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The high-energy limit of 2 → 2 scattering amplitudes offers an excellent setting to explore the
universal features of gauge theories. At Leading Logarithmic (LL) accuracy the partonic amplitude
is governed by Regge poles in the complex angular momentum plane. Beyond LL, Regge cuts in
this plane begin to play an important role. Specifically, the real part of the amplitude at Next-to-
Next-to-Leading Logarithmic (NNLL) accuracy presents for the first time both a Regge pole and
a Regge cut. Analysing this tower of logarithms and computing it explicitly through four loops we
are able to systematically separate between the Regge pole and the Regge cut. The former involves
two fundamental parameters, namely the gluon Regge trajectory and impact factors. We explain
how to consistently define the impact factors at two loops and the Regge trajectory at three loops.
We confirm that the singularities of the trajectory are given by the cusp anomalous dimension.
We also show that the Regge-cut contribution at four loop is nonplanar.
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1. Introduction to the high-energy limit of 2 → 2 scattering amplitudes

The high-energy limit has long been an intersting laboratory to study gauge-theory amplitudes,
which simplify significantly in this regime. The simplification in the limit means that multi-loop
corrections are accessible, and they may even be resummed to all orders (at a fixed logarithmic
accuracy), while still retaining a rich structure in both colour and kinematics.

i(p1, a1, λ1)

j(p2, a2, λ2) j(p3, a3, λ3)

i(p4, a4, λ4)

Figure 1: A representation of the 2 → 2 scattering of eq. (1).

We consider the 2 → 2 scattering of massless partons in a generic gauge theory

𝑖(𝑝1, 𝑎1, 𝜆1) + 𝑗 (𝑝2, 𝑎2, 𝜆2) → 𝑗 (𝑝3, 𝑎3, 𝜆3) + 𝑖(𝑝4, 𝑎4, 𝜆4), (1)

where momenta, colour and helicity are labelled by 𝑝𝑖 , 𝑎𝑖 and 𝜆𝑖 respectively. A pictorial repre-
sentation is given in Figure 1. The process is described in terms of the Mandelstam invariants,

𝑠 = (𝑝1 + 𝑝2)2 > 0 𝑡 = (𝑝1 − 𝑝4)2 < 0 𝑢 = (𝑝1 − 𝑝3)2 < 0, (2)

where the signs dictate the physical scattering region. Momentum conservation implies

𝑠 + 𝑡 + 𝑢 = 0. (3)

In 2 → 2 scattering, the high-energy (Regge) limit is defined to be when the centre-of-mass energy
is much larger than the momentum transfer, i.e. 𝑠 � −𝑡. At leading power the tree-level amplitude
is

Mtree
𝑖 𝑗→𝑖 𝑗 = 4𝜋𝛼𝑠

2𝑠
𝑡
(T𝑏𝑖 )𝑎1𝑎4 (T𝑏𝑗 )𝑎2𝑎3𝛿𝜆1𝜆4𝛿𝜆2𝜆3 , (4)

where we observe that the helicity of each of the scattered partons is conserved. We use colour
operator notation to keep expressions general for any representation. In the Regge limit it is
convenient to define colour-flow operators following the conventions of the Mandelstams [1–3],

T𝑠 = T1 + T2, T𝑡 = T1 + T4, T𝑢 = T1 + T3. (5)

The quantity T2
𝑡 measures the colour charge of the 𝑡-channel adjoint exchange,

T2
𝑡Mtree

𝑖 𝑗→𝑖 𝑗 = 𝐶𝐴Mtree
𝑖 𝑗→𝑖 𝑗 . (6)

In the high-energy limit it can be shown that in the complex angular momentum plane, the
amplitude can be written as a sum over poles and cuts, dubbed Regge poles and Regge cuts. Regge
cuts were shown by Mandelstam to arise from only nonplanar diagrams [4]. Note that Mandelstam’s
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observation only involved the diagrams being nonplanar. In this work we connect this to gauge
theories, where planarity relates to colour and corresponds to the large-𝑁𝑐 limit.

