantum reflection from the
CP/vdW potential and above by gravity, one obtains the
following lifetime for the quantum bouncer in the first
gravitational quantum state [34] :

τ =
~

2mg |Im a(0)|
(22)

The lifetime is thus ∼ 5 times larger for thin silica slabs
than for the perfect mirrors considered in the calculations
of [34]. The same improvement holds for the width of
resonances between quantum states which can be used
for precise spectroscopic determination of the energies
of these states, a technique which could allow a better
accuracy for the gravitational behavior of H atoms in
future experiments [35].
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The same techniques could also allow to trap antiatoms
above curved material surfaces and them guide them at
will during the longer lifetime achieved thanks to quan-
tum reflection from steep potentials.

VII. CONCLUSION

We have given realistic estimates of the VdW/CP po-
tential above matter slabs of arbitrary thickness and
the corresponding reflection probability for antihydro-
gen atoms. It appeared that a substantial amount of
quantum reflection is to be expected in the GBAR ex-

periment. We gave a detailed analysis of the reflection
process, solving the paradox of weaker potentials lead-
ing to higher reflection. Finally we have investigated the
low-energy regime of quantum reflection and given quan-
titative predictions for the scattering length.

VIII. ACKNOWLEDGEMENTS

The authors thank the ESF Research Networking Pro-
gramme CASIMIR (casimir-network.org) and the GBAR
collaboration (gbar.in2p3.fr) for providing excellent pos-
sibilities for discussions and exchange.

[1] J. Lennard-Jones and A. Devonshire, Proc. Roy. Soc.
London, A156, 6 (1936); A156, 29 (1936).

[2] H. Casimir and D. Polder, Nature, 158, 787 (1946);
H. B. G. Casimir and D. Polder, Phys. Rev., 73, 360
(1948).

[3] V. U. Nayak, D. O. Edwards, and N. Masuhara, Phys.
Rev. Lett., 50, 990 (1983).

[4] J. J. Berkhout, O. J. Luiten, I. D. Setija, T. W. Hijmans,
T. Mizusaki, and J. T. M. Walraven, Phys. Rev. Lett.,
63, 1689 (1989).

[5] I. Yu, J. Doyle, J. Sandberg, C. Cesar, D. Kleppner, and
T. Greytak, Phys. Rev. Lett., 71, 1589 (1993).

[6] F. Shimizu, Phys. Rev. Lett., 86, 987 (2001).
[7] V. Druzhinina and M. DeKieviet, Phys. Rev. Lett., 91,

193202 (2003).
[8] H. Oberst, Y. Tashiro, K. Shimizu, and F. Shimizu,

Phys. Rev., A71, 052901 (2005).
[9] V. P. A. Lonij, W. F. Holmgren, and A. D. Cronin, Phys.

Rev. A, 80, 062904 (2009).
[10] B. S. Zhao, H. C. Schewe, G. Meijer, and W. Schoellkopf,

Phys. Rev. Lett., 105, 133203 (2010).
[11] T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek,

D. Pritchard, and W. Ketterle, Phys. Rev. Lett., 93,
223201 (2004).

[12] T. A. Pasquini, M. Saba, G. B. Jo, Y. Shin, W. Ketterle,
D. E. Pritchard, T. A. Savas, and N. Mulders, Phys.
Rev. Lett., 97, 093201 (2006).

[13] M. Berry and K. Mount, Reports on Progress in Physics,
35, 315 (1972).

[14] W. Brenig, Zeitschrift für Physik B Condensed Matter,
36, 227 (1980), ISSN 0722-3277, 10.1007/BF01325286.

[15] D. Clougherty and W. Kohn, Phys. Rev., B46, 4921
(1992).

[16] C. Henkel, C. Westbrook, and A. Aspect, J. Opt. Soc.
Am., B13, 233 (1996).

[17] C. Carraro and M. Cole, Prog. Surf. Sci., 57, 61 (1998).
[18] H. Friedrich, G. Jacoby, and C. Meister, Phys. Rev.,

A65, 032902 (2002).
[19] H. Friedrich and J. Trost, Physics Reports, 397, 359

(2004).
[20] T. E. Judd, R. G. Scott, A. M. Martin, B. Kaczmarek,

and T. M. Fromhold, New Journal of Physics, 13, 083020
(2011).

[21] J. D. Perreault, M. Bhattacharya, V. P. A. Lonij, and
A. D. Cronin, Phys. Rev. A, 77, 043406 (2008).

[22] V. Druzhinina, M. Mudrich, F. Arnecke, J. Madroñero,
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