002859793 001__ 2859793
002859793 005__ 20240927155838.0
002859793 0247_ $$2DOI$$9APS$$a10.1103/PhysRevLett.130.202501$$qpublication
002859793 0248_ $$aoai:cds.cern.ch:2859793$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002859793 037__ $$9arXiv$$aarXiv:2304.10281$$cnucl-ex
002859793 035__ $$9arXiv$$aoai:arXiv.org:2304.10281
002859793 035__ $$9Inspire$$aoai:inspirehep.net:2652851$$d2024-05-07T09:31:00Z$$h2024-05-08T02:01:03Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002859793 035__ $$9Inspire$$a2652851
002859793 041__ $$aeng
002859793 100__ $$aBennett, S.A.$$uManchester U.$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
002859793 245__ $$9APS$$aDirect Determination of Fission-Barrier Heights Using Light-Ion Transfer in Inverse Kinematics
002859793 260__ $$c2023-05-19
002859793 269__ $$c2023-04-20
002859793 300__ $$a6 p
002859793 520__ $$9APS$$aWe demonstrate a new technique for obtaining fission data for nuclei away from <math display="inline"><mi>β</mi></math> stability. These types of data are pertinent to the astrophysical <math display="inline"><mrow><mi>r</mi></mrow></math> process, crucial to a complete understanding of the origin of the heavy elements, and for developing a predictive model of fission. These data are also important considerations for terrestrial applications related to power generation and safeguarding. Experimentally, such data are scarce due to the difficulties in producing the actinide targets of interest. The solenoidal-spectrometer technique, commonly used to study nucleon-transfer reactions in inverse kinematics, has been applied to the case of transfer-induced fission as a means to deduce the fission-barrier height, among other variables. The fission-barrier height of <math display="inline"><mrow><mmultiscripts><mrow><mi mathvariant="normal">U</mi></mrow><mprescripts/><none/><mrow><mn>239</mn></mrow></mmultiscripts></mrow></math> has been determined via the <math display="inline"><mrow><mmultiscripts><mrow><mi mathvariant="normal">U</mi></mrow><mprescripts/><none/><mrow><mn>238</mn></mrow></mmultiscripts><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>p</mi><mi>f</mi><mo stretchy="false">)</mo></mrow></math> reaction in inverse kinematics, the results of which are consistent with existing neutron-induced fission data indicating the validity of the technique.
002859793 520__ $$9arXiv$$aWe demonstrate a new technique for obtaining fission data for nuclei away from $\beta$-stability. These types of data are pertinent to the astrophysical \textit{r-}process, crucial to a complete understanding of the origin of the heavy elements, and for developing a predictive model of fission. These data are also important considerations for terrestrial applications related to power generation and safeguarding. Experimentally, such data are scarce due to the difficulties in producing the actinide targets of interest. The solenoidal-spectrometer technique, commonly used to study nucleon-transfer reactions in inverse kinematics, has been applied to the case of transfer-induced fission as a means to deduce the fission-barrier height, among other variables. The fission-barrier height of $^{239}$U has been determined via the $^{238}$U($d$,$pf$) reaction in inverse kinematics, the results of which are consistent with existing neutron-induced fission data indicating the validity of the technique.
