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FREQUENTI
Subscript 0

LY-USED SYMBOLS AND ABBREVIATIONS
denotes a reference value evaluated, e.g. at the origin, on central orbit, 
or at rest.
Average over a distribution.

Superscript T
A, 5, d

differentiation wrt time, differentiation wrt to s or ∆p/p. 
denotes transpose of a matrix.
macroscopic, microscopic and infinitesimal steps.

FWHH 
RMS 
F,D 
ES, MS 
i 
rf

full width at half height.
root mean square.
focusing and defocusing lenses.
electrostatic and magnetic septa.
imaginary number.
radio frequency.

NOMENCLATURE
A 
A=X2+X'2 
A0, Ar 
Am, Bm 
Ab, Asb
B, Bx, Bs, Bz 
C

atomic mass in atomic mass units.
normalised betatron amplitude.
de and ripple amplitudes of the particle spill intensity [particle/s].
harmonic coefficients in a 2-dimensional magnetic field
rf bucket area, stationary rf bucket area [eV rad].
magnetic induction vector and components [T].
machine circumference.

Cx, Cx', Sx, Sx'etc. principal trajectories (cosine and sine-like).
D, D*>  D7

Dn x, Dn z
D
e
ex, Ez

dispersion vector and components [m].
normalised dispersion vector and components.
diffusion constant.
electronic charge.
emittance (phase-space area) quoted with π apparent
e.g. 10π mm mrad. Unless otherwise stated the emittance of 
a distribution will the RMS value.

E, Ex, Es, Ez 
E,Eo

electric field vector and components [V/m]. 
total energy, rest energy of a particle [eV].
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V

CO-ORDINATE SYSTEM
Right-handed, curvilinear co-ordinate system (x, s, z) for the beam:
x is directed radially outwards in an anticlockwise ring
s is the direction along the beam 
z is the vertical co-ordinate
p is the local radius of curvature

y is used as a general transverse co-ordinate that can replace both x and z.
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k = (l/Bp)(cLBz/dx)0 Normalised (by momentum) quadrupole gradient [m'2]. 
k' = (l/Bp)(d2Bz/dx2)0 Normalised (by momentum) sextupole gradient [m-3]

F duty factor for spill quality, 
frequency [s-1].

G 
h 
h
Hb, Hsb
H
I
I 
j 
K
K(s)

space-charge form factor.
perpendicular distance (normalised) from the separatrix to the origin, 
rf harmonic number.
rf bucket height, stationary bucket height [eV].
hamiltonian.
identity matrix.
current [A].
current density [A/m2].
improvement factor for speed of crossing into the resonance.
general focusing constant (equivalent to spring constant for simple 
harmonic motion) [nf2].

M, m\\, mn, etc. transfer matrix and elements of transfer matrix.

L
Lr

m, mo 
me

thickness of a scatterer [units consistent with Lr].
radiation length [units consistent with L].
effective magnetic length of a sextupole [m].
particle mass and rest mass [eV] also used as an integer, 
mass of electron [MeV].

S = (1 /2)PX3/2lS k' normalised (by P) sextupole strength [m'1/2].

N 

n 
P 
p> q 
Q 
Qx,z 

q = ze 
re 
R 
R

number of particles.
Avogadro’s constant.
integer.
momentum [eV/c].
co-ordinates in a rotating system (rotator).
spill quality.
betatron tunes.
charge [C].
classical radius of the electron [m].
rotation matrix.
average radius of machine [m] also used for range of a particle in 
an absorber [m].

T, fo
T, T, Tspill 

u,u',v,v'
V
Vscan

w
W = yTo1y
x, s, z
X, X', Z, Z'
Y
Z> Zinc

time [s] and dwell time on a mini-voxel [s].
kinetic energy, transit time [s], spill length [s].
co-ordinates in a rotating frame (gantry).
voltage [V] and volume [m3].
scanning velocity of beam spot [ms-1].
FWHH of beam spot distribution equal to size of a voxel [m].
motion invariant.
local curvilinear co-ordinate system for the beam [m].
normalised co-ordinates.
used to replace X'.
net number of electronic charges on a particle, net number of charges 
on a particle incident on a scatterer.

z atomic number and impedance [Ω].
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a adiabaticity factor.
B = v/c relativistic B
y = m/m0 relativistic y.
yt Y at transition.
aX)z, ,Px.z, Yx.z = (l+ax,z2)/Px,z Courant and Snyder functions(p [m], ytm'1].
8 = 6k.80 modified tune distance.
ϕ = dN/dt particle flux [s-1].
ϕ, ϕs rf phase, synchronous rf phase [rad].
Φ magnetic flux.
T = sin ϕs
n = y 2-yt‘2 phase slip factor.

, \ 1 so+c -1 d2Bz
K(s0) =------== J px ------ - ---- exp(3ipx)d5 resonance driving term.

24VkC 5o [Ml dx J0J

X, A normalised trajectory co-ordinates measured in units of h.
X. = dTV/ds linear particle density in a spill, or entering a resonance.
px,z betatron phase advance [rad].
9o projected RMS (or characteristic) scattering angle [rad].
9S scattering angle [rad].
p radius of curvature [m] and linear particle density along the side of

an unstable triangle and in distributions.
a root mean square value.
o sigma matrix.
t time constant [s].
Qs synchrotron frequency [s'1].
co angular frequency [s'1 ].
ψ= dA7d(∆p/p) particle density in momentum space.
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1-1 INTRODUCTION

1.1 BACKGROUND
High-energy, ionising radiation has proved to be effective in the treatment of 

cancerous tumours by causing double-strand breaks in the cell DNA. In particular, 
hadrons (that is protons and light ions) have the advantageous property of penetrating 
the body easily and then depositing their energy at a depth determined by their initial 
energy. This is often referred to as the Bragg-peak behaviour, see Figure 1.1 and, for 
example, Ref. 1. The abrupt cut-off of the beam at a controllable depth and the easy 
penetration compares extremely favourably with conventional radiation techniques 
using electrons or X-rays that deliver the highest dose at the surface diminishing with 
depth. The Bragg-peak behaviour offers the possibility of a conformal treatment of 
deep-seated tumours with minimum disturbance to the surrounding tissue.

Irradiation techniques fall into two broad categories:

• Passive spreading

• Active scanning.

The more usual technique is passive spreading, which uses a specially designed double 
scatterer to spread the beam by multiple Coulomb scattering uniformly over a large 
area that is sufficient to treat the whole tumour, or a large part of it. By treating the 
tumour in layers, defined by the depth of the Bragg peak, and applying collimators and 
shaped absorbers (bolus), a high degree of conformal treatment can be achieved [2]. 
This technique is well suited to large tumours and to ones that are difficult to 
immobilise. The second technique, which is of primary interest in this report, is active 
scanning, which uses a ‘pencil’ beam to ‘paint’ the tumour in three-dimensional space 
with sub-millimetre accuracy [3,4]. Longer times with smoother beam spills are 
required for this type of treatment to facilitate the on-line dosimetry and the 
accelerator has to produce a well-focused beam with a high spatial precision and an 
exact energy. However, the precision is only meaningful if a high positional stability 
can be assured for the tumour. Under the influence of tumour movements, active 
scanning can form ‘hot’ and ‘cold’ spots throughout the treatment volume, whereas 
passive spreading still irradiates uniformly and only the boundaries become uncertain.
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1.2 BASIC DESIGN CONSIDERATIONS
The primary aim of this study is to design a machine that would allow the direct 

clinical comparison of protons and carbon ions for cancer therapy*  [5] using high- 
precision active scanning. As a secondary aim, the machine should also be capable of 
delivering proton beams by passive scattering.

A synchrotron offers the flexibility needed for dual-species operation and the 
variable energy needed for active scanning. The higher rigidity of the ions determines 
the size and maximum power of the accelerator, while the protons for the passive 
spreading mode dominate the design of the injection system and the low-energy 
operation, due to their high space charge. The use of slow resonant extraction [6,7] 
extends the beam spill time sufficiently to perform on-line dosimetry at the patient and 
to switch the beam on and off according to the dose required. Either the half-integer 
or third-integer resonance can be used, but the current trend is towards the slower and 
more controllable spills from the third-integer resonance. Higher order resonances are 
not used because the angular separation of the separatrices becomes too small.

The principal design requirement is that of a smooth spill. This directly 
determines the performance of the machine. A poor spill quality makes it necessary to 
slow down the treatment by lowering the spill intensity and the scanning speed, so that 
the spill imperfections can be corrected by the scanning system on-line. In the Proton- 
Ion Medical Machine Study (PIMMS) design, many of the features are chosen 
specifically to ensure a good spill quality [8].

Betatron core
The extraction is activated by accelerating the beam into the resonance with a 

betatron core [9]. The extraction time is the time needed to accelerate the beam by its 
own momentum spread. Thus, the favoured configuration for the beam is one of small 
emittance and large momentum spread, so that extraction can be extended smoothly in 
time. This technique has the great advantage that it maintains all transverse optical 
parameters (and hence all power converters) in the machine constant. The only system 
that changes is the power converter for the betatron core. Since this is a single unit, 
special care can be taken with its design and that of its DAC (Digital to Analogue 
Converter). An 18-bit DAC, or a 16-bit DAC with smoothing of the DAC steps [10] 
is needed. The betatron core is a high inductance device and is intrinsically smooth in 
its operation.

Hardt condition
The Hardt condition [11] imposes a special configuration on the resonance that 

aligns the extraction separatrices for all momenta and thus minimises the beam losses 
on the extraction septum. An acceleration-driven extraction, such as that obtained 
with a betatron core, is required to implement this feature and certain optical 
conditions have to be carefully integrated into the lattice design [12].

In 1946, R.R. Wilson proposed the use of protons for cancer therapy and predicted the future use of 
heavier ions, specifically mentioning carbon.
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Intrinsic smoothing
An acceleration-driven extraction with the Hardt Condition has an additional 

advantage for the spill quality. When a batch of particles enters the resonance, they 
become trapped for many hundreds of turns in the machine before being released into 
the spill [13]. When this occurs, half of the particles are concentrated in a spike and 
the other half are spread out in a long tail [14]. The delay between entering the 
resonance and emerging in the spike depends upon the initial betatron amplitude of the 
particles. The Hardt condition configures the resonance and the beam in such a way 
that a mixture of all amplitudes enter the resonance at all times. This has the effect of 
spreading the spikes and reducing the sensitivity to power converter ripple.

Channelling rf bucket
Ripple in power converters affects the spill uniformity by causing a relative 

motion in tune between the beam and the resonance. One way of making the spill less 
sensitive to this motion is to cause the particles to enter the resonance with a velocity 
that is much in excess of the ripple velocity. Changing the betatron core more quickly 
is a too small an effect and is, in any case, counter productive, because it shortens the 
spill time. Instead, the technique is to create a region between the beam and the 
resonance where the particle velocity is higher, but the density is lower (so that the 
particle flux is constant). This can be done in different ways, for example by stochastic 
noise [15], but the method chosen for PIMMS is the channelling rf bucket [16,17]. 
The choice is partly justified by the fact that no new equipment is needed. The main rf 
cavity that is used for the acceleration of the beam can also be used for this task. The 
action of the cavity is based on a technique known as phase-displacement acceleration 
[18]. All particles in the beam are accelerated by the betatron core and, at the same 
time, the rf cavity is set so that it would decelerate particles by the same amount if they 
were trapped inside the bucket. The beam, however, is outside the rf bucket and the 
influence of the cavity is only felt as the revolution frequency of the particles 
approaches that of the cavity. Close to the cavity frequency, the particles are 
compressed into a narrower and narrower region of phase space and have to move 
rapidly around the bucket, which remains empty. This can be visualised by thinking of 
a river flowing past the piers of a bridge. The narrower the space allowed between the 
piers, the greater the river’s velocity.

Rotator
The choice of resonant slow extraction has the consequence that the extracted 

beam has unequal transverse emittances. This difference makes it impossible to rely on 
the conventional method used for matching gantries to cyclotrons where the beam 
emittances and the optics functions are all assumed to be equal and the dispersion to be 
zero at the interface between the fixed line and the rotating gantry. There is, in fact, a 
marked difference in the emittances (a factor of 50 would be a practical case with low 
coupling from the orthogonal plane) and a more advanced technique is required for 
matching to the rotating gantry. This technique uses a device known as a rotator [19]. 
This maps, one-to-one, the optics of the fixed machine directly to those of the gantry 
and makes this liaison completely independent of the gantry rotation angle. The 
mathematics of the rotator is simple and rigorous, but the practical design has to be 
approached with some care [20]. The rotator not only allows unequal emittances and 
optics functions, it also allows finite dispersion functions.
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‘Bar’ of charge
The slow-extracted beam from a synchrotron is not only asymmetric in terms of 

emittance, it is also asymmetric in the shape of its emittance (or ‘footprint’) in phase 
space. In the vertical plane, the beam occupies the usual elliptical area, whereas, in the 
horizontal plane, it is a narrow bar. This bar must arrive at the patient with a known 
and controllable orientation, since this determines the spot size in that plane. The 
positive aspect of this behaviour is that it provides an independent handle on the 
control of the beam size in the horizontal plane. This opens the way to a new concept 
for controlling the beam size, not from the gantry, but from an optics module set 
upstream in the transfer line [21]. In the next section, the vertical beam size will be 
similarly treated upstream of the gantry, but by a different technique. Moving the 
controls of the horizontal and vertical beam sizes upstream is a new philosophy that 
makes it possible to control the spot sizes in all gantries and fixed beam lines in the 
complex with just two optics modules. At the same time, it reduces the number of 
optical constraints placed on the gantry design.

Vertical beam size control
The vertical beam-size control is also moved out of the gantry and to a point 

closer to the accelerator. The technique that allows this to be done is the use of one- 
to-one and telescopic modules for the extraction line optics [21]. Once the modules 
are all of the one-to-one or telescopic type, the vertical betatron amplitude function is 
simply handed from one module to the next with a constant magnification (usually 
unity) until it arrives at the patient. One-to-one modules are also very convenient 
structures in which to embed closed dispersion bends such as those needed when 
turning away from the main extraction line towards a gantry and treatment room.

Extracted beam intensity
The extracted beam intensity can be varied in two ways:

• Varying the rate of field change in the betatron core

• Varying the intensity of the injected beam.

In theory, the rate of field change in the betatron core can be modulated from 
approximately four times the nominal rate needed for active scanning (i.e. the rate 
foreseen for passive spreading) down to zero. However, very low rates are not 
advisable because the ‘granularity’ of the DAC will become apparent. For this reason, 
a maximum intensity variation of one to ten is foreseen during a spill using the betatron 
core. However, this ratio can be extended from spill to spill by varying the injected 
beam current. Ideally, the accelerator should always be filled in the same way in order 
to have reproducible operation, but this ideal is already lost because the low space­
charge carbon-ion beam and the high space-charge proton beam must have different 
operational cycles (working line corrections etc.). Therefore, some additional cycles 
for intermediate proton beam intensities will not greatly add to the existing complexity 
of the operation. The delivered dose intensity can be further regulated at the patient by 
varying the scanning speed.
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Active scanning
The aim is to provide a maximum speed of 10 m/s for the scanning beam spot. 