Calculating the amplitude in the perturbative expansion in 𝛼𝑠 we would find that large loga-
rithms will develop in the ratio 𝑠/(−𝑡). In the Leading Logarithmic (LL) approximation, these can
be resummed by the famous Regge pole,

MLL
𝑖 𝑗→𝑖 𝑗 =

( 𝑠

−𝑡

)𝐶𝐴𝛼𝑔 (𝑡 ,𝜇2)
Mtree

𝑖 𝑗→𝑖 𝑗 , (7)

where 𝛼𝑔 is called the Regge trajectory. This quantity admits a perturbative expansion,

𝛼𝑔 (𝑡, 𝜇2) =
∞∑︁
𝑛=1

(𝛼𝑠
𝜋

)𝑛
𝛼
(𝑛)
𝑔 (𝑡, 𝜇2), (8)

where the one-loop coefficient relevant at LL is

𝛼
(1)
𝑔 (𝑡, 𝜇2) = 𝑟Γ

2𝜖

(
𝜇2

−𝑡

) 𝜖
, 𝑟Γ = 𝑒𝜖 𝛾𝐸

Γ2(1 − 𝜖)Γ(1 + 𝜖)
Γ(1 − 2𝜖) , (9)

with 𝜖 = (4− 𝑑)/2 the dimensional regularisation parameter. We will set the renormalisation scale
𝜇2 = −𝑡 for simplicity. At this accuracy the amplitude has the same colour structure as the tree-level,
the octet exchange in the 𝑡-channel.

Before moving on to Next-to-Leading Logarithms (NLL), we shall first introduce the concept
of signature under 𝑠 ↔ 𝑢, where we notice that the tree-level amplitude in eq. (4) is signature-odd.
We define even and odd amplitudes through

M (±) (𝑠, 𝑡) = 1
2
(M(𝑠, 𝑡) ±M(−𝑠 − 𝑡, 𝑡)) . (10)

Upon defining the signature-even logarithm,

𝐿 ≡ log
( 𝑠

−𝑡

)
− 𝑖𝜋

2
=

1
2

[
log

(
−𝑠 − 𝑖0
−𝑡

)
+ log

(
−𝑢 − 𝑖0

−𝑡

)]
, (11)

and then expanding the amplitude in 𝐿, the coefficients of 𝐿 in the odd (even) amplitudes are entirely
real (imaginary) [5].

In this work, we focus solely on the odd amplitude M (−) , and we will remove the superscript
(−) for convenience. For even amplitudes at NLL see [6–8]. At NLL, the amplitudes obey Regge
pole factorisation [9–11],

MNLL
𝑖 𝑗→𝑖 𝑗 = 𝑒𝐶𝐴𝛼𝑔 (𝑡)𝐿𝐶𝑖 (𝑡)𝐶 𝑗 (𝑡)Mtree

𝑖 𝑗→𝑖 𝑗 , (12)

where 𝐶𝑖 (𝑡) are energy-independent impact factors for each of the scattered partons. They are
expanded in powers of 𝛼𝑠, similar to 𝛼𝑔 in eq. (8). The dependence on 𝑠 is entirely controlled by
the Regge trajectory. NLL accuracy is obtained by taking the Regge trajectory up to two loops, and
the impact factors at one loop.

It is worthwhile to compare Regge factorisation to infrared factorisation. It is well-known that
long-distance singularities factorise from the amplitude [12–17],

M𝑖 𝑗→𝑖 𝑗 = P exp

{
−1

2

∫ 𝜇2

0

𝑑𝜆2

𝜆2 𝚪𝑖 𝑗→𝑖 𝑗

}
· H (13)
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where 𝚪𝑖 𝑗→𝑖 𝑗 is dubbed the soft anomalous dimension. In the high-energy limit it is given by [5]

𝚪𝑖 𝑗→𝑖 𝑗 =
1
2
𝛾𝐾

[
𝐿T2

𝑡 + 𝑖𝜋T2
𝑠−𝑢

]
+ Γ𝑖 + Γ 𝑗 + 𝚫 (14)

where at LL, divergences are captured by the lightlike cusp anomalous dimension 𝛾𝐾 and Γ𝑖 is
the collinear anomalous dimension, which collects collinear divergences associated to scattered
parton 𝑖. The operator T2

𝑠−𝑢 is defined as

T2
𝑠−𝑢 =

1
2

(
T2
𝑠 − T2

𝑢

)
. (15)

The quantity 𝚫 starts at three loops [18] but only contributes at NLL for even amplitudes from four
loops [6] and NNLL for odd amplitudes also from four loops [19]. Performing the integral over the
𝑑-dimensional running coupling in eq. (13), reveals the explicit infrared poles of the amplitude.