002859793 541__ $$aAPS$$chepcrawl$$d2023-05-20T15:30:41.097525$$e5573608
002859793 540__ $$3publication$$aCC BY 4.0$$fOther$$uhttps://creativecommons.org/licenses/by/4.0/
002859793 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002859793 542__ $$3publication$$dauthors$$g2023
002859793 595__ $$cCDS
002859793 65017 $$2arXiv$$anucl-ex
002859793 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002859793 690C_ $$aCERN
002859793 690C_ $$aARTICLE
002859793 700__ $$aGarrett, K.$$uManchester U.$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
002859793 700__ $$aSharp, D.K.$$uManchester U.$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
002859793 700__ $$aFreeman, S.J.$$uManchester U.$$uCERN$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom$$vCERN, CH-1211 Geneva 23, Switzerland
002859793 700__ $$aSmith, A.G.$$uManchester U.$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
002859793 700__ $$aWright, T.J.$$uManchester U.$$vDepartment of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
002859793 700__ $$aKay, B.P.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aTang, T.L.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aTolstukhin, I.A.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aAyyad, Y.$$uSantiago de Compostela U., IGFAE$$vIGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
002859793 700__ $$aChen, J.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aDavies, P.J.$$uYork U., England$$vSchool of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
002859793 700__ $$aDolan, A.$$uLiverpool U.$$vOliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
002859793 700__ $$aGaffney, L.P.$$uLiverpool U.$$vOliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
002859793 700__ $$aHeinz, A.$$uChalmers U. Tech.$$vChalmers University of Technology, SE-41296 Göteborg, Sweden
002859793 700__ $$aHoffman, C.R.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aMüller-Gatermann, C.$$uArgonne, PHY$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 700__ $$aPage, R.D.$$uLiverpool U.$$vOliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
002859793 700__ $$aWilson, G.L.$$uLouisiana State U.$$uArgonne, PHY$$vLouisiana State University, Baton Rouge, Louisiana 70803, USA$$vPhysics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
002859793 773__ $$c202501$$mpublication$$n20$$pPhys. Rev. Lett.$$v130$$y2023
002859793 8564_ $$82454832$$s49945$$uhttp://cds.cern.ch/record/2859793/files/fission-probability.png$$y00002 (a)~Experimental fission probability, as defined in Equation~\ref{eqn:pf} compared to a GEF simulation~\cite{schmidt2016general} (the GEF result has been normalized to our data) and empirical Hill-Wheeler fit with $\chi^2_{\mathrm{red.}} = 0.57$. The vertical line denotes the known fission-barrier height. (b)~Experimental fission probability in the region around the fission barrier compared to probabilities deduced from evaluated nuclear data libraries (JEFF-3.3~\cite{plompen2020joint}, ENDF/B-VIII.0~\cite{brown2018endf}, JENDL-4.0~\cite{shibata2011jendl}). In the bottom panel, the experimental data have been increased by 30\% as explained in the main text. The error bars represent the statistical uncertainty.
002859793 8564_ $$82454833$$s474492$$uhttp://cds.cern.ch/record/2859793/files/setup.png$$y00000 To-scale schematic of the experimental setup with example particle trajectories for $^{238}$U($d$,$pf$) events. Example proton trajectories for reactions populating the ground state in $^{239}$U (orange curves) and states at 7~MeV close to the fission barrier (purple curves) are shown for a range of c.m. proton angles. Example fission fragment trajectories are also shown for fragments with $A = 138$ (red curves) and $A=100$ (blue curves), for a range of emission angles. The equally spaced circular detector apertures have radius 8~cm, and are centered 18~cm from the beam axis. The axial distance between the target and detector apertures is 70~cm.
002859793 8564_ $$82454834$$s47847$$uhttp://cds.cern.ch/record/2859793/files/yields.png$$y00001 (a)~Excitation-energy spectra associated with all events for Si array data taken with both CD$_2$ and C targets where the C data has been scaled onto the CD$_2$ data, and for the carbon subtracted CD$_2$ data. (b)~Same as for (a), but for events in which $\geq 1$ fission fragments are detected with the MWPCs of the fission array. The vertical solid line denotes the known fission-barrier height \cite{bjornholm1980double}. The carbon target spectra were scaled by $\times$1.92 and $\times$1.76 for the singles and fission-gated data, respectively.
002859793 8564_ $$82454835$$s785139$$uhttp://cds.cern.ch/record/2859793/files/Publication.pdf$$yFulltext
002859793 8564_ $$82454836$$s825738$$uhttp://cds.cern.ch/record/2859793/files/2304.10281.pdf$$yFulltext
002859793 960__ $$a13
002859793 980__ $$aARTICLE