The boundary conditions for carbon ions and protons differ strongly and a successful 
scanning system for the carbon ions is not trivial [22]. The phase-space asymmetry of 
the slow-extracted beam makes one important difference with respect to scanning 
systems that deploy cyclotron beams. Since the beam distribution is near-rectangular 
in one plane and near-gaussian in the other, it is necessary to scan in the direction of 
the rectangular distribution and to keep the gaussian distribution at right-angles to the 
spot motion. In some cases, it is possible to exploit this rectangular shape to bestow a 
sharp edge on the scan. Perpendicular to the scanning direction, the overlap of the 
gaussian tails makes the alignment of the adjacent scans lines insensitive to small 
errors.

Alternative gantry
Finally, the high magnetic rigidity of the carbon ions led to an investigation of 

an alternative gantry design that has become known as the Riesenrad gantry [23,24]. 
In this variant, the heavy accelerator equipment is kept on the axis while the treatment 
room with the patient couch is positioned off-axis. The treatment room would be 
positioned before the entry of the patient and would be accessed from the rear by a 
ramp or lift to take into account changes in level. The reason for inverting the 
conventional patient-gantry geometry is one of engineering. For protons, it is feasible 
to build a gantry structure that can carry dipoles and quadrupoles with a total bending 
of close to three-quarters of the main synchrotron and still maintain sub-millimetre 
accuracy along the whole line while the gantry assumes different orientations, but for 
light ions, this is a more difficult task and has yet to be demonstrated. The point at 
which one system becomes more attractive than the other has not been established, but 
a first guess is that for a gantry of more than 100 tonnes it is more convenient to move 
the lighter treatment room than the heavier magnets. A major optics constraint for the 
Riesenrad gantry, when it was first proposed, was the closing of the dispersion bump, 
but this problem is now rendered void by the use of a rotator.

1.3 PERFORMANCE PARAMETERS
The general performance specifications for the machine are based on the 

following premises for the clinical requirements [25],

• A treatment will on average be 30 fractions with 2 Gray per fraction.

• An acceptable treatment time is 2 to 2.5 minutes per fraction.

• The maximum size of the treatment volume is assumed to be 2 liter when using active 
scanning and 7.5 liter when using passive scanning.

• An acceptable maximum depth is assumed to be -27.5 cm

• An acceptable minimum depth is assumed to be -3.5 cm.

The above guide lines lead to the more technical specifications listed in Table 1.1.

The theoretical aspects of this study and, in particular, the considerations 
concerned with how to generate a smooth beam spill are presented in this report and 
the technical design of a generic machine is presented in a second volume.
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The top extraction energy for protons is purely nominal. The accelerator can deliver protons up to 1.2 GeV.

PIMMS performance parameters

Active scanning 
(Pencil beam)

Passive scanning 
(large area beam)

Extraction energies for carbon ions 120-400 MeV/u

Extraction energies for protons* 60-250 MeV 60-250 MeV

Beam distributions Spot is gaussian in direction 
perpendicular to scan and near- 
rectangular in scan direction. 

Scanning is parallel over a 20 x 
20 cm2 rectangular area.

Beam is scattered up to an 
elliptical field of 20 x 15cm2 

with a ±2% uniformity. Scatterer 
has 40-50% efficiency.

Nominal treatments 60 spills of 1 s +1 s to ramp up 
and down = 2 minute

120 spills of 0.25s +1 s to ramp 
up and down = 2.5 minute

Nominal dose delivered 2 Gray in 2 liter 2 Gray in 7.5 liter

Number of protons in one spill 1010 2 x 1010

Number of carbon ions in one spill 4 x 108 -

Start of spill can be synchronised to breathing Yes Yes

Spot sizes variation at all energies (FWHH). 4-10 mm -

Intensity levels The spill rate within a spill can be adjusted by the rate of change of 
the betatron core. The maximum rate is for passive scanning, which 
will be unsuitable for active scanning. A minimum variation of 1:10 

is expected within a spill for active scanning. The number of 
intermediate levels is more a function of the control system than a 

fundamental limit. Wider variations from spill to spill can be 
obtained by changing the beam intensity at injection

Energy levels The number of energy steps is limited only by the control system

Table 1.1 PIMMS performance parameters

References:
[1] G.F. Knoll, Radiation detection and measurement, (Wiley 1989, ISBN 0-471-81504-7,p33.
[2] E. Pedroni, Beam delivery, Proc. 1st Int. Symposium. On Hadrontherapy, Como, 1993, 

(Elsevier, 1994), p438-41.
[3] E. Pedroni, H. Blattmann, T. Böhringer, A. Coray, S. Lin, S. Scheib, U. Schneider, Voxel 

scanning for proton therapy, Proc, of the NIRS International Workshop on Heavy Charged 
Particle Therapy and Related Subjects, Chiba, Japan, (July 1991), 94-109.

[4] Th. Haberer, W. Becher, D. Schardt, G. Kraft, Magnetic scanning system for heavy ion 
therapy, Nucl. Instr. Methods in Physics Research, A330 (1993) p296-305,

[5] R.R. Wilson, Radiobiological use of  fast protons, Radiobiology 47, p487-491 (1946).
[6] H.G. Hereward, The possibility of resonant extraction from the CPS, AR/Int. GS/61-5

(1961).
[7] H.G. Hereward, Proc. Vth Int. Conf. on High Energy Accelerators, Dubna, (1963).
[8] L. Badano,, M. Benedikt, P. Bryant, M. Crescenti, P. Holy, P. Knaus, A. Maier, M. Pullia,

S. Rossi, Synchrotrons for hadron therapy, (submitted to Nucl. Instru. & Methods,. 
December 1998)

[9] L. Badano, S. Rossi, Characteristics of a betatron core for extraction in a proton-ion 
medical synchrotron, CERN/PS 97-19 (DI).

[10] J. Bosser, Rappel sur les systemes lineaires exchantillonnes, CERN Internal Note 
SPS/ABM/Note Z84-10.

[11] W. Hardt, Ultraslow extraction out of LEAR (transverse aspects), CERN Internal Note 
PS/DL/LEAR Note 81 -6, (1981).

PIMMS January 1999



7

[12] M. Benedikt, Optical design of a synchrotron with optimisation of the slow extraction for 
hadron therapy, University of Technology Vienna, Ph. D. thesis (1997).

[13] M. Pullia, Transit time for third order resonance extraction, CERN/PS 96-36 (DI).
[14] M. Pullia, Time profile of the slowly extracted beam, CERN/PS 97-50 (DI).
[15] S. van der Meer, Stochastic extraction, a low-ripple version of resonant extraction, 

CERN/PS/AA 78-6, (1978).
[16] R. Cappi, C. Steinbach, Low frequency duty factor improvement for the CERN PS slow 

extraction using rf phase displacement techniques, Accel. Conf., Washington, IEEE Trans. 
Nucl. Sci., Vol. NS-28, No. 3, (1981).

[17] M. Crescenti, RF empty bucket channelling with a betatron core to improve slow extraction 
in medical synchrotrons, CERN/PS 97-68 (DI), (Jan. 1998).

[18] E. Ciapala, Stacking and phase displacement acceleration, CERN 85-19, (Nov. 1985), 
pl 95-225.

[19] L.C. Teng, Private communication, Laboratory notebook (Jan. 1970) and Internal Report 
LL-134 (Oct. 1986).

[20] M. Benedikt, C. Carli, Matching to gantries for medical synchrotrons, Part. Accel. Conf. 
1997, Vancouver, (1997) and M. Benedikt, C. Carli, Optical design of a beam delivery 
system using a rotator, CERN/PS 96-041 (1996).

[21] M. Benedikt, P. Bryant, M. Pullia, A new concept for the control of a slow-extracted beam in 
a line with rotational optics, (submitted to Nucl. Instru. & Methods,. December 1998).

[22] P. Holy, Analysis of scanning techniques for hadron therapy, CERN/PS 98-064 (DI) and 
P. Holy, Ion gantry design and scanning techniques in hadron therapy, Ph.D. thesis, (to be 
published).

[23] U. Amaldi, Private communication, The gantry design referred to here has been named the 
‘Riesenrad’ and was first suggested during the preparation of the TERA Blue Book (The 
TERA Project and Centre for Oncological Hadrontherapy, ed. U. Amaldi and M. Silari, 
INFN, Frascati, 1995, II Ed.) and was later mentioned by E. Pedroni in the Grey Book 
(Hadrontherapy in Oncology, Como Proceedings, Excerpta Medica, International Congress 
Series, 1077, Elsevier, Amsterdam (1994), p434).

[24] M. Benedikt, P. Bryant, P. Holy, M. Pullia, ‘Riesenrad’ ion gantry’ for hadron therapy, 
(submitted to Nucl. Instru. & Methods, December 1998).

[25] U. Amaldi, M. Silari (editors), The TERA project and the centre for oncological 
hadrontherapy, The TERA Foundation, (INFN, Frascati, 1995, II Ed.)

PIMMS January 1999

* * *



8

PIMMS January 1999



9

1-2 THIRD-ORDER RESONANCE
The third-order resonance can be used to extract particles from a synchrotron 

over a large number of turns. The slowly extracted beam is known as the spill. In a 
medical machine, the spill time is extended to about one second, (~106 turns), in order 
to facilitate the measurement and control of the radiation dose delivered to the patient. 
A simplified Hamiltonian due to Kobayashi [1,2] describes the important 
characteristics of the extraction process and gives a useful insight into the physics. 
This method describes the effect of a sextupole magnet as a perturbation to the linear 
machine. Once the basic physics is understood the analytic results can be used to guide 
a practical machine design based on numerical simulations.

2.1 SEXTUPOLE MAGNETS
In the current-free region of a magnet gap, the field can be derived from a 

scalar potential [3]. Assuming that the magnetic field has only transverse 
components then the scalar potential of a magnet with 2m poles is given by:

and the field components are obtained by differentiation according to

(2.1)

(2.2)

The transverse fields in a normal sextupole magnet (m = 3) are given by the 
differentiation of the imaginary terms in (2.1)*

The relationship of the coefficient to the gradient is found by comparing (2.3) to the 
Taylor expansion of the magnetic field in the horizontal plane,

so that

(2.4)

(2.5)

The horizontal and vertical fields in a sextupole can then be written as

(2.6)

The skew sextupole fields are obtained by the differentiation of the real terms.
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The effect of a sextupole on a particle trajectory can be described in a simple 
way by considering the magnet as a thin lens. For positively charged particles in an 
anticlockwise ring (see Co-ordinate System),

(2.7)

(2.8)

where Vis the normalised sextupole gradient,

(2.9)

2.2 SEXTUPOLES IN NORMALISED COORDINATES
The effect of a thin-lens sextupole in normalised co-ordinates can be found by 

applying the transformations for normalised co-ordinates to equations (2.7) and (2.8). 
The transformation is simplified since in a thin lens ∆x = ∆z = 0, so that

Thus the effect of a thin-lens sextupole in normalised co-ordinates appears as,

(2.10)

(2.11)

where S is the normalised sextupole strength

(2.12)

Unless Z = 0, a sextupole couples the horizontal and vertical motions. The 
strength of the coupling is proportional to the ratio of the vertical and horizontal 
betatron amplitude functions (Bz/Bx at the sextupole. For a horizontal extraction, Z is 
generally much smaller than X and, provided the vertical tune does not satisfy a 
resonance condition, the influence of the vertical motion can be neglected to first 
order. For this reason, only the horizontal motion is considered in the resonance 
analysis in Section 2.4 and the equations (2.10) and (2.11) are replaced by,

Simplified form: (2.13)
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2.3 SIGN CONVENTIONS FOR SEXTUPOLE MAGNETS
The sign conventions and nomenclature that have been used in the earlier 

sections are summarised in Figure 2.1.

Normal sextupole
(no pole on the median plane) 

Positive field configuration

Normal sextupole
(no pole on the median plane) 
Negative field configuration

Bz positive on median plane 
Sextupole gradient (d2Bz/dx2) positive 

Normalised gradient, k'positive 
Normalised strength, S positive

Bz negative on median plane 
Sextupole gradient (d2Bz/dx2) negative 

Normalised gradient, k'negative 
Normalised strength, S negative

Figure 2.1 Sign definitions for sextupole magnets

In general, lattice programs suppress the absolute signs of the fields and 
particles and replace them by normalised quantities that are defined according to the 
geometry of the beam. Thus, when a lens deflects the beam in the outer part of the 
aperture (x > 0) towards the axis, the lens is defined as focusing (F-type) and in the 
MAD program [4], for example, the normalised gradient k' is defined as positive (see 
Figure 2.2 for sextupoles). For positive ions, this unfortunately leads to a reversal of 
sign with respect to the above when using MAD (i.e. k'= - K mad)-

Sextupole F-type
Normal type (no pole on median plane)

Sextupole D-type
Normal type (no pole on median plane)

Positively charged ions 
Trajectories are deflected outwards 

Bz positive on median plane 
k = - k mad

Positively charged ions 
Trajectories are deflected inwards 

Bz negative on median plane 
k = - k mad

Figure 2.2 Conventions for lattice programs
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2.4 BASIC THEORY OF THE THIRD-ORDER RESONANCE
The general transfer matrix Mn for normalised co-ordinates, describing n turns 

in the machine is given by:

(2-14)

Consider a particle with a horizontal betatron tune close to a third-integer, i.e. 
2x = m ± 1/3 + δQ,, where m is integer and |δQ|«l/3). The tune increment δQ is 
defined as the tune distance of the particle from the resonance,

(2-15)

The explicit transfer matrices for n turns in the unperturbed machine can then be 
written as:

(2-16)

Thus, the co-ordinates of the particle after one, two and three turns become

where ε replaces 6πδQ(2 for brevity. The small quantity ε will be called the modified 
tune distance. It can be seen that a particle with exactly the resonant tune (i.e. ε = 0) 
will return to its initial position every three turns. The effect of the sextupole during 
three turns in the machine is now calculated as a perturbation by the linear addition of:

(A) The effect of 3 turns with a sextupole placed after the 3rd turn, 
M3 + Sextupole

(B) The effect of 3 turns with a sextupole placed after the 2nd turn, 
+ Sextupole + M1

(C) The effect of 3 turns with a sextupole placed after the 1st turn
M1 + Sextupole + M2

where the sextupole is represented by the simplified, thin-lens expression (2.13).

(2.13)

The full evaluation of the three terms (A), (B) and (C) gives:
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1st turn neglecting δQ

2nd turn neglecting δQ

3rd turn with δQ

(2-17)

(2-18)

(2-19)

and
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(B) 2 turns + sextupole+1 turn

(2.21)

(C) 1 turn + sextupole+2 turns

(2.22)

After the addition of the three terms (A), (B) and (C), only first-order correction terms 
in s are retained to give

(2.23)

The cancellation of signs shows that there is no fundamental difference between the 
l/3rd and 2/3rd resonances.

The final expressions for the change of position and divergence of the particle over 
three revolutions, known as the spiral step and spiral kick are obtained as:

PIMMS January 1999

(A) 3 turns + sextupole

(2.20)

(2.24)

Spiral step and kick: (2.25)



14

2.5 KOBAYASHI HAMILTONIAN
The time needed for three revolutions in the machine is short compared to the 

spill time and can be safely used as the basic time unit. The elementary changes 
occurring in this time are also the smallest that need to be resolved to understand the 
physics of the extraction. Thus the subscripts are no longer needed and (2.25) can be 
treated as a continuous function that is derived from a Hamiltonian H, such that

(2.26)

The Kobayashi Hamiltonian is found by integrating the above partial differentials:

(2.27)

It should be noted that in this formulation time is dimensionless.