It is natural to compare the two exponentiations in eqs. (12) and (13). The coefficient of the
logarithm 𝐿 in the exponent gives

𝛼𝑔 (𝑡)
?
= −1

4

∫ 𝜇2

0

𝑑𝜆2

𝜆2 𝛾𝐾 (𝛼𝑠 (𝜆2)) + O(𝜖0). (16)

The equivalency holds at two loops (i.e. NLL) [20]. We shall show that it also holds at three loops
through a proper definition of the trajectory and it remains a conjecture that it holds beyond. The
factor independent of the logarithm suggests that the infrared divergences of the impact factors are
related to the collinear anomalous dimension Γ𝑖 [21, 22].

2. Distinguishing pole and cut contributions

At NNLL the factorisation in eq. (12) fails. The colour structure of the amplitude is no longer
given only by the exchange of an octet in the 𝑡-channel, as for the tree-level amplitude, and new
colour channels open up. To describe also these contributions to the amplitudes, we generalise
eq. (12) by introducing a non-factorising term, which originates from Regge cuts [5, 19, 21–29]

MNNLL
𝑖 𝑗→𝑖 𝑗 = 𝑒𝐶𝐴𝛼𝑔 (𝑡)𝐿𝐶𝑖 (𝑡)𝐶 𝑗 (𝑡)Mtree

𝑖 𝑗→𝑖 𝑗 +MNF
𝑖 𝑗→𝑖 𝑗 . (17)

The high-energy behaviour of the amplitude will only be uncovered when the perturbative
series is resummed. As such, it is not clear how to properly define the Regge pole and Regge cut in
order-by-order computations. To see this explicitly, we expand eq. (17) to two loops

M (2) ,NNLL
𝑖 𝑗→𝑖 𝑗 =

(
𝐶

(1)
𝑖

𝐶
(1)
𝑗

+ 𝐶
(2)
𝑖

+ 𝐶
(2)
𝑗

)
Mtree

𝑖 𝑗→𝑖 𝑗 +M (2) ,NF
𝑖 𝑗→𝑖 𝑗 . (18)

In the expansion above, we are a priori free to move any term whose colour factor is proportional
to the tree-level from M (2) ,NF

𝑖 𝑗→𝑖 𝑗 into the two-loop impact factors 𝐶 (2)
𝑖

(the one-loop 𝐶
(1)
𝑖

are fixed at
NLL). There is an ambiguity in the definition of the two-loop impact factors. Therefore, we need a
prescription to disentangle the two-loop impact factors from the contribution of Regge cuts. How
to properly distinguish the pole and cut contributions is the key result in what follows [30].

We can access this non-factorising term by computing certain diagrams in the high-energy
limit. In this regime, the fundamental degrees of freedom are Reggeized gluons, dubbed Reggeons,

4
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(a) A two-loop MR diagram. The
explicit result is given in eq. (19).

(b) A three-loop MR diagram. (c) A four-loop MR diagram.

Figure 2: Example MR diagrams. The black lines represent the external scattering partons and the double
red lines are the Reggeon exchanges. There is a symmetric sum over all possible orderings of the Reggeon
attachments to the external partons.

see [6, 28] and references therein. At tree-level, the diagram featuring the exchange of a single
Reggeon in the 𝑡-channel has the analytic structure of a Regge pole, i.e. the first term in eq. (17).

We use the shockwave formalism of ref. [6] to compute diagrams with the exchange of Multiple
Reggeons (MR), which start at two loops1. Example diagrams at two, three and four loops are given
in Figure 2. The two-loop diagram displayed in Figure 2a was computed in [5], giving

M (2) ,MR
𝑖 𝑗→𝑖 𝑗 = 𝜋2

(
− 1

8𝜖2 + 1
8
𝜁2 +

4
3
𝜖𝜁3 + O(𝜖2)

) (
(T2
𝑠−𝑢)2 − 1

12
𝐶2
𝐴

)
Mtree

𝑖 𝑗→𝑖 𝑗 . (19)

A couple of comments are in order. The overall 𝜋2 = −(𝑖𝜋)2 highly suggests it originates from a
cut. It has uniform transcendental weight as this quantity is independent on the underlying gauge
theory: the N = 4 super Yang-Mills (SYM) result is the same as QCD.