The Hamiltonian is time independent and a constant of the motion. Contours 
of constant H show the particle trajectories in normalised phase space at the sextupole. 
This presentation of the motion is known as a phase-space map. The first term in 
(2.27) describes the unperturbed particle motion in the linear, machine (i.e. S = 0). 
These trajectories are circles of radius sl(2H/£) in normalised phase space. The second 
term contains the perturbation that distorts the circular phase-space trajectories into a 
triangular form as illustrated in Figure 2.3. At a certain level of excitation, the triangle 
'breaks' into open phase-space trajectories. A change in sign of either the modified 
tune distance ε or the normalised sextupole strength S is equivalent to a rotation of the 
phase-space trajectories by 180°.

Normalised phase space ε/S > 0
Figure 2.3 Phase-space map calculated from the Kobayashi Hamiltonian

PIMMS January 1999
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All the properties of the system can be derived from the Hamiltonian. In 
particular, when H has the value [(2ε/3)3/S2], it factorises into three straight lines

(2.28)

called the separatrices, that define the boundaries between the stable triangle and 
unstable regions in phase space. This situation is exactly analogous to that of an rf 
bucket in longitudinal phase space, where the separatrices define the well-known fish­
shaped stability region. The phase space area of the stable region is the acceptance of 
the system at the given momentum. It could also be regarded as the dynamic aperture. 
The size of the stable region is determined by the ratio |ε/S|. For a particle that has 
exactly the resonance tune the stable region shrinks to zero. Figure 2.4 shows the 
geometry of the separatrices at the sextupole and the four stable fixed points, Po to P3

Figure 2.4 Geometry of the separatrices and stable triangle at the sextupole

The geometry of the stable triangle is conveniently described by introducing the 
distance h between the upright separatrix A and the X-axis. A change in the sign of h 
is equivalent to a 180° rotation of the stable triangle around the origin.

(2.29)

The area (i.e. the acceptance) of the stable triangle can also be expressed in terms of h:

Area (acceptance) of stable triangle (2.30)

PIMMS January 1999
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Providing the sextupole is powered in an adiabatic way*,  the emittance will be 
conserved and (2.30) gives the fraction of the original beam emittance that remains 
stable.

* Strictly, the emittance is conserved under all conditions, but if the excitation rate is too great the 
phase-space ellipse becomes distorted. The distorted ellipse has the same area, but later it filaments to 
cover a larger phase-space area.

2.6 A MORE GENERAL HAMILTONIAN
For the purposes of the PIMMS design, it is useful to extend the basic theory 

to off-momentum particles and to machines with closed-orbit distortions [5]. To first 
order in the momentum deviation δp/p, the equilibrium orbit in normalised co-ordinates 
is given by:

(2.31)

where DNA, D 'n) is the normalised dispersion function. A second co-ordinate system 
(XB, X'B) is introduced with its origin on the off-momentum equilibrium orbit. The 
particle co-ordinates are then split into a constant term, given by the dispersion 
function, and a betatron term as shown in Figure 2.5.

Figure 2.5 Co-ordinates of the betatron motion

(2.32)

(2.33)

The general Hamiltonian is derived following the same steps as for the Kobayashi 
Hamiltonian except that the betatron motion and the total motion now have to be 
separated. The analysis starts with the betatron motion for n turns in the unperturbed 
machine,

(2.34)

The main difference appears when calculating the kick of the sextupole that depends 
on the total motion of the ion:

Dispersion region: (2.35)
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This yields a more general Hamiltonian in the betatron co-ordinates (XB, X B):

(2.36)

Re-ordering the terms in (2.36) shows that the dispersion-dependent term affects only 
the 'circular' trajectories and this can be considered as a change in the tune distance, ε

(2.37)

Let δQ x be the change in tune implied by the dispersion-dependent term, so that

(2.38)

which corresponds exactly to the well-known linear form for the tune shift introduced 
by a sextupole. Although the above derivation is restricted to the region in tune close 
to the third-order resonance the result is in fact more general and the 'tilda' on the tune 
can be omitted.

The general Hamiltonian (2.37) describes correctly the physics of a third- 
integer resonance to first order in a perfect lattice without any further restrictions on 
sextupole locations or particle momenta. The phase space at the sextupole has the 
same qualitative shape as the earlier simple theory, but it is scaled by the tune shift 
introduced by the sextupole. For completeness the geometry and general equations of 
the separatrices are given in Figure 2.6. From these results, it is clear that the 
resonance sextupole is best put in a dispersion-free region, otherwise any change in the 
sextupole strength will also change the tune distance of the particles and therefore the 
scale of the extraction phase space.

PIMMS January 1999
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By introducing the chromaticity Qx as the linear change of the betatron tune with 
momentum, the chromatic effect of a sextupole can be expressed as
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Figure 2.6 Geometry of the separatrices at the sextupole for an off-momentum beam

2.7 CLOSED-ORBIT DISTORTION AT THE SEXTUPOLE
In practice, the equilibrium orbit will be distorted by magnet imperfections and 

misalignments. The effect will be similar to that caused by the dispersion function, 
except that the orbit distortion will be independent of particle momentum to first order. 
It is straight forward to include the orbit distortions at the sextupole in the 
Hamiltonian.

(2.43)

The geometry and dynamics of the phase space can be analysed as in the previous 
section. The shift in tune consists of the momentum-dependent dispersion part and the 
constant offset given by the closed-orbit distortion:

2.8 PHASE-SPACE MAPS ALONG THE MACHINE
When designing an extraction scheme, it is essential to know how the phase­

space map changes with longitudinal position in the machine. All the considerations 
are based on the general Hamiltonian (2.37) derived earlier. It is assumed that there is 
only one sextupole*,  defining the reference position (μ = 0) in the machine. In general, 
it is sufficient to describe the evolution of the separatrices around the machine as all 
the relevant physics of the slow-extraction process can be obtained from this.

There are two contributions to the evolution of the separatrices and the stable 
triangle when tracking around the machine (see Figure 2.6). The momentum-

This is not a restriction on the generality of the theory at the level of approximation being used. It 
will be shown later that from the standpoint of resonance excitation (described on a time scale of 3 
turns) many sextupoles can be replaced by a single virtual sextupole.

PIMMS January 1999
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dependent equilibrium orbit defines the centre of the stable triangle at any position s in 
the machine according to,

and the phase advance ∆ from the sextupole to a position s determines the orientation 
of the stable triangle according to simple rotation in the normalised phase space,

The size of the stable triangle is determined by the normalised sextupole strength S and 
the modified tune distance ε (including chromatic effects) and remains unchanged in 
normalised phase space at all positions around the machine. A schematic example is 
shown in Figure 2.7 of the evolution of the map over a 90° phase advance from the 
sextupole with a typical change in the dispersion vector.

2.9 GENERAL EQUATIONS FOR THE SEPARATRICES
A general equation of a separatrix in the phase-space map can be constructed 

from the standard form for a straight line that uses the perpendicular distance (in this 
case h) from the origin combined with a shift of the origin corresponding to the 
dispersion vector.

Figure 2.8 Perpendicular form for a straight line

(2.47)
[Angle α is measured anticlockwise from 

x-axis to perpendicular h ]
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Figure 2.7 Maps separated by ∆ = 90°

Phase advance, μ= 90° 
Clockwise rotation

Phase space map at sextupole Phase space map at ∆ = 90°
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Thus, the general equation for a separatrix has the form:

(2.48)

By inspection of Figure 2.4, the values for α0 at the sextupole are:

(A)α0 = 180° (anticlockwise)
(B)α = 300° (anticlockwise)
(C)  = 420° (anticlockwise)

The separatrices rotate clockwise with the betatron phase advance ∆ measured from 
the sextupole. At a given position α= (α0-∆μ), but for convenience, it is easier to 
think in terms of ∆ appearing as a positive term, which gives:

2.10 RESONANCE EXCITATION BY SEXTUPOLES
In a machine, there are likely to be several sextupoles as well as distributed 

sextupole errors (mainly in the dipoles), whereas the theory presented so far is based 
on a single sextupole. The combined effect of many sextupole fields on the resonance 
is described by the so-called driving term k [6]. For the third-order resonance 3QX = n 
the driving term is,

(2.52)

The integral is made around the full machine circumference and includes all sextupole 
fields. For short sextupoles, the above can be rewritten as a sum, using the normalised 
sextupole strength, S, as defined earlier,

(2.53)

An equivalent sextupole can be found by evaluating the above driving term and 
equating to a single virtual sextupole, so that
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General equations of the separatrices at any position s with phase advance from the 
sextupole of ∆:

(A)

(B)

(C)

(2.49)

(2.50)

(2.51)
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By separating the real and imaginary parts,

the betatron phase and strength of the virtual sextupole can be found as

Two standard configurations should be noted. Arranging an even number of 
sextupoles with the same normalised strength, So and a regular spacing in phase of 
∆μ = π/3 leads to cancellation of the resonance driving term in equation (2.55). 
Similarly, a spacing of ∆μ= 2π/3 leads to a reinforcement of the driving term,

Addition:

(2.56)

(2.57)
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Virtual sextupole: (2.54)

(2.55)

Cancellation:

2.11 CHROMATIC EFFECTS OF SEXTUPOLES
The tune shifts on an off-momentum orbit due to sextupoles are given by,

(2.58)

For short lenses, the integrals can be replaced by summations to give

(2.59)

Expressions (2.58) and (2.59) describe the accumulated chromatic effect of all the 
sextupoles in the machine and the modified tune distance ε of a particle with a 
momentum deviation δp/p becomes



(2.60)
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For an independent adjustment of the horizontal and vertical chromaticity in a 
machine at least two independently powered sextupoles are needed. It can be seen 
from (2.59) that ∆Q x depends on while ∆Q z depends on A- Since strong focusing 
lattices often have positions with large ratios of Bx/Bz and Bz/Bx it is possible to 
combine two or more lenses to obtain a desired combination of ∆Q'x and ∆Q'z and to 
have a reasonable degree of orthogonality between the series or families. In most 
cases, a family of F-type sextupoles is used with a family of D-type sextupoles. 
Assuming that all the magnets are of the same construction, the expressions for 
controlling the chromaticities are,

(2.61)

(2.62)

where NF and ND are the numbers of lenses in each family.

2.12 PLANNING SEXTUPOLE FAMILIES

Medium and large machines
When planning a machine lattice, it is desirable to keep the resonance excitation 

and the chromaticity correction separate. The first choice is to place resonance 
excitation sextupoles in dispersion-free regions. In this way, they do not affect the 
chromaticity and the phase-space map of the resonance. The two families for the 
chromaticity control should contain even numbers of lenses separated in phase by π/3 
so that the resonance driving term vanishes. Furthermore the F-type family should 
have large and equal ratios of Bx/Bz and the D-type family large and equal values of 
Bz/Bx to give some degree of orthogonality.

Small machines
In small machines, it is not possible to have several sextupoles in a family, or 

even several families, and some specially tailored combination is required. One 
example is given below for the case of slow-extraction on a third-order resonance.

The following is based on a lattice comprising two equal 180° arcs joined by 
two equal dispersion-free straight sections. The sextupole(s) controlling the resonance 
excitation are placed in one, or both, dispersion-free straight sections so that they can 
be used without affecting the chromaticity. One chromaticity sextupole is placed in 
each arc at symmetrically opposed positions (with equal lattice functions). Since the 
lattice is adjusted for slow extraction the tune will be close to Qx « n±l/3 and the two 
sextupoles will be mutually separated in betatron phase by ∆μx = Qπ = (n±1/3)k. The 
effect on the resonance and the chromaticities can now be evaluated from (2.55), 
(2.61) and (2.62). For resonance excitation:

PIMMS January 1999



23

(2.65)

The sine terms are close to zero and the cosine terms are close to unity. The upper 
sign is for n odd and the lower sign for n even.
For chromaticity control:

For n even, (S1-S2) excites the resonance, but not the chromaticity and (S1+S2) does the 
converse. The control on the chromaticity is not universal, but since the horizontal 
chromaticity is the more important parameter for extraction, a workable scheme could 
be built. For n odd, the separation of the functions no longer occurs.
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1-3 RESONANT SLOW EXTRACTION
A slow extraction scheme requires a mechanism for moving the beam into the 

resonance. The separatrices and extraction equipment have to be configured for low 
loss, reasonable apertures and practical septum strengths. The possibilities are 
numerous and there are definite preferences for choosing different schemes for 
different applications. Once chosen, the extraction scheme imposes requirements on 
the momentum spread and emittance of the beam that is waiting to be ‘fed’ to the 
resonance and this in turn has consequences for the method of injection and the rf 
equipment. The characteristics of the extracted beam will only be partially treated in 
this Chapter and will be continued in Chapter 4. For simplicity, it is assumed that one 
sextupole is used to excite the resonance and that it is located in a zero-dispersion 
region. It is also assumed that the resonant tune is located on the central orbit.

3.1 STEINBACH DIAGRAM
Frequent use will be made of the Steinbach diagram, which shows the beam 

and resonance in amplitude-momentum space (see Figure 3.1). The abscissa is the 
momentum deviation with respect to central orbit, which can equally be the position 
across the aperture in dispersive regions and the tune in machines with finite 
chromaticity. The ordinate is the effective, normalised amplitude of the ion’s betatron 
motion, A = √(E/π), in normalised co-ordinates calculated from its single-particle 
emittance. Assuming that the sextupole has been applied adiabatically, then A is equal 
to the unperturbed circular motion in normalised phase space. In Figure 3.1, the 
particle density, expressed as dN/dA, has been added on the left-hand side for a typical 
beam. The large grey arrows indicate the motion of the beam into the resonance and 
the outward movement of the unstable particles that form the spill. The spill slopes 
slightly as these particles are still accelerated at the same rate as the main beam.

Figure 3.1 Steinbach diagram showing a beam entering a resonance

In Figure 3.1, the resonance appears as a ‘V’-shaped region centred on the 
resonant tune and the beam is cut off by the sloping side of the ‘V’. A particle will be 
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stable if its emittance is smaller, or equal to, the acceptance of the stable triangle 
defined in Section 2.5 and equation 2.30 and it is this equation that defines the sloping 
lines of the ‘V’. The width of the ‘V’ at a given emittance defines an interval in tune 
known as the stopband.

and in absolute tune the stopband is defined by,

(3.2)

3.1.1 Distribution in the extracted beam
As the beam is moved into the resonance in Figure 3.1, the large emittance ions 

become unstable first. Due to the chromaticity, there is a one-to-one correspondence 
between the emittance at which each ion becomes unstable and its momentum. In this 
way, the particle density distribution in betatron amplitude (dN/dA) is converted into 
the particle density distribution in momentum space (dN/dp/p) in the extracted beam.

3.1.2 Special case of zero chromaticity
As the chromaticity approaches zero, the ‘V’ in Figure 3.1 becomes wider and 

flatter. If the tune of the machine is then set just off-resonance, the resonant tune 
moves away to infinity and the resonance appears as a straight line quasi-parallel to the 
horizontal axis (momentum). The height of the line above the axis defines the 
boundary of the unstable region.

3.2 OVERVIEW OF EXTRACTION METHODS
A beam is first accumulated and positioned on one side of the resonance. To 

extract, either the resonance has to be moved towards the beam, or vice versa. This 
distinction provides a first way of classifying extraction methods. An alternative 
classification is based on how the ions are selected by the resonance. The selection can 
either be according to amplitude, or according to tune (momentum). Thus ions with 
large amplitudes would enter the resonance before those with smaller amplitudes, or 
those with a higher (or lower) momentum before those with a lower (or higher) 
momentum. There will also be hybrid situations, especially for the amplitude and 
momentum selections, which will nearly always be mixed to some degree.

3.2.1 First classification

Moving the beam
This method has the great advantage of leaving the optical parameters of the 

machine constant, and hence also those of the resonance, during the extraction. How 
the beam is moved can be further sub-divided into the two most promising categories 
for future machines:
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♦ Acceleration-Driven The beam is accelerated towards the stationary resonance by 
a betatron core, or by stochastic noise, or possibly by a phase displacement or a rf 
micro-bucket acceleration system.

♦ RF ‘knockout’ The beam is excited by transverse stochastic noise or rf excitation 
at the revolution frequency, so that its betatron amplitudes grow. The chromaticity 
is set to zero, or a low value, so that the resonance line acts as a threshold in 
amplitude above which the ions become unstable [1].

Moving the resonance
There are two ways in which the resonance can be moved:

♦ Quadrupole-driven The tune of the machine is changed so that the resonance 
region moves towards the beam. This is the conventional way to operate a slow 
extraction scheme. It requires no additional equipment and its basic idea is simple.

♦ Sextupole-driven The resonance excitation is changed by increasing the sextupole 
strength. This method is included only for academic completeness and is not 
suitable for a medical application.

3.2.2 Alternative classification
An alternative method of classification is to look at how the particles are 

selected by the resonance. This divides the extraction systems into two different broad 
categories:

♦ Amplitude selection In this case, the large betatron amplitude ions enter the 
resonance first followed progressively by the smaller and smaller amplitudes. This 
implies either a rather flat resonance line in the Steinbach diagram or a narrow 
momentum spread in the beam.

♦ Momentum selection In this case, the high (or low) momentum ions enter the 
resonance first and are progressively followed by lower and lower (or higher and 
higher) momentum ions.

The most interesting possibility is a hybrid method, which correlates the 
amplitude to the momentum in a precise way*  that imposes the same extraction 
trajectory on ions of all momenta. This is the proposed extraction technique for 
PIMMS and will be referred to as the amplitude-momentum selection method that is 
acceleration-driven.

3.2.3 Extraction schemes
The various possibilities are schematically presented in Figure 3.2. From the 

five cases, an initial choice can be made. Method (II) ‘Momentum selection by moving 
the resonance’ and method (III) ‘Amplitude selection by moving the beam’ are less 
attractive because the momentum of the extracted beam varies during the extraction. 
Method (IV) ‘Amplitude selection by moving the resonance’ is also less attractive 
because the spiral step varies during the extraction. Finally, the choices with the best 
extracted beam characteristics are (I) ‘Momentum selection by moving the beam ’ and 
(V) ‘Amplitude selection by amplitude growth’.

The correlation is known as the Hardt Condition and will be discussed in Sections 3.6 to 3.8
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‘Waiting’ beam : Small Ex, large ∆p/p.
Extracted beam: Constant p, small Ap/p and
constant spiral step______________________

Amplitude selection by moving the beam

Momentum selection by moving the resonance

‘Waiting’ beam : Small Ex, large Ap/p.
Extracted beam: Varying p, small Ap/p and 
constant spiral step
Amplitude selection by moving the resonance

‘Waiting’ beam : Large Ex, small Ap/p. 
Extracted beam: Varying p, small Ap/p and 
varying spiral step

Amplitude selection by amplitude growth

‘Waiting’ beam : Large Ex, small Ap/p.
Extracted beam: Constant p, small Ap/p and 
varying spiral step

‘Waiting’ beam : Large Ex, small Ap/p.
Extracted beam: Constant p, small Ap/p and 
constant spiral step

Figure 3.2 Schematic review of extraction 
configurations
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Choosing between the last two possibilities depends on subjects that will be 
treated later and upon the type of treatment that is envisaged. In anticipation of a 
fuller explanation, the following points can be noted:

(I) Acceleration-driven momentum selection (moving the beam)

Advantages Disadvantages
• Lattice parameters and spiral step are • Less convenient for starting and stopping the

constant during the spill. spill at the level of the resonance.
• Hardt condition can be applied (Section 3.6).
• A front-end acceleration mechanism can be 

added (Chapter 6).
• Extraction takes place from a range of 

emittances and this smoothes the spill.

• Additional constraints on the optics.

(V) RF knockout amplitude selection (amplitude growth)

Advantages Disadvantages
• Lattice parameters and spiral step are • The near-zero chromaticity may cause

constant during spill. stability problems in the ‘waiting’ beam.
• Spill can be turned on and off very cleanly • Not possible to add a front-end acceleration

and easily by the rf kicker, which is 
convenient for breathing synchronisation

mechanism.

Method (I) is that proposed for PIMMS and Method (V) is used at HIMAC for 
treatments with respiration gating [2],

3.3 THE MECHANISM OF EXTRACTION

3.3.1 Jumping into the electrostatic septum
In the theoretical model built in Chapter 2, all the separatrices are essentially 

equal and they rotate clockwise, simply exchanging their positions from turn to turn. 
However, when analysing the extraction process, it is more convenient to consider the 
separatrices as geometrically fixed in phase space. An unstable particle then moves 
steadily outwards while jumping from one separatrix to the next at every turn. After 
every third turn the particle returns to its initial separatrix, but at a position more 
distant from the centre. The change of the particle co-ordinates after three revolutions 
in the machine was derived as,
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(2.25)

and these changes were called the spiral step and the spiral kick. The change in 
amplitude of the particle can be written as,

where A indicates the change over three turns. To find the maximum change in 
amplitude, an on-resonance particle is considered (i.e. s = 0). This simplifies (2.25) 
and once substituted into (3.3) yields,

(3.3)
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Maximum change: (3.4)

Equation (3.4) shows that the growth increases rapidly as the particle progresses along 
the unstable separatrix. After a certain number of turns the particle amplitude has 
increased so much that the particle can ‘jump’ by ∆A into an electrostatic septum and 
be extracted.

Figure 3.3 gives a schematic view of the normalised phase space at the 
electrostatic septum. A particle at point 0 is just passing the electrostatic septum on 
the machine side. One turn later, at the electrostatic septum, this particle has jumped 
to point 1 on the next separatrix that is 120° ahead. One more turn later, still at the 
electrostatic septum, the particle re-appears at point 2. Finally, after three turns, the 
particle returns to the initial separatrix, but at point 3. The growth in amplitude that 
has taken place during the three turns brings the particle inside the aperture of the 
electrostatic septum where it is deflected and extracted.

Figure 3.3 Amplitude increase during the last three turns before extraction

The maximum possible amplitude, Alast, of a particle, which is not extracted, can be 
calculated from the normalised position of the electrostatic septum, XEs, and the angle 
φ between the extraction separatrix and the horizontal axis,

(3.5)

Three turns later the particle will have increased in amplitude by, AA found from (3.4) 
and (3.5).
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From (3.6), it can be calculated how far the particle jumps into the septum, the so- 
called spiral step ∆R, and the spiral kick ∆,

The spiral step and kick define the size (emittance) of the extracted beam. It 
should be noted that (3.7) and (3.8) are only valid for particles that are exactly on 
resonance (δQ= ε= 0). Particles with a finite tune distance already have a finite 
amplitude when they become unstable, they spend fewer turns on the separatrix before 
they reach the electrostatic septum and their spiral step and kick are smaller. Thus the 
extraction separatrix will be continuously populated along its length by particles with 
different starting conditions. Some of the particles will hit the septum wall and will be 
lost. Thus the extraction efficiency depends critically on the thickness of the septum 
wall compared to the average spiral step. This is the main reason for the use of an 
electrostatic septum, which is usually built as a wire septum with a wire thickness of 
the order of 0.1 mm. Electric fields of up to 100 kV/cm can be obtained in such septa, 
but the kick obtained is rarely sufficient to extract the beam directly out of the 
machine, so a further step is required in the extraction process.

3.3.2 Introducing the magnetic septum
The small deflection provided by the electrostatic septum translates with phase 

advance into a physical gap between the circulating beam and the extracted particles. 
This gap can be used to introduce the wall of a magnetic septum, which can 
definitively extract the particles. The action of translating the deflection ϕ of the 
electrostatic septum into a gap for the magnetic septum wall is illustrated in Figure 3.4.

Figure 3.4. Effect of the kick of the electrostatic septum in normalised phase space
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The gap size is calculated by comparing the trajectories of two on-momentum 
(δp = 0) particles from the electrostatic to the magnetic septum. Particle A starts just 
inside the electrostatic septum and particle B starts just outside, as shown in Figure 
3.4. The thickness of the electrostatic septum (typically 0.1 mm) is neglected, both 
particles are assumed to start from the radial position of the septum xES, and with the 
same angle xES, but only particle A receives the kick The positions and angles of 
the particles at the magnetic septum are obtained as,

where the coefficients m11, m12 etc. are elements of the transfer matrix between the 
electrostatic and magnetic septa. Thus, the effect of the kick appears at the magnetic 
septum as a difference in position and angle between the two particles of,

(3.11)

where ∆xMS is the gap, available for the wall of the thicker magnetic septum. This gap 
is explicitly given by,

where μ is the phase advance between the two septa.

It follows from (3.12) that in order to create the space for the magnetic septum 
efficiently, the lattice functions of the machine and the positions for the septa have to 
be chosen such that:

• The phase advance between the septa is close to 90° + n-180°.

• The beta-functions at the septa have reasonably large values.

3.4 SEPARATRIX GEOMETRY AT ELECTROSTATIC SEPTUM
At first sight, the principle of transforming the angular kick of the electrostatic 

septum to a physical displacement looks to be equally applicable starting in any of the 
four quadrants. In fact, only the first and third quadrants are usable. This follows 
from purely geometrical considerations as shown in Figure 3.5. First, the septum kick 
must always be directed away from the X-axis, otherwise it tends to overlap the two 
sections of the separatrix rather than separating them. Secondly, when X is positive, 
the kick must also be positive and, when X is negative, the kick must be negative, 
otherwise the kick drives the separated section of the separatrix towards the axis of the 
machine and back into the wires of the septum. Once these restrictions are taken into 
account only the 1st and 3rd quadrants remain useful.
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Kick is negative at a 
negative position and 
creates a gap for the 

magnetic septum

Kick is positive at a 
negative position and 
drives beam back to 

centre and wires

Kick is negative at a 
positive position and 
drives beam back to 
centre and into wires

Kick is positive at a 
positive position and 
creates a gap for the 

magnetic septum___ ^x

Figure 3.5 Possible working quadrants for the electrostatic septum

The next parameter to be considered is the angle the separatrix in phase at the 
electrostatic septum. From equation (3.12), it was found that for the optimum usage 
of the electrostatic septum’s kick, the phase advance to the magnetic septum should be 
90° + n.180°. Figure 3.6 shows a logical layout for first quadrant operation with the 
extraction separatrix at 45° at the electrostatic septum and a phase advance of 90° to 
the magnetic septum.

Figure 3.6 Ideal separatrix geometry for first quadrant operation

Figure 3.6 shows that the 120° separation of the separatrices leaves a margin of 
security first at the electrostatic septum and then later at the magnetic septum. The 
extraction separatrix could be rotated by a maximum of 15° anticlockwise before the 
preceding separatrix hits the electrostatic septum as shown in Figure 3.7 (a), or by 15° 
clockwise before the following separatrix hits the magnetic septum, Figure 3.7 (b). 
This limits the possible angles for the extraction separatrix at the electrostatic septum 
to 45° ± 15° for first quadrant operation and to 225° ±15° for third quadrant 
operation.
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Figure 3.7 Limitations of separatrix geometry by electrostatic and magnetic septa

Alternative layouts to the above are limited. They include:

• To accept a much smaller phase advance. This may be imposed by lack of space, but it 
requires a stronger electrostatic septum, which may have implications for the reliability. 
This solution fits the lower energy proton machines better, where the extraction could 
then be easily made in a single straight section. However, it was proposed for the 
EULIMA light-ion medical machine [3].

• To use a 270° phase advance. This has two unfavourable aspects. Firstly, the extracted 
beam has to be transported for a longer distance in the machine, which for a small 
synchrotron means that the crossing of non-linear magnetic elements (e.g. chromaticity 
or resonance sextupoles) is almost unavoidable. Any change of these elements would 
result in a change of the extraction geometry. Secondly, a phase advance of 270° (more 
general 270° + n-360°) means that the electrostatic and magnetic septa are on opposite 
sides of the vacuum chamber. This may have the drawback that aperture is lost for the 
circulating beam by ‘encasing’ it between the septa.

3.5 PHASE-SPACE REPRESENTATION OF BEAM AND RESONANCE
The beam that is waiting to enter the resonance will have a certain momentum 

spread ∆p/p and, due to the chromaticity in the machine, this momentum spread will 
translate into a tune spread according to
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(3.13)

The ‘size’ of the beam in an accelerator is characterised by the emittance, which is 
defined as the area in phase space that contains a certain percentage of the beam 
particles of a given momentum. In general, the beam will contain particles with 
amplitudes between zero and a maximum amplitude, which corresponds to the total 
emittance of the beam. At a given azimuthal position s in the machine, the beam can 
be represented in phase space by a series of ellipses (circles in normalised phase space), 
centred on the dispersion vector D(s)-∆p/p, as shown in Figure 3.8.

Real phase space
Areas equal the 

emittance of the betatron 
motion for each 

momentum

Figure 3.8 Representation of a beam in phase space and normalised phase space

The circles, that represent the beam emittance in normalised phase space, become 
triangles under the influence of the resonance as shown in Figure 3.9. The size of a 
triangle corresponds to the last stable orbit and is graded according the its distance in 
tune from the resonance. Any particles outside the last stable triangle are lost along 
the outward separatrices. Equation (3.13) gives the tune for each momentum and 
hence also the tune distance from the resonance.

Normalised phase space
Size of the stable triangles 

depends on the tune distance 
from the resonance.

Orientation of the triangles 
depends on phase advance from 

resonance sextupole.

Figure 3.9 A beam under the influence of the resonance in normalised phase space

When considering the interactions of the beam and the resonance, it is 
convenient to use the Steinbach diagram that represents the stopband of the third-
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phase space are still equal 

to the emittance
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integer resonance (see Section 3.1). With (3.13) the expression for the stopband (3.1) 
can be rewritten with the momentum spread and the chromaticity as

(3.14)

It is sometimes more convenient to use the momentum spread rather than the tune for 
abscissa, as the momentum spread is an independent beam parameter (changing the 
chromaticity will change the tune but not the momentum). Figure 3.10 (a) shows the 
circulating beam before extraction, corresponding to the phase-space representation in 
Figure 3.8. Figure 3.10(b) shows the beam during the extraction process, 
corresponding to the phase-space diagram in Figure 3.9.

Figure 3.10. Steinbach diagram of the beam before and during extraction

Providing the beam is wide in momentum and small in amplitude a quasi-static 
situation is reached in which a band of particles of all amplitudes continuously enters 
the resonance (see Momentum selection by moving the beam in Figure 3.2). These 
particles have different momenta and, due to the chromaticity different tunes, which 
means the corresponding stable triangles are of different sizes. Figure 3.11 shows the 
separatrix geometry for the zero and maximum amplitude particles that define the 
unstable band at the resonance sextupole and the electrostatic septum in normalised 
phase space.
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The dotted lines are the separatrices corresponding to the zero amplitude particles Po 
in Figure 3.10 (b), the full lines are the separatrices of the maximum amplitude 
particles, P2. The separatrices of all other particles are found in between these two 
extreme cases. The instantaneous momentum spread of the extracted beam can be 
calculated from (3.14) with the maximum amplitude Amax as

(3.15)

3.6 HARDT CONDITION FOR SUPERPOSITION OF SEPARATRICES
In Figure 3.10 of the previous section, particles of all amplitudes become 

unstable at the same time and are extracted along separatrices from stable triangles of 
different sizes. Figure 3.12 shows this general case when the separatrices at the 
electrostatic septum are not superimposed and the particles move outwards along 
different trajectories and therefore reach the electrostatic septum with different angles. 
This angular spread increases the effective thickness of the septum wall and increases 
the beam losses.