These features are maintained in the MR exchanges at three and four loops, which are computed
in [5] and [19], respectively. It is possible to identify the entire contribution of MR diagrams with
the Regge-cut term in eq. (17), as done in [5]. This defines a scheme to extract the two-loop
impact factors 𝐶 (2)

𝑖
and the three-loop Regge trajectory 𝛼

(3)
𝑔 by matching eq. (17), where MNF

𝑖 𝑗→𝑖 𝑗
is identified with MMR

𝑖 𝑗→𝑖 𝑗 , with fixed-order calculations [31–35].
Here, we take a different point of view following refs. [21, 30]. Indeed, according to the

analysis of Mandelstam [4], the Regge cut contribution MNF
𝑖 𝑗→𝑖 𝑗 arises from nonplanar diagrams.

Therefore, its colour structure should be subleading in the limit of large 𝑁𝑐 . In contrast with this
conclusion, the MMR

𝑖 𝑗→𝑖 𝑗 has non-vanishing contributions at two and three loops for large 𝑁𝑐 [19,
21],

MMR
𝑖 𝑗→𝑖 𝑗 |planar =

𝜋2𝑟2
Γ
𝑁2
𝑐

6

(𝛼𝑠
𝜋

)2
{
𝑆 (2) (𝜖) −

(𝛼𝑠
𝜋

)
𝑟Γ𝑁𝑐𝐿

[
𝑆 (3) (𝜖) − 1

2𝜖
𝑆 (2) (𝜖)

]
+ O(𝛼3

𝑠)
}
Mtree

𝑖 𝑗→𝑖 𝑗 ,

(20)

𝑆 (2) (𝜖) = − 1
8𝜖2 + 3

4
𝜖𝜁3 +

9
8
𝜖2𝜁4 + O(𝜖3), (21)

𝑆 (3) (𝜖) = − 1
144𝜖3 + 35

72
𝜁3 +

35
48

𝜖𝜁4 + O(𝜖3). (22)

1At one-loop, it is possible to exchange only two Reggeons, but these contribute only to the imaginary (even) part of
the amplitude.
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By looking at eq. (20), we notice that, for every scattering process, the planar part of MMR
𝑖 𝑗→𝑖 𝑗 is

colour proportional to the tree-level amplitude. Because of this property, by following the argument
below eq. (18), at two loops it is possible to absorb the planar part of MMR

𝑖 𝑗→𝑖 𝑗 in the definition of
the impact factors [21, 30]. At three loops, the planar terms in MMR

𝑖 𝑗→𝑖 𝑗 are again proportional to the
tree-level amplitude and can be absorbed in the definition of the three-loop gluon Regge trajectory.
This naturally gives a method to capture the true separation between the pole and the cut, where
we shift all the planar corrections into a new pole term with new impact factors and a new Regge
trajectory [30]

Mpole
𝑖 𝑗→𝑖 𝑗 = �̃�𝑖 (𝑡)�̃� 𝑗 (𝑡)𝑒 �̃�𝑔 (𝑡)𝐶𝐴𝐿Mtree

𝑖 𝑗→𝑖 𝑗 , (23)

where we have added a tilde on the parameters to dinstinguish between the old and new pole terms.
As the whole amplitude is a well-defined quantity, the shifts in the two-loop impact factors and
three-loop Regge trajectory can be calculated

�̃�
(2)
𝑖/ 𝑗 =𝐶

(2)
𝑖/ 𝑗 + 𝑁2

𝑐 (𝑟Γ)2 𝜋
2

12
𝑆 (2) (𝜖), (24)

�̃�
(3)
𝑔 =𝛼

(3)
𝑔 − 𝑁2

𝑐 (𝑟Γ)3 𝜋
2

6
𝑆 (3) (𝜖). (25)

This exhausts all possible parameters at NNLL to absorb planar contributions into the pole term.
This is consistent with the fact that at four loops the MR term is entirely nonplanar [19, 21] and that
it is conjectured to be so at all higher loops [21, 30].