Figure 3.12 Particle losses on the electrostatic septum due to angular spread of separatrices

Figure 3.12 (a) shows phase space map at the septum. This is like a cross-section of 
the beam with the particles moving perpendicular to the paper. Those particles 
arriving exactly on the thick line denoting the electrostatic septum are lost on the entry 
face of the septum wall (wire). Those arriving in the grey areas (shadow regions) hit 
the septum wall (wires) somewhere along the length of the septum. The boundary 
between survival and loss is curved for the those particles that arrive with a radial 
position inside the septum aperture (x > xES) and directed towards the axis with respect 
to the septum (x'< x ES), because the electric field of the septum deflects these particles 
away from the wires and in some case this is sufficient to prevent them from being lost. 
Figure 3.12 (b) shows a longitudinal view with the limiting trajectories that separate 
the survival and loss regions.

Minimum losses would be obtained if all the separatrices could be super­
positioned and directed through the point between the two shadow regions. This is 
achieved by the Hardt Condition. It was mentioned earlier that stable triangles of 
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different sizes correspond to different momenta. At positions in the machine where the 
dispersion is non-zero, the triangles will be shifted according to their momentum. With 
a suitable dispersion vector at the electrostatic septum, this effect can be used to 
superimpose the extraction separatrices and to avoid the shadow regions. It should be 
noted that in Figures 3.11 and 3.12 (a) all the triangles are centred which means that 
the dispersion was assumed to be zero at the electrostatic septum.

The restrictions on the lattice functions to satisfy the Hardt Condition can be 
derived with a purely mathematical approach from the general expression for the 
separatrix (2.48) in Section 2.9.

(2.48)'

(3.18)

Neglecting, for the moment, the mathematically trivial case of zero dispersion and zero 
chromaticity that will be discussed in Section 3.13, the flexibility of this equation is 
somewhat limited.

• The dispersion function is a fundamental property of the lattice depending on the layout 
of the dipoles. If the lattice already exists, or is determined by other factors, this could 
be a very severe disadvantage.

• The choice of (α-∆μ) is restrained by the geometry of the extraction. For optimised 
operation in the first or third quadrant (see Section 3.4), it can be shown that the phase 
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The angle a describes the orientation of the separatrices at the sextupole, ∆μ is the 
phase advance from the sextupole to the electrostatic septum and h is the distance from 
the side of the stable triangle to its centre given in (2.29).

(2.29)

(3.16)

With (3.13), the above expression can be rewritten as

The substitution of (3.16) into (2.48)' gives the general expression for a separatrix as a 
function of particle momentum and the chromaticity of the machine,

To superimpose the extraction separatrices, the momentum dependence has to be 
removed from (3.17). This is true if,

Hardt Condition:
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(α-∆μ) is either 135° for particles with tune values below resonance (δQ < 0), or 315° 
for particles above resonance (5(2 > 0).

• The sextupole strength cannot be used as a variable, since it determines the spiral step 
and spiral pitch and therefore the horizontal size of the extracted beam.

• For small, low-energy machines working below transition, the chromaticity should be 
negative to ensure the stability of the coasting beam [4]. However, the chromaticity can 
still be varied over a wide range and this is the main source of adjustment.

To understand better the Hardt Condition, the left hand side (LHS) of (3.18) can be 
regarded as a scalar product of two vectors, 

(3.19) 

where the (cosine, sine) vector is the unit vector, perpendicular to the extraction 
separatrices as shown in Section 2.9. The LHS is zero, if these two vectors are 
perpendicular, which means that the normalised dispersion is parallel to the 
separatrices. In this case, it is clear that the separatrices cannot be superimposed for 
any finite value of chromaticity. (The case of a zero-chromaticity extraction is 
considered separately in Section 3.13). The absolute value of the LHS will be 
maximum for parallel vectors, which means the normalised dispersion is at right angles 
to the extraction separatrices and the shift of triangles with different momenta, relative 
to each other, is then the most effective. Thus, the underlying principle for an efficient 
lattice for the Hardt Condition is that the normalised dispersion vector should be at an 
angle close to 90° with respect to the extraction separatrix at the position of the 
electrostatic septum.

The RHS of (3.18) adjusts the scalar amplitude of the correction by varying the 
horizontal chromaticity. Providing the vectors forming the LHS are well positioned 
the correction will be possible without extreme values. Unfortunately the horizontal 
chromaticity is not entirely free, since its also affects the width of the stop band (the 
slope of the resonance line) and therefore the extracted momentum spread. Thus, 
there is a certain amount of trial-and-error adjustment needed to reach a satisfactory 
situation. In general, the extraction should be arranged such that the momentum 
spread of the extracted beam is small for two main reasons:

• The optics of the beam delivery system towards the patient is complicated and a small 
momentum spread reduces beam sizes in the bends. The momentum spread can be 
artificially increased at the end by a ridge filter to create a spread-out Bragg-peak.

• The transfer between electrostatic and magnetic septum is in general chromatic. These 
chromatic effects can be partially compensated by a higher voltage in the electrostatic 
septum, but are less important for a small momentum spreads.

The following Figures 3.13 and 3.14 illustrate how the Hardt Condition is 
applied at the electrostatic septum for first quadrant operation. The full lines represent 
the extraction separatrices corresponding to zero amplitude (zero-size triangle) and 
maximum amplitude (maximum-size triangle) particles. The dotted lines indicate the 
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position of the maximum-size triangles if the dispersion function were zero. In Figure 
3.13, the normalised dispersion vector is almost parallel to the separatrices, thus the 
absolute value of the LHS in (3.19) is small, whereas, in Figure 3.14, the normalised 
dispersion is perpendicular to the separatrices and the LHS is large. In Figures 3.13 
(a) and 3.14 (a) the chromaticity is not adjusted to fulfil the Hardt condition (RHS of 
(3.19) is equal for both diagrams). In Figures 3.13 (b) and 3.14 (b), the chromaticity 
has been adjusted in order to superimpose the separatrices. In Figure 3.13 (b), the 
dispersion vector is not well suited; the final absolute chromaticity is small and the 
extracted momentum spread is large as can be seen from the Steinbach diagram. In 
Figure 3.14 (b) the normalised dispersion vector is perpendicular to the separatrices 
which are superimposed for a small momentum spread of the extracted beam and a 
large absolute chromaticity.

3.7 1st AND 3rd QUADRANT OPERATION WITH THE HARDT 
CONDITION
Figures 3.15 and 3.16 summarise all the possible extraction layouts for 

optimised first and third quadrant operation. The arrows indicate the required 
direction of the normalised dispersion vector to fulfil the Hardt condition with the 
smallest possible momentum spread of the extracted beam. The dotted lines are the 
extraction separatrices for the zero-amplitude particles which are exactly on resonance 
(δQ = 0, δp = 0), the full lines correspond to maximum amplitude particles with a 
momentum deviation and a tune deviation δQ = Q'bplp. The choice may appear 
large, but it quickly reduces in the following way:

• It was mentioned earlier that for small, low-energy machines that work below transition, 
the chromaticity should be negative in order to ensure the transverse stability of the 
beam. This constraint leaves only four possibilities for the extraction geometry at the 
electrostatic septum that are in Figures 3.15 and 3.16 in (b) and (d).

• In Figures 3.15 (b) and (d) the electrostatic septum is on the outside of the vacuum 
chamber, the dispersion required for the Hardt condition is Dn > 0 and D'n < 0. In 
Figures 3.16 (b) and (d) the electrostatic septum is on the inside of the vacuum chamber, 
the dispersion required for the Hardt condition is Dn < 0 and D'n > 0. In general, in 
small machines the dispersion is positive. This leaves only the two layouts, 3.15 (b) and 
(d), for the extraction.
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• The position of the ‘waiting’ beam in the tune diagram determines the last choice 
between (b) and (d) in Figure 3.15. The PIMMS proposal is to place the ‘waiting’ beam 
above the diagonal (Qx = Qz) and above the resonance Qx = 5/3. The last choice is 
indicated by the ‘heavy’ box in Figure 3.15 (d).
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Figure 3.13 Hardt condition for small chromaticity and large momentum spread of extracted 
beam

Figure 3.14 Hardt condition for large chromaticity and small momentum spread of extracted 
beam
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Figure 3.15 Separatrix geometry for first quadrant operation with an ideal normalised 
dispersion vector

Figure 3.16 Separatrix geometry for third quadrant operation with an ideal normalised 
dispersion vector

3.8 CHOOSING THE DISPERSION FUNCTION
Figure 3.17 shows the qualitative shape of the normalised dispersion curve in 

different types of lattices (i.e. a dispersion bump, an arc with regular distributed dipoles 
and a regular cell structure). In each case, the favoured position for the electrostatic 
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septum is on the downward slope of the dispersion (shaded areas), where Dn > 0 and 
D'n<0.

Figure 3.17 Qualitative shape of the normalised dispersion for typical lattice structures

3.9 POSITIONING THE ELECTROSTATIC AND MAGNETIC SEPTA
In Figures 3.15 (b) and (d) the electrostatic septum is in the outer half of the 

chamber. Earlier, in (3.12), it was shown that the ideal phase separation between 
electrostatic and magnetic septa is μ = 90° + 72-180°. An even value for n (i.e. μ = 90°, 
450° etc.) puts the two septa on the same side of the vacuum chamber and an odd 
number of n (i.e. μ = 270°, 630° etc.) puts the septa are on opposite sides of the 
vacuum chamber. Figure 3.18 shows these two situations schematically.
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Correct orientation for (Dn,Dn) 
in a dispersion bump

Correct orientation for (Dn,Dn )
in an arc with spread out dipoles

• Correct orientation for (Dn,Dn) 
in a regular cell lattice

Figure 3.18 Positioning the magnetic septum with respect to the electrostatic septum
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The area occupied by the beam in Figure 3.18 is shared by the ‘waiting’ beam and the 
separatrices. The separatrices grow symmetrically from the resonance so the aperture 
is best used by placing the resonance at the centre. Intuitively, one feels that the 
aperture is likely to be restricted for the ‘waiting’ beam, if the septa are on opposite 
sides of the chamber. In addition, since the electrostatic septum will be in the outer 
half of the chamber, putting the magnetic septum in the inner half means that the 
extraction will be to the inside of the machine. This is undesirable because of the high 
magnetic rigidity of the beam. For these reasons, a phase separation of around 90° 
with both septa to the outside of the chamber has been chosen. A larger phase 
advance of 90°+ n.360° is less convenient as the extracted beam has to be transported 
for a longer distance inside the machine.

With these considerations, a schematic picture of the aperture starts to emerge 
(see Figure 3.19). During the extraction set-up, the beam has to be kept sufficiently far 
from the resonance not to be prematurely extracted. With both septa being on the 
outside of the vacuum chamber, it is natural to position the beam in the inner half of 
the chamber to avoid aperture limitations. In this case, the beam is below the 
resonance in momentum, but due to the negative chromaticity, it is above in tune. At 
extraction, the resonance is reached by accelerating the beam and reducing its tune. 
Figure 3.19 indicates two approximate dimensions. The electrostatic septum intercepts 
the growth of the separatrices at 30 to 40 mm from the axis and the spiral step is about 
10 mm. Some justifications for these figures will be given later.

3.10 TRANSFER OF OFF-MOMENTUM PARTICLES BETWEEN SEPTA
If the Hardt Condition is fulfilled, all the extraction separatrices will be 

superimposed at the electrostatic septum and all particles will reach the septum on the 
same separatrix independent of their momentum. It would be ideal if this state of 
affairs could be maintained by an achromatic transfer from the electrostatic to the 
magnetic septum. The simplest way to achieve this is to avoid all magnetic elements 
and to place the two septa in the same drift space. Inevitably, the electrostatic septum 
then needs a bigger kick, because the phase advance between the septa will be smaller. 
This was already pointed out in Section 3.3.2 when the transfer of on-momentum 
particles was discussed. Owing to the necessity for a stronger kick in the electrostatic 
septum, this method is better suited to proton machines than light-ion machines.
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Figure 3.19 Schematic view of aperture
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The more difficult case where the beam is transported through the section of 
the machine between the septa will be considered here. If particles of different 
momenta arrive at the magnetic septum on different orbits, then there will in general be 
a reduction of the gap calculated in (3.12). This is the gap that has been opened 
between the main beam and the extracted segment of the separatrix in order to 
introduce the wall of the magnetic septum.

Consider the transfer of two off-momentum particles C and D that start from 
the radial position of the electrostatic septum, xES with the septum angle x'es, but only 
particle C receives the kick, φ, of the septum. In a linear lattice, the movement of 
particles with a momentum deviation can be described by a 3x3 transfer matrix 
formalism. The horizontal co-ordinates of the particles at the magnetic septum are 
derived as

and

Comparison of (3.20) and (3.21) with (3.9) and (3.10) shows that the separation 
between circulating and extracted particles is the same as calculated for on-momentum 
particles, but the gap appears at a different position and angle. The shift in position 
reduces the effective gap width for the magnetic septum. Figure 3.20 shows the 
transfer between the septa for particles representing the full momentum spread of the 
extracted beam. The grey shaded areas represent particles with momenta in between 
these limits.
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Particle C:

Particle D:

(3.20)

(3.21)

Figure 3.20 Transfer from electrostatic to magnetic septum
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A non-zero m13 causes a loss of space for the magnetic septum and has to be 
compensated by a stronger kick from the electrostatic septum. The effective gap width 
is

(3.22)

The horizontal width of the extracted beam is also increased and, to avoid losses inside 
the magnetic septum, the horizontal aperture has to be enlarged.

(3.23)

A non-zero m23 is leading to a larger overall divergence of the extracted beam at the 
magnetic septum and also requires an enlarged horizontal aperture to avoid losses.

(3.24)

At the electrostatic septum, any angle error of the extraction separatrices, however 
small, will directly increase particle losses, but at the magnetic septum, it is usual to 
foresee a small clearance of a few millimetres between beam and septum and therefore 
angular spreads up to 1mrad (approx.) can be tolerated without loss. For this reason, 
only the term will be considered in the following discussion.

3.11 MINIMISATION OF CHROMATIC EFFECTS
By keeping the momentum spread of the extracted beam small, the above 

mentioned disadvantages can be minimised. However, the momentum spread is not a 
free parameter if the Hardt-condition is applied to avoid losses at the electrostatic 
septum. It is therefore important to optimise the lattice in such a way that the 
superposition of the extraction separatrices results in a small momentum spread of the 
extracted beam (as already discussed in Section 3.6). The explicit form of the element 
m 13, expressed in terms of normalised dispersion,

(3.25)

shows that the loss of space for the magnetic septum is proportional to √Bms- 
Although decreasing Ais does reduce the influence of m13, it also reduces the gap 
created by the electrostatic septum (3.12), since this is also proportional to √BMS- As a 
result, the effective gap (3.22) for the magnetic septum is in fact reduced by decreasing 
BMs-

(3.26)

The only effective way therefore to reduce chromatic effects is to minimise 
directly.
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3.12 ACHROMATIC TRANSFER BETWEEN EXTRACTION SEPTA
A momentum independent transfer between electrostatic and magnetic septa 

requires the chromatic term in the general 3x3 transfer matrix to vanish. 
Inspection of (3.25) shows that the size of is determined by the normalised 
dispersion functions at the septa. In order to reduce m13, the lattice needs to provide 
suitable values of the dispersion at the two positions of the septa.

The shape of the dispersion function in a lattice is determined by the 
distribution of the dipole magnets. In the analysis below, the effect of the dipoles is 
approximated as point kicks. In this model, every passage of a dipole adds a kick D'n,o 
to the actual value of the normalised dispersion function, according to

(3.27)

In a bending-free region, the dispersion function acts like a betatron oscillation of a 
particle and can be described with the Courant and Snyder matrix formalism. The 
transformation of the dispersion function between two lattice elements, denoted by the 
suffices 1 and 2, without crossing dipoles, is given by

(3.28)

In normalised phase space, the normalised dispersion vector simply rotates by the 
phase advance, μ12, between the elements, according to

(3.29)

The combination of (3.27) and (3.29) allows an approximate analysis of the transfer 
between the extraction septa. Some particular cases are demonstrated below.

Both septa in a bending-free dispersion region

Figure 3.21 180°dispersion bump
(a) Normalised co-ordinates (μ, Dn), (b) normalised phase space (Dn, D'n).
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Figure 3.21 shows a dispersion bump as created by two dipole point kicks of 
identical strength, spaced by 180° in phase. The electrostatic septum is positioned in 
the first half of the bump and the magnetic septum 90° in the second half. To prove 
that in such a case the transfer is always achromatic, the closed orbit for particles with 
a momentum deviation δp is considered. The closed orbit at any position s in the 
machine is, to first order, defined by the product of dispersion function and momentum 
deviation,

A 3x3 transfer matrix links the orbit co-ordinates between two positions 1 and 2 in the 
machine according to

The insertion of (3.30) into (3.31), provides general expressions for m13 and m23, in 
terms of the dispersion functions and the 2x2 matrix elements,

(3.32)

In regions without bending, the dispersion function transforms according to (3.28) and, 
by inserting this into (3.32), it follows directly that m13 and m23 are zero and therefore:

• The transfer via a dispersion region without crossing bending magnets is always 
achromatic with respect to position and angle.

It should be noted that this result is exact and valid, not only inside a dispersion bump, 
but in any lattice section without bending.

A typical structure where this result can be applied is the so called ‘square’ 
lattice in which the dipole magnets are grouped in the comers, to create dispersion 
bumps on two opposite sides and dispersion-free straight sections on the remaining 
two sides. With the above principle that allows fully achromatic transfer between the 
septa in the straight sections with dispersion, it may appear that such a structure is 
ideally suited for slow extraction, but there are two major problems with a square 
lattice:

• The natural position for the electrostatic septum would be the first half of the dispersion 
bump, but this is the ‘worst’ place to put it when adjusting for the Hardt condition. It 
was shown in Section 3.8, that for ideal operation Dn > 0 and D’n < 0, is required and 
this only occurs in the second half of the bump (see Figure, 3.17).
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(3.30)

(3.31)

and

• The second problem is that in general there is too little useable phase advance inside the 
dispersion straight-section. An important fraction of the 180° is lost because of the finite 
length of the corner dipoles. To get the maximum phase separation between the septa, 
they have to be positioned close to the corners on either side of the straight section, but 
then the magnetic septum has to kick strongly to clear the dipole magnets of the 
downstream corner. If the magnetic septum is moved upstream then the electrostatic 
septum must kick harder.
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Both septa in regions with dispersion and bending

Figure 3.22 Extended dispersion bump
(a) normalised co-ordinates (μ, Dn), (b) normalised phase space (Dn,D'n)

Figure 3.22 shows a so called extended-dispersion-bump. The free space within the 
dispersion bump is increased by adding a central dipole in order to overcome the 
problems of the ‘square’ lattice. The disadvantage of such a structure is that, in 
general, the transfer between the extraction septa is chromatic, as a bending magnet 
has to be crossed.

Some design guidelines can be found for an extraction layout with optimised 
phase advances of μ=90°+n-180° between the septa. Using expression (3.25) for the 
chromatic term,

(3.34)

is required, but as shown earlier, one needs to work with a negative D 'n,ES for adjusting 
the Hardt condition and therefore can only be made zero by having negative 
dispersion at the magnetic septum.

For a phase advance of μ = 270° + n.360° (septa on opposite sides of the 
vacuum chamber) it follows that

(3.35)

and therefore to make the transfer achromatic requires,
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(3.25)

and assuming a phase advance μ = 90° + n.360° between the electrostatic and 
magnetic septa gives

(3.33)

To make the transfer achromatic (i.e. = 0),
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(3.36)

In this case, can be made zero by having a positive Dn,Ms and a negative D n,ES just 
as required for the Hardt Condition. A disadvantage of this solution might be that the 
particles which are extracted have to be transported for a longer distance inside the 
machine (e.g. crossing of sextupoles between the septa would be more difficult to 
avoid)*.

* If a sextupole is crossed (either resonance or chromaticity) between the ES and the MS, then there is 
a variable optical element in the extraction channel. Any change in the Q’ or resonance-strength 
alters the extraction geometry

Electrostatic septum in dispersion region and magnetic septum in zero-dispersion 
region

Figure 3.23 180°dispersion bump
(a) Normalised co-ordinates (p, Dn), (b) normalised phase space (Z)n, D'n).

Figure 3.23 shows a 180° dispersion bump, but contrary to the extraction layout in 
Figure 3.21, the electrostatic septum is positioned in the second half of the bump 
where Dn > 0 and D'n < 0, as required for the Hardt condition and the magnetic septum 
is positioned in the dispersion-free straight section after the dipoles that close the 
bump. As for the extended dispersion bump, the transfer between the septa is in 
general chromatic due to the passage through dipoles. Assuming that the dispersion 
bump is created by dipole point kicks, the normalised dispersion function can be 
described with (3.27) and (3.29) as

(3.37)

where 9 is the phase advance counted from the first dipole kick and D'n,o is the 
strength of the kick. With Dn.Ms = 0 in (3.25), the chromatic term m13 can be written 
as
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and by inserting (3.37) into (3.38) a simple expression for is obtained,

(3.38)

(3.39)
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Obviously it is impossible to use exactly n = 1, since this gives the position of the 
dipole which is closing the dispersion bump. To keep m13 small, the magnetic septum 
has to be positioned as close to the dipole as possible. For larger n, there is again the 
problem of transporting the extracted part of the beam through a large distance in the 
machine.

Transfer for un-fulfilled Hardt Condition
Adjusting the Hardt Condition fixes the chromaticity and therefore the slope of 

the resonance line (3.14) and the momentum spread of the extracted beam (3.15). 
Alternatively, instead of superimposing the extraction separatrices at the electrostatic 
septum, the chromaticity can be used to superimpose the orbits of the different 
momenta at the magnetic septum. With a proper choice of starting conditions, the 
available space for the magnetic septum can be maximised even if the transfer between 
the septa is chromatic but, of course, the separatrices then arrive at the electrostatic 
septum with different angles. This method is used in the present CERN-PS slow 
extraction scheme [5].

Transfers between zero-dispersion regions
By inspection of the general expression (3.25) for m13, it follows immediately 

that the transfer between zero-dispersion regions is always fully achromatic. However, 
with the electrostatic septum located in a zero-dispersion region, the separatrices can 
be superimposed only for zero chromaticity, which will be discussed in the next 
Section.

3.13 ZERO CHROMATICITY AND THE HARDT CONDITION
In Section 3.2, the extraction method of Amplitude selection by amplitude 

growth was described as having near-zero chromaticity, in Section 3.6 it was noted 
that a mathematically trivial solution for the Hardt Condition (3.17) was zero 
dispersion and zero chromaticity and finally, in Section 3.12, it was pointed out that an 
extraction made between two dispersion-free regions, or within a single dispersion-free 
region, would be achromatic for the transfer between the septa. The combination of 
these three points leads to a complete scenario for a zero-chromaticity extraction, with 
the Hardt Condition fulfilled and achromatic transfer between the septa.
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It follows immediately that the transfer between the septa will be achromatic, (m13= 0), 
for

(3.40)
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1-4 SPILL CHARACTERISTICS
A detailed knowledge of the extracted beam (or spill) is essential in order to 

obtain the quality that is required for high-precision active scanning. The momentum 
spread and emittance of the spill must be well understood to ensure a reproducible spot 
size and to correctly adapt the focusing and apertures in the transfer lines and gantries 
under all conditions. The transverse distribution of particles within the spill affects the 
dose calculations and the way in which the beam spot is scanned. The transit time, or 
storage time, in the resonance is the principal problem for feedback systems, but it also 
has the mitigating effect of smoothing the spill at high frequencies. The uniformity of 
the spill is probably the most important aspect of all and analysing the deleterious 
effect of tune ripple is a major aim of the present chapter. By first studying the 
behaviour of a single particle and then the strip of particles sitting along the edge of the 
stable triangle in phase space and finally the ‘band’ of particles that comprise all the 
strips of different momenta that become unstable at any one time, it has been possible 
to build up simulations of the micro-time profile of the spill under the influence of tune 
ripple [1,2]. These simulations have been made and compared for the different 
extraction techniques.

4.1 TRANSLATION OF THE HAMILTONIAN
In order to study the motion of a single particle as it leaves the machine under 

the influence of the resonance, it is convenient to shift the origin of the Kobayshi 
Hamiltonian (2.27) to the fixed point used for extraction.

Figure 4.1 Phase space with the origin on the extraction fixed point
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Shifted Hamiltonian:

where

(4.1)

(2.29)

and the indicates the variable is referred to new origin. However, to simplify the 
notation, the convention of adding the bar will be dropped and X'will be replaced by Y 
from now on. This situation is drawn in Figure 4.1.
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In the translated frame of reference, the equations of motion are:

(4.2)

Time is dimensionless in (4.2) and is measured as a number of sets of three turns. This 
is a heritage from the derivation of the Kobayashi Hamiltonian that was derived by 
considering the displacement that a particle undergoes when viewed every third 
revolution. Thus, the elementary time dt corresponds to 3 TREV, but it is dimensionless. 
Thus, if an extraction time is found to be 100, this means that the particle being 
considered needs 300 revolutions in the accelerator to reach the electrostatic septum 
and be extracted.

The time scale of the slow extraction process is such that the extracted particles 
will follow paths that are close to the separatrices and it is convenient to express the 
co-ordinates of these trajectories in terms of the apothem of the stable triangle, h, such 
that

which effectively define the new quantities λ and A. Thus, the motion in X is measured 
in units of h and the motion in Y is measured in units of the length of the side of the 
stable triangle.

The strategy for finding the transit times is to first analyse the motion of 
particles travelling along the outgoing separatrix from O' to the electrostatic septum 
under static conditions i.e. while the stable triangle remains constant in size and 
position. The next step is to find an expression for the travel time of particles moving 
close to the side of the stable triangle from an arbitrary point towards the stable fixed 
point O', again under stable conditions. Finally, these expressions must be modified to 
take into account the dynamic conditions of a shrinking stable triangle. An important 
stage in this analysis is the definition of the ‘hand-over’ point between the trajectory 
associated with the side of the stable triangle and the trajectory associated with the 
outgoing separatrix. For convenience, these separate components of the travel times 
will be defined as follows:
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(4.3)

To help the understanding of some of the approximations made in the 
following, some tentative values of the main quantities are given:

Revolution time, TREV = 0.5 ps and Spill length = 0.5 s = 106XTREV.
Tune separation from the resonance, 50 = 3xlO-3 and s = 6πδQ = 5.65xl0'2.
5 = 36.7 m'1/2 and h = (2/3)(ε/S) = 1.03 10-3 m1/2.
λ = 15xl0-6.
δQbeam = 15xlO-3 and dQ/dt = δQbeam /(106/3) = 45xl0-9
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4.2 TRANSIT TIMES UNDER STATIC CONDITIONS

4.2.1 Transit time from the fixed point to the electrostatic septum
While δQ, S and Ap/p are constant, the particle will follow a trajectory with 

constant, H. This trajectory will be given directly by (4.1):

In the vicinity of the fixed point O', that is for |X|, |Y| « h, the third-order terms in X 
and Y can be neglected. Thus:

(4.5)

The substitution of (4.5) into the motion equation (4.2) (a), yields

(4.6)

Fortunately, this equation has a standard form*  and can be integrated. Within the strict 
assumptions made above, the simplified trajectory equation (4.5) is only valid close to 

O', but, since the particle approaches the separatrix asymptotically and Y => √3=X , 

the third-order terms in the Hamiltonian cancel out, so luckily they can also be 
neglected far from O' along the outgoing separatrix and the integration can be 
extended right up to the electrostatic septum. Thus, the transit time Tcorner,static is

with expansion of square roots to 1st order.

(4.7)
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It is useful to express all the distances in terms of h. In correspondence with 
the definitions of λ and A in (4.3), the position of the electrostatic septum is written as 
Xes = -nh, and the starting positions are written as Xo = and Yo = 2 a4/?/10. Both 
Xq and Yo will be small and close to the stable fixed point. By neglecting the terms in 
λo with respect to unity and λoA0 with respect to λo the final result obtained is,

Transit time from ‘comer’: 
(static conditions)

(4.8)

This formula works well for particles at positions up to Ao = 0.1 and within this range 
the extraction time is independent of the initial Yo co-ordinate.

4.2.2 Extraction time from the side of the stable triangle
To evaluate the time needed to reach the electrostatic septum for a particle that 

has just become unstable, it is necessary to add the time spent moving along the side of 
the stable triangle to reach the fixed point O' before moving along the outgoing 
separatrix. The motion in Y between a starting position close to the side of the triangle 
(so that X and X2 can be neglected) and a point that is ‘near’ to O' can be obtained 
from (4.2) (b).

Equation (4.9) has the same basic form as (4.7),

which yields,

Transit time from ‘side’: 
(static conditions) 

(4.10)

where the integration has been made between the starting point Yo = -2√3A0h and

YF = -2√3AFh*  and the point defined by -AF has to be ‘near enough to O' to allow 

the use of Tcorner,static’ (derived in the previous sub-section).

4.2.3 Matching the ‘side’ and ‘corner’ trajectories
In order to complete the present calculation, it is necessary to define a ‘hand­

over’ point between the trajectory coming from the side of the stable triangle and the 
trajectory that extends out to the electrostatic septum. The general expression for the 
end-point co-ordinates of the first trajectory is obtained by equating the Hamiltonian at 
the start (-λoh,-2√3Aoh) and the start and end of the trajectory.

Note that in Ref. 1 the parameter AF = 2√3 AF is used to define the end point of the track.

PIMMS January 1999



57

By rewriting XF = XFh and YF = -2a√3Afh and by neglecting the higher order terms in 

λo and λoA0, a relation is obtained between the starting co-ordinates and the finishing 
co-ordinates.

At this stage, an expression for the X-position of the hand-over point, XF, is noted for 
future use.

(4.12)

The addition of (4.8) and (4.10) yields,

And finally, with the introduction of (4.11)

Transit time : 
(static conditions)

which no longer depends on F or 2F.