3. Applications

Having properly distinguished pole and cut contributions order-by-order in the perturbation
expansion, we can now extract Regge parameters. Using state-of-the-art calculations for the relevant
amplitudes, we first extract two-loop impact factors and then the three-loop Regge trajectory. Lastly,
as a by-product of the four-loop computation of M (4) ,MR

𝑖 𝑗→𝑖 𝑗 we derive constraints on the infrared
structure of four-loop amplitudes.

3.1 Two-loop impact factors

Using eq. (24) we can extract the two-loop impact factors. To display results it is more
convenient to define the pole term as a symmetric sum of exponentials, rather than a single
exponentiated sum. In eq. (23) we make the replacement

�̃�𝑖 (𝑡)�̃� 𝑗 (𝑡)𝑒 �̃�𝑔 (𝑡)𝐶𝐴𝐿 → 𝑍𝑖 (𝑡)�̄�𝑖 (𝑡)
[( 𝑠

−𝑡

) �̃�𝑔 (𝑡)
+
(−𝑠
−𝑡

) �̃�𝑔 (𝑡) ]
𝑍 𝑗 (𝑡)�̄� 𝑗 (𝑡), (26)

where 𝑍𝑖 (𝑡) is the exponential of the integral over the collinear anomalous dimension Γ𝑖

𝑍𝑖 (𝑡) ≡ exp

{
−1

2

∫ 𝜇2

0

𝑑𝜆2

𝜆2 Γ𝑖

}
. (27)

6
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This replacement defines a finite collinear-subtracted impact factor �̄�𝑖 (𝑡), i.e. the poles of the impact
factor are given by the collinear anomalous dimension [22]. It is related to the �̃�𝑖 (𝑡) by

�̃�𝑖 (𝑡) = 𝑍𝑖 (𝑡)�̄�𝑖 (𝑡)

√︄
cos

(
𝜋𝐶𝐴�̃�𝑔 (𝑡)

2

)
. (28)

Upon matching to amplitudes calculated in [31] we find the results

�̄�
(2)
𝑔 =𝐶2

𝐴

(335
288

𝜁2 +
11
18

𝜁3 −
3
32

𝜁4 −
26675
10368

)
+ 𝐶𝐴𝑛 𝑓

( 49
108

− 25
144

𝜁2 +
5
36

𝜁3

)
+ 𝐶𝐹𝑛 𝑓

( 55
192

− 𝜁3

4

)
− 25

2592
𝑛2
𝑓 + O(𝜖) , (29)

�̄�
(2)
𝑞 =𝐶2

𝐴

(
73𝜁2

32
− 43𝜁3

48
− 53𝜁4

64
+ 13195

3456

)
+ 𝐶𝐴𝐶𝐹

(
− 5𝜁2

2
+ 475𝜁3

144
+ 65𝜁4

32
− 78229

10368

)
+ 𝐶2

𝐹

(
21𝜁2

16
− 15𝜁3

8
− 83𝜁4

64
+ 255

128

)
+ 𝐶𝐴𝑛 𝑓

(
− 5𝜁2

16
− 7𝜁3

24
− 385

432

)
,

+ 𝐶𝐹𝑛 𝑓

(
𝜁2

8
+ 19𝜁3

72
+ 505

648

)
+ 25

864
𝑛2
𝑓 + O(𝜖) (30)

for gluons and quarks respectively. The values through to O(𝜖2) are given in ref. [30]. Upon taking
the planar limit we find that �̄� (2)

𝑔 agrees with the recent calculation of ref. [36]. Upon extracting
the terms of highest weight of eq. (29), we find the gluon impact factor in planar N = 4 SYM [37,
38], which also coincides with the impact factor in full colour [5, 32] when using the cut scheme.

3.2 Three-loop Regge trajectory

We can also extract the Regge trajectory. We use eq. (25) and the state-of-the-art three-loop
four quark amplitudes of ref. [33]. In doing so, we find the poles are given by the cusp anomalous
dimension, thus confirming eq. (16) at three loops. If we had used the MR scheme, we would find
that there are infrared poles not described by 𝛾𝐾 [5].