4.3 TRANSIT TIMES UNDER DYNAMIC CONDITIONS

Resonant slow extraction can be ‘activated’ in many ways (see Section 3.2.3), 
but the easiest to understand is the variation of the tune Q of the machine, by changing 
the focusing quadrupoles, to bring the beam into resonance. An equivalent method, in 
terms of the present analysis, is to vary the momentum of the particles, as 
SQ = Q' Ap/p. Varying δQ, by either method, causes the stable triangle to shrink. The 
size of the triangle is directly proportional to the apothem h, which is proportional to 
the tune shift via ε = 6πδQ. Reducing the size of the triangle causes the particles on 
the largest orbits to pass from the stable region inside the triangle to the unstable 
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region outside and thence to be extracted. A linear variation of the tune with time 
(Q = constant) will be considered. The main approximations used are the following:

• The relative variation in the size of the triangle during the extraction time will be 
small, that is Xh « h;

• Instead of considering the movement of the separatrices as the triangle shrinks, the 
relative movement of the separatrix with respect to the particle, will be considered 
as an additional contribution to the particle velocity and the triangle will be 
considered as fixed during the extraction time. This is illustrated in Figure 4.2, 
where the situation is sketched at two different times t1 and t2 with t2 > t1.

Figure 4.2 The relative motion of an unstable particle and the stable triangle

Approximation

4.3.1 Transit time from the fixed point to the electrostatic septum under 
dynamic conditions
It was shown in the static case in Section 4.2.1 that in this region the extraction 

time does not depend upon the initial value of A for values up to 0.1. Following this 
hint, Ao is set to zero and the particle is assumed to move on the outgoing separatrix 
Y = —1 X . With this assumption equation 4.2(a) becomes:

√3

To this velocity, it is necessary to add the velocity of the separatrix as it recedes from 
the particle. It is easy to evaluate the velocity in the non-translated frame and to note 
that it has to be the same in both frames. In the non-translated frame, the separatrix 
equation is given by X = -h. Thus:
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(4.14)

so that:

(4.15)
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(4.16)

This integral can be evaluated using the same standard form as in the static case, to 
give,

which is obtained using the assumption ∆ « h which translates into

The term in λo in the denominator has been kept in order to recover the static 
expression when Q = 0.

4.3.2 Extraction time from the side of the stable triangle under dynamic 
conditions
As in the static case, it is necessary to evaluate the time spent moving along the 

side of the stable triangle. In equation (4.2)(b) for the motion in Y, the X and X2 terms 
are neglected and the velocity of the separatrix (i.e. the approach velocity of the stable 
fixed point) is added to give:

(4.18)

which is exactly the same as in the case of the static situation in (4.10). This is 
reasonable, considering the approximation used in which the velocity in Y does not 
depend on X and in which the variation in the length of the triangle’s side is negligible 
in the time considered.
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Transit time from ‘comer’: 
(dynamic conditions)

When integrated between

Transit time from ‘side’: 
(dynamic conditions)

(4.19)
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4.3.3 Matching the ‘side’ and ‘corner’ trajectories under dynamic conditions
It now remains to evaluate the ‘hand-over’ point where the two trajectories 

coincide. This can be approximated by adding the XF-position of the static case in 
(4.12) to the movement of the separatrix, which will be the product of the velocity of 
the separatrix and the time spent by the particle moving along the side of the stable 
triangle. The yF-position will be unchanged from that of the static case to this level of 
approximation.

[4.20)

Thus, the total time to reach the electrostatic septum for a particle starting far from O', 
is the sum of (4.17) and (4.19) with the appropriate value of XF; dynamic from (4.20),

Unfortunately in the dynamic case, AF does not disappear as it did in the static case, 
but it turns out that particles with 0 < Ao < 0.1, come out approximately together. 
Thus, Tcomer, dynamic can be considered to be correct up to Ao = 0.1 and it seems natural 
to choose /1F to correspond to this value. The approximation of AF = 0.1 is based on 
the simulations summarised in Table 4.1 that also compare the static and dynamic 
formulae to simulations over a wider parameter range.

Comparison of the various formulae for the transit time shows that they all 
have the form,

and that the order of magnitude of the transit time is given by 1/ε. The various transit 
time formulae have been checked against numerical simulation and have been found to 
be correct to within five percent, provided the relative variation of the parameters is 
small during the transit time. Table 4.1, shows a sub-set of the comparisons made with 
the static and dynamic formulae. The initial values for these calculations were 
X= 15x 10-6ε = 5.65 x 10'2.
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Transit time: 
(dynamic conditions)

(4.21)

(4.22)
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Table 4.1 Numerical simulations and analytical results for the transit time

Comparison of numerical simulations and analytical results for the transit time

Starting position, Ao
Yo=

Transit time (no. of revolutions)
Numerical simulation T corner, static T  static

0 384 364
0.1 390 364 370
0.5 426 406
0.9 531 505

0.999 843 787
T corner dynamic T dynamic

0 306 290 -

0.1 309 290 290
0.5 327 322
0.9 381 375

0.999 531 501

4.4 BEAM MODELS FOR THE SPILL

4.4.1 Time profile of a ‘strip’ *

* The name ‘strip’ will be reserved for the narrow region of mono-energetic particles on the side of a 
stable triangle. The name ‘band’ will be introduced later for the series of strips in a beam with a 
momentum spread.

In the previous sections, expressions have been derived for the time needed 
(transit time) for individual particles to leave the machine. The aim now is to use these 
basic results to predict the time profile of the spill from an elementary ‘strip’ of 
particles sitting along the side of the last stable triangle that are made unstable by the 
recession of the separatrix during three turns (see Figure 4.3). Ultimately, it will be 
possible to integrate over the elementary strips to form ‘bands’ that will include all the 
different momenta that become unstable at any one time. Once this is done, the full 
simulation of the time profile of a spill can be attempted.

Figure 4.3 Shrinking the stable region leaves a narrow ‘strip’ of particles unstable 
[In the figure, only one of the three sides of the triangle is considered and the motion of the particles 

and separatrices are shown by arrows.]
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The first particle will reach the electrostatic septum at t0 = T(A=0) and the last one at 
tL = T(A=AL). Note that the maximum time does not correspond to A = 1. This is due 
to the fact that the particles that start near to the stable point B will be overtaken by 
the inward movement of the separatrix BC. These particles will be extracted along the 
following separatrix. This is equivalent to considering them as starting near O' (they 
are in fact replaced by particles from the separatrix OC that are overtaken by the 
movement of OB). The delay with which they appear near O' will not be considered, 
for the moment. The value of Al will be given later.

As noticed in Section 4.3.3, all the particles starting with 0<A<0.1, reach the 
electrostatic septum at virtually the same moment, so the spill will start with a spike at 
t0 = Tcorner, dynamic(δQ, Q ).IFp(A) the linear probability density of particles in the 
strip, and is the total number of particles contained in the strip, the spike will 
contain Nspike particles, where:

PIMMS January 1999

where Thus the initial spike can be described by

(4.23)

(4.24)Initial spike:

After the initial spike, the spill shape can be evaluated by noticing that the particles 
coming out between T(A) and T(A)+dt are the ones which started between A and 
A+dA. This means

for to < t < tF which corresponds to 0.1 < A < AL. The time profile for the elementary 
strip is then given by the sum of Pspjke and Ptajj.

(4.26)Strip profile:

Once Al, /XA) and A(f) are known, the time profile of the elementary spill can be fully 
evaluated. The shape of this elementary spill is the key to calculating the spill profile 
for the whole beam and for including the influence of rinnle.

Evaluation of the linear probability density p(4)
Assuming that the initial beam is smoothly distributed in phase space and that 

the resonance is applied adiabatically, then the density probability /XA) in the strip will 
be proportional to l/v(A), where v(A) = df/dr and is the velocity in normalized phase
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space of the particles. With the Kobayashi Hamiltonian translated to the fixed point O', 
v(A) is given by (4.2)(b):

(4.2)(b)

Restricting (4.2)(b) to trajectories close to the separatrix 03 and re-expressing the 
co-ordinates according to (4.3), but neglecting the terms in A,2, yields,

so that

(4.28)

, so that

Inverting T(A)
The second element that is necessary for the evaluation of Ptail, is dA/dt. This 

will be derived from the time, Tdynamic needed for a particle to reach the electrostatic 
septum starting from Xo = -λ0hand Yo = -2√3A0h close to the separatrix O'B. This 

transit time can be found in (4.21)

(4.21)

The re-arrangement of (4.21) to solve for A (the 0 subscript is now dropped as A 
becomes a variable) and the use of t instead of 7dynamjc to stress that it is now the 
independent variable, yield

(4.30)

and
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(4.27)

Since the constant k is found to be

Line density: (4.29)
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(4.31)

As λo is of the order of —, and ε « 1, the first term in the denominator of the last 
ε

fraction in (4.31) can be neglected with respect to the second. Equation (4.31) can 
then be rewritten as

where
(432)

(433)

In order to invert T(A), it is necessary to solve (4.32) with respect to R. This equation 
has real solutions only when K > 1, which corresponds to t > t0 This is to be expected 
since no particle is extracted prior to t0 Let R = R(K) be the solution of 
equation(4.32), then:

(434)

which no longer depends on AF. Note that neglecting λ with respect to (A2 - A) in 
equation (4.35), means that A » X, which is always true for A > 0.1, and (1 - A) » X. 
This will be shown later to be also true for A < Ap. The derivation of (4.32) with 
respect to time, gives
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where

Referring back to equation (4.25) the aim is to evaluate which with

becomes,

The substitution of expression (4.34), yields:
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(4.37)

Note that neglecting the derivatives of n and ε was already included in the model when 
it was assumed that the stable region does not change during the extraction time. A 
plot of expression (4.38) is shown in Figure 4.4. When K » 1, R» K and K can be 
neglected in the denominator of (4.38). From (4.32), (l+ln(R))/R = 1/K and for 
K» 1, the asymptotic value of the spill density in the tail becomes,

Asymptotic value: (4.39)

Figure 4.4 Shape of the tail profile Ptail(O for δQ = 3 10-3 and Q = -9 10-9

Spill length
The end of the spill (and also the spill length) can be evaluated by noticing that 

the separatrix BC, in its movement, overtakes some particles with values of A 
sufficiently close to unity that their velocity is slower than the velocity of the separatrix 
itself. Those particles will then be extracted along the following separatrix. The effect 
is that some particle near B will disappear to reappear near O'. The spill therefore ends
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which, when substituted into (4.36), gives

(4.38)
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with the particle whose velocity is equal to the velocity of the separatrix. The Y co­
ordinate of this particle is given by

(4.40)

Neglecting the term in X and X2 with respect to the right-hand side, and substituting 
Y = -2√3Ah , yields

whose solutions are

(4.41)

(4.42)

The solution of interest is the one close to the stable point B, so that

(4.43)

Note that 1-AL » λ. This justifies the omission of λ in equations (4.35) and (4.40). 
The spill will thus end at 

where the term in λ in the last fraction has been neglected as in (4.31). Expressing this 
time in units of t0 = Tcorner dynamic(δQ, Q), yields
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Where all the addenda have been considered negligible with respect to ln|ε2/ε . Hence 

this complicated derivation converges to a beautifully simple result,

Spill end: (4.44)

Thus, the first particle reaches the electrostatic septum at the last particle arrives at 
2t0, and the spill length is

Width of the initial spike.
It is now possible to evaluate the time needed for the last particle to be 

overtaken by the separatrix. Consider the velocity of the particle along the side of the 
stable triangle and add the velocity of the separatrix as in (4.18) and re-write using λ
and A: 

which yields,

(4.45)

The integration of (4.45) gives the time for the separatrix to overtake the last particle,

As Ai approaches AL, T goes to infinity as expected, since this is the time needed for 
the separatrix to reach a particle, which moves with the same velocity. It is therefore 
necessary to consider Ai = AF + 2λ,√3, that is one step of the separatrix away from

Al. Then,

(4.47)

which may be a large fraction of t0 for small ε. However, for the sake of simplicity, and 
considering that most of the particles are near the stable points and thus will be 

PIMMS January 1999



68

overcome in a few turns, this delay will be neglected and all the particles starting near 
B will be considered as if they were starting near O'.

Population of the spike and the tail of the elementary ‘strip’
The evaluation of the fraction of the beam contained in Pspike and Ptail can be 

done in a straightforward way by integrating the density p(A). It is easier to integrate 
Ptail between the hand-over point at A = 0.1 and the point at which the last particle 
escapes the advancing separatrix, A = AL, as in this range λ can be neglected in the 
density. This results in,

Fraction in tail: (4.48)

It is reasonable to neglect ln(27√3 s) and ln(3) with respect to ln(λ), which yields the 
very simple result that 1/2 of the spill is in and thus 1/2 in the initial spike.

This result is of consequence for the response to ripple and the efficiency of 
feedback systems. For perturbations up to frequencies corresponding to the width of 
the initial spike (of the order of 100 kHz for revolution periods of the order of 1 μs), 
half of the beam behaves coherently with a definite delay while the other half is 
extended over a period that will cause overlap with ripple frequencies as low as 1 kHz.

4.4.2 Time profile of a ‘band’
Up to now, only the microscopic behaviour of an elementary strip of particles 

that are marooned just outside the stable triangle has been considered. In general, the 
spill will contain a continuous range of momenta with different emittance triangles all 
contributing elementary strips into the spill. The continuous range of strips entering 
the resonance will be called a ‘band’. A schematic view of this situation is shown in 
Figure 4.5 with an arbitrarily shaped beam.

Figure 4.5 Elementary strips forming a ‘band’ in the Steinbach diagram

Here the word ‘band’ is used to indicate the series of strips corresponding to different momentum 
and amplitude that become unstable simultaneously.
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The total time profile of the spill arising from a band is obtained by summing 
the contributions of all the different elementary strips.

(4.49)

This is shown in a schematic way in Figure 4.6.

Figure 4.6 Summing strip spills to form a band spill

The evaluation of I(t), can be greatly simplified when the total extraction time 
is much longer than the duration of a strip. In this case, all the terms Pstrip,i(t) are 
contributing to the total extracted current equally. The sum of all these terms is then 
given by the integral over one of them, which is simply the number of particles that 
become unstable as a function of time NT(t). This means that:

• If the extraction is performed in amplitude the time profile is the amplitude distribution,

• If the extraction is performed in momentum the time profile is the momentum 
distribution,

• Combinations of amplitude and momentum yield the combined distribution.

This is, of course, intuitively obvious for perfectly smooth spills. It will 
become clear later that the strip and band analyses are useful for understanding the 
response to ripple, but first the spill profile will be analysed for a band in the extraction 
method that moves the beam in momentum into a fixed resonance (i.e. ‘Momentum 
selection by moving the beam’ see Section 3.2.3).

Elementary ‘band’ for a wide momentum spread
Consider the momentum selection case, in which the beam is wide in tune so 

that a quasi stationary situation develops in which all betatron amplitudes become 
unstable simultaneously. In Figure 4.7, an amplitude-momentum selection extraction is 
shown and the elementary band of beam that becomes unstable in one step is 
highlighted.

PIMMS January 1999



Figure 4.7 A band of particles that becomes unstable in one step 
(Amplitude-momentum selection extraction)

A hollow beam is considered in order to set a minimum ε, which can be 
considered large with respect to its variation in the transit time. If the number of 
particles which would normally be in the hole is small, then a good representation for 
the beam with no hole will be found. This approximation is not so restricting since 
firstly the radial particle density across a beam rises from zero at the centre and 
secondly particles with a sufficiently small amplitude will cross the resonance without 
being extracted. Let the band that is extracted contain particles with tune shifts 
between 6(δQmin and δQmax. The time profile of this band, is given by considering the 

time profile (4.26) for each ε value between εF= 6πδQmin and ε0 = 6πδQmax and 
summing at each instant all these contributions, as shown in Figure 4.8

Figure 4.8 The total flux of particles is obtained summing the ‘strip profiles’ for all the 
amplitudes present

where NB is the total number of particles in the band and is the number of
particles marooned with detuning between ε and ε + dε.
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Band Profile:
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Simplified model
The exact integral (4.50) is too complicated to be evaluated analytically. So, to 

facilitate the task, each Pstrip(f) is approximated by one delta function plus a rectangle 
representing Pspike and Ptail respectively. The width of the rectangles, as mentioned in 
a previous section, is equal to the time needed for the first particle to reach the 
electrostatic septum, that is Tcorner dynamic, and hence the height is l/Fcorner, dynamic- 

Not all the elementary strips, Pstrip(^ ε), are contributing at a given instant. Most of 
them are zero, either because they have not started, or because they have already 
finished. At time T, only the ε, for which T/2 < Tcorner dynamic(ε) < T give a non-zero 
contribution. Thus the part of the integral for Ptail, becomes

(4.51)

To be correct the integration limits should be max(ε(T), εl), which corresponds to 
min(T, TL), and min(ε(T/2), ε0), which corresponds to max(772, To). After a change 
of the integration variable,

(4.52)

It is necessary to invert the expression for Tcorner, dynamic (4.17) to find s(77,

(4.17)

To simplify the calculation, it is assumed that the electrostatic septum is far away so 
that n » 1 and n/(«+3) « 1. After neglecting X and re-arranging into the form 
V = ln([/)/L7, the relation becomes,

(4.53)

A simple fit to the inversion, valid to within 10% in the range 4 < U < 30 000, is

(4.54)
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Note that U = 10 corresponds to £/£2 ~510-2 and values of U smaller than this 
should be avoided to stay within the validity limits of the transit time formulae 
(e/e2 measures the relative variation of the stable region during the transit time). Thus

(4.55)

from which

(4.56)

It is now necessary to estimate AT(ε)dε. This is the number of particles that are in the

border of thickness d/z of a triangle of surface 33/z = 3V3-----. This border1^3 5 J

corresponds to the circular corona of width d/? around a circle of the same surface nR2 
in the initial beam. Thus,

(4.57)

where 7VB is the total number of particles in the band. Two beam distributions 
(uniform and gaussian) will now be analysed using the simplified model described 
above.

Uniform distribution in phase space
In the first example, a uniform, phase-space distribution in the initial beam, of

352
value pQ = 1/Triangle Area = ——y is assumed and this yields for the integration of 

4√3ε20
the tails from all the differential strips in the band,
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Fortunately, this integral can be evaluated using standard forms*  

and finally, for times 2T0 <t <TL in the middle of the spill

(4.58)

To correctly evaluate the initial and the final part of the band spill, the correct 
integration limits have to be considered. In fact, for times t < Tq, no particle has 
reached the septum and /’band, tai/ = 0. F°r times Tq < T < 27q, the integral has to be 
performed between T and To (there are no particles with £ = 8(772)). For the same 
reason, for times TL < T < 2TL, the integral has to be performed between and T/2. 
Finally, for times greater than 2TL, Pband tail = 0 again.

The contribution from the initial spikes of the strips in the band, gives,

(4.59)

The graph of the spill shape for a particular case is drawn in Figure 4.9. This curve has 
a characteristic ‘shoulder’ that can be seen in measurements of spikes in slow extracted 
spills.
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Figure 4.9 Spill profile for a ‘band’ from a uniformly distributed beam 
[δmax = 3xl0'3’ 52min = 3xl0'4’ Q = -9xl0'9, S = 15.33 m‘1/2, Ex = 10 tc mm mrad]

Gaussian distribution in phase space
In the second example, the frequently-used gaussian distribution in phase space 

is used, rather than the uniform distribution as assumed in the earlier example.

(4.60)

where Ex is the horizontal RMS emittance. Assuming that the area of the largest stable 
triangle (i.e. the acceptance imposed by the separatrices) corresponds to an emittance 
of the beam of n-o, the one-o emittance is given by,

The resulting integral of (4.61)

PIMMS January 1999

and (4.60) becomes,

(4.61)
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(4.62)

has to be integrated numerically (see Figure 4.10).

Figure 4.10 Spill profile for a ‘band’ from a gaussian beam

If the gaussian and the uniform cases are plotted on the same graph, the 
comparison in Figure 4.11 is obtained, which shows that the width is not very different.

Figure 4.11 Band profiles for gaussian and uniform beams
[The 2σ emittance of the gaussian beam is set equal to that of the uniform beam]
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From the plot above, it appears that the width of the ‘band profile’ is of the 
order of T0. Thus, it can be expected that when the ripple period is of the order of To, 
the width of the profile partially fills the time interval during which no beam enters the 
resonance and smoothes the modulation of the extracted beam. This is an 
approximation that neglects the instantaneous variation of Q and uses an average 

value (Q = Qo + w δQr cos(wt) « Q0). This is reasonable because Q appears in the 
expression for the transit time inside a logarithm. The relative insensitivity of the 
logarithm is illustrated in Figure 4.12 where the time profiles are compared for a 
variation in Q of 2 orders of magnitude.

Figure 4.12 Time profiles for gaussian and uniform beams for different values of Q

4.5 TUNE RIPPLE
The time profiles for the spills from elementary strips and bands provide the 

keys to understanding:

• How well feedback systems on the spill will work.

• The relative sensitivity of the different extraction methods to tune ripple.

• How to simulate the spill under specific conditions.

4.5.1 Comparison of the extraction methods
For simplicity and clarity, the three main extraction methods with diametrically 

opposed characteristics will be considered:

Amplitude selection by moving the resonance: the beam is narrow in momentum and 
the betatron tune of the particles is changed by varying a quadrupole. The separatrix 
cuts through the beam from large to small amplitudes, see Figure 4.13(a).

RF knock-out: the chromaticity is zero (or near-zero), so that all particles have the 
same betatron tune. The particles are made unstable by blowing up the beam with 
transverse rf excitation. Thus, the resonance is reached in amplitude, see Figure 
4.13(b).

Amplitude-momentum selection by moving the beam the beam is wide in momentum 
and the tune is changed via the chromaticity when accelerating the particles into the 
resonance (e.g. by a betatron core), see Figure 4.13(c).
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Building block for spill = ‘band’
Leading peak = 1kHz

Building block for spill = ‘strip’ 
Spike = 100 kHz

Figure 4.13 Comparison of the main extraction methods: 
(a) Moving resonance, (Z>) Increasing particle amplitude, (c) Moving beam,

In the amplitude-selection case (a), the movement of the resonance maroons 
the particles with large betatron amplitudes first. Since the momentum spread is small, 
the basic element of spill marooned in the elementary extraction process (one 
movement of the resonance) is simply the ‘strip’ profile. So the ‘building block’ of this 
particular spill starts with a very narrow peak containing half of the particles involved. 
Moreover in the initial phase the transit time is very short (betatron amplitude large), 
the tails are equally short and sensitivity to the ripples is high. At the end of the spill, 
the transit times are longer (betatron amplitudes small), the particles in the tail are 
distributed over a longer period and ripple sensitivity reduces.

In the RF-knockout case (b), the blow-up velocity is fixed by the spill length. 
A ripple on the resonance excitation moves the resonance line up and down. As the 
particles enter the resonance at high amplitudes, and thus large tune distances, the 
transit time is short and the sensitivity to ripples is high. The situation is rather similar 
to the amplitude-selection case above, except that the sensitivity to ripple remains at a 
maximum throughout the spill because the extraction takes places constantly at 
maximum amplitude.

In the amplitude-momentum selection case (c), particles with all possible 
amplitudes become unstable at the same time. Thus the ‘building block’ of this 
particular spill is the ‘band’. This leads to an enlarged leading peak, which tends to 
smooth ripple by filling the time intervals during which no beam enters the resonance in 
a much more efficient way.
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4.5.2 Reducing the effect of ripple
This subject will be discussed later in more detail, but some comments can be 

made on the basis of the present knowledge:

• The amplitude-momentum selection case has the lowest intrinsic sensitivity to ripple

• Large betatron amplitudes means short transit times. This can be seen as a positive 
feature for a feedback system, but as a negative feature for the sensitivity to ripple. The 
present tendency is to use the beam feedback only for low frequencies (<1 kHz) and for 
the general spill shape. Other methods will be proposed to smooth ripple. Thus, small 
emittance beams appear preferable, which favours single-turn injection schemes over 
multi-turn injection schemes.

• A narrow resonance width (strength) means longer transit times and less sensitivity to 
ripple.

4.5.3 Spill simulations with ripple
To verify the analysis in the previous sections, numerical simulations have been 

made of the extraction processes with amplitude selection and with amplitude­
momentum selection. The relevant numerical values are summarised in Table 4.2.

Values for numerical simulations

Horizontal RMS emittance, Ex 
Normalised sextupole strength, S 
Revolution time
Max. detuning from resonance, δQmax

Min. detuning from resonance, δQmin
εmax
εmin
For transit time formulae to be valid

Table 4.2 Values for numerical simulations

For the amplitude-momentum extraction, only a small slice of the beam of 
width Agbeam = 3xl0'4, as illustrated in Figure 4.14, is considered. The number of 

AO, 
revolutions needed to bring all the particles into the resonance is 3---- = 10626. A

Q
particle starting with the smallest amplitude that is considered has 6(? = 3xl0'4 and 
with the above set of parameters needs 1400 turns to reach the electrostatic septum. A 
maximum amplitude particle, starting with 8Q = 3xlO'3, needs only 260 turns. This 
large range of transit times is a feature that gives smoothing of the ripple.
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Figure 4.14 Initial beam distribution for amplitude-momentum selection simulations 
(not to scale)

A ripple frequency of 2 kHz has been considered. This is comparable to the 
longer transit times in the beam. The amplitude of a ripple has been adjusted to give 
100% modulation.

Case 1 Amplitude-selection with a mono-energetic beam
In this case, only large amplitude particles, which have short transit times, are 

involved in the extraction simulation and only the first turns of the extraction are 
simulated. The modulation of the spill is 100%, as foreseen by the instantaneous 
transfer approximation. Figure 4.15 shows a beam without tune ripple and Figure 4.16 
with ripple.

Figure 4.15 Spill for a mono-energetic beam without tune ripple
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Figure 4.16 Spill for a mono-energetic beam with 2 kHz tune ripple

Case 2 Amplitude-momentum selection with a uniform beam distribution in phase 
space

In this simulation, the simultaneous extraction of all the amplitudes (band 
profile) smoothes the modulation in the extracted spill.

Figure 4.17 Spill for uniform distribution in phase space without ripple
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Figure 4.18 Spill for uniform distribution in phase space with 2 kHz ripple

Case 3 Amplitude-momentum selection with a gaussian beam distribution in phase 
space

The gaussian ‘band’ profile is slightly wider and less peaked than the uniform 
one. The result is that the modulation is less pronounced.

Figure 4.19 Spill for gaussian distribution in phase space without ripple
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Figure 4.20 Spill for gaussian distribution in phase space with 2 kHz ripple

4.6 EMITTANCE OF THE EXTRACTED BEAM

4.6.1 A simple approach
The conservation of phase space (Liouville’s Theorem) affords a simple and 

quick method for estimating and understanding the emittance of the extracted beam. 
In a linear machine, the (x, x’), (z, z’) and (∆p/p ,t) phase spaces are uncoupled and 
independently conserved, but the presence of a sextupole introduces two couplings:

(A) Firstly, between (x, x 0 and (∆p/p, t)
(B) Secondly, between (x, x 0 and (z, z

(A) is an essential part of the mechanism of extraction and arises from the time 
variation of the positions of the separatrices, which ‘cut’ the phase space and ‘peel’ off 
the particles from the waiting beam. As mentioned in Section 3.1, the amplitude 
distribution (x, xO is converted into a momentum distribution (Ap/p).

(B) is an effect that couples the emittances of the two transverse planes. It can 
be minimised by making the vertical excursions of the particles small compared to the 
horizontal ones in the resonance and chromaticity sextupoles(pz«px). The effect is 
due to the high-order and cross terms in the magnetic fields (see equation (2.6).

To evaluate the emittance consider a coasting beam with a relative momentum 
spread of say Ap/p = 0.005 and let this beam be driven into the resonance over say 
500 ms. Assume that the Hardt Condition is arranged so as to give a bp/p for the 
extracted beam of 0.001. This determines the slope of the resonance line. Over the 
time of the extraction the separatrix acts like a knife shaving off the beam and the 
phase space. The transverse phase space and the longitudinal phase space (Ap/p, 0 are 
jointly conserved as a phase-space volume. For the transverse plane, one can either 
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neglect the coupling to the vertical plane, or consider the full volume (x, x', z, z\ By 
virtue of the phase space conservation, the effect of the extraction can be seen by 
equating the phase-space volumes before and after the extraction and then looking how 
the horizontal emittance in particular was affected. This illustrated schematically in 
Figure 4.21 and expressed quantitatively in (4.63).

Momentum spread in spill Time

Figure 4.21 Schematic view of the phase-space volumes during extraction

(4.63)

To give a quantitative impression, some orders of magnitude would be, 
F^x,beam = IOtixIO-6 [mrad], (Ap/p)beam = 0.005, Trev = 0.5 x 106[s], (8p/p)Spin = 0.001, 
TsPiii = 500x10 3s, so that Ex.spiii = 50x10 [m rad]. Thus, the long spill time 
compared to the short revolution time is balanced by the small transverse emittance of 
the spill compared to the much larger emittance of the ‘waiting’ beam. When dealing 
with small numbers of particles in irregularly shaped regions of phase space as occur in 
the spill, the statistical expression for the emittance, given below, is perhaps more 
meaningful, but the above can still be used as a guide to the extracted emittance.

(4.64)

Thus, the extracted emittance in the plane of the resonance will be extremely 
small. In fact, under ideal conditions (no noise and low coupling), it will be near zero.
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4.6.2 The maximum emittance that can be extracted
As an illustrative exercise, it is interesting to calculate the maximum emittance 

that can be extracted. This is done by considering the rather impractical case of a 
mono-energetic beam that is exactly on the resonance tune and is suddenly subjected to 
the full sextupole field. The beam then finds itself instantaneously sitting on phase­
space trajectories that leave the aperture as shown below. The stable triangle referred 
to earlier has collapsed infinitely quickly and left all the particles ‘marooned’ and 
unstable (see Figure 4.22).

Figure 4.22 Hypothetical beam sitting exactly on resonance

The phase space trajectories are given by the Kobayashi Hamiltonian (2.27),

(2.27)

Since it was assumed that the whole beam is exactly on resonance s = 0. On the 
limiting phase-space trajectories, the Hamiltonian can be evaluated at the points A and 
B as the beam leaves the aperture.

(4.65)

After the substitution of (4.65) into (2.27) the diagram in Figure 4.22 is rotated by 90°, 
for convenience and X becomes X' and X’ becomes X. One third of the beam leaves 
along each separatrix (see Figure 4.23).

(4.66)

The transverse