Upon defining the cusp-subtracted Regge trajectory ˆ̃𝛼𝑔 through

ˆ̃𝛼𝑔 ≡ �̃�𝑔 +
1
4

∫ 𝜇2

0

𝑑𝜆2

𝜆2 𝛾𝐾 (𝛼𝑠 (𝜆2)) (31)

we find the finite result at three loops [30, 34]

ˆ̃𝛼 (3)
𝑔 =𝐶2

𝐴

(
297029
93312

− 799𝜁2

1296
− 833𝜁3

216
− 77𝜁4

192
+ 5

24
𝜁2𝜁3 +

𝜁5

4

)
+ 𝐶𝐴𝑛 𝑓

(
103𝜁2

1296
+ 139𝜁3

144
− 5𝜁4

96
− 31313

46656

)
+ 𝐶𝐹𝑛 𝑓

(
19𝜁3

72
+ 𝜁4

8
− 1711

3456

)
+ 𝑛2

𝑓

(
29

1458
− 2𝜁3

27

)
+ O(𝜖). (32)

Notice that when 𝑛 𝑓 = 0 there are no 𝑁𝑐-subleading terms, in agreement with the expectation that
the Regge trajectory is maximally non-Abelian [20]. The result of eq. (32) agrees with the planar
extraction given in [36].

7
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3.3 Infrared Constraints

Another application of the calculation of the MR term is that we can find constraints on the
infrared structure of gauge-theory amplitudes. The structure of infrared divergences for multi-
leg massless scattering is known at three loops in general kinematics [39]. In addition, in the
high-energy limit the entire NLL tower of corrections has been resummed [7, 18]. Given that the
four-loop computation of the Regge-cut term is known, we can match the Regge decomposition in
eq. (17) to the soft anomalous dimension in the high-energy limit, eq. (14). It can be shown that
only the Regge-cut term contributes to 𝚫. Expanding 𝚫 as

𝚫 =

∞∑︁
𝑚=3

(𝛼𝑠
𝜋

)𝑚 𝑚−1∑︁
𝑛=0

𝐿𝑛𝚫(𝑚,𝑛) , (33)

we have the four-loop results at NLL [6] and NNLL [19] respectively,

𝚫(4,3) = − 𝑖𝜋
𝜁3

24
[
T2
𝑡 ,
[
T2
𝑡 ,T2

𝑠−𝑢
] ]

T2
𝑡 , (34)

Re
[
𝚫(4,2)

]
= 𝜁2𝜁3,

{
1
4

T2
𝑡

[
T2
𝑡 , (T𝑠−𝑢)2] + 3

4
[
T2
𝑠−𝑢 ,T2

𝑡

]
T2
𝑡T2
𝑠−𝑢 +

𝑑𝐴𝐴

𝑁𝐴
−
𝐶4
𝐴

24

}
, (35)

where only the real part of 𝚫(4,2) is known as we only have NNLL results for the odd amplitude.
By matching the above to an ansatz for the four-loop 𝚫(4) in general kinematics [40] we can find
the asymptotic limits of the functions [21].

The three-loop soft anomalous dimension was shown to be bootstrapable from general con-
siderations and matching to known collinear and high-energy limits [41]. The above results gives
useful constraints for a potential four-loop bootstrap.

4. Conclusions

Beyond NLL, in the high-energy limit, amplitudes no longer factorise in terms of a Regge pole,
as given in eq. (12). A non-factorising term, originating from Regge cuts, needs to be included as
in eq. (17). This leads to an ambiguity in how to properly define the pole term order-by-order in
perturbation theory. In this work, we have shown how to consistently do so with the high-energy
properties of Regge poles and Regge cuts in the complex angular momentum plane. We remove all
planar MR contributions from the non-factorising term and define a new pole term with new NNLL
parameters, namely the two-loop impact factor �̃� (2)

𝑖
and the three-loop Regge trajectory �̃�

(3)
𝑔 .

As an application, we find O(𝜖2) terms of the two-loop impact factors of eqs. (29) and (30)
using state-of-the-art amplitude computations [31]. We also extract, for the first time, the three-loop
Regge trajectory, eq. (32), using the amplitudes of ref. [33]. The poles of the Regge trajectory are
given by the integrated cusp anomalous dimension when using the cut scheme, eq. (31).

Furthermore, as a by-product of four-loop computations [6, 19], we can derive constraints on
the structure of infrared divergences in the high-energy limit [21], see eqs. (34) and (35).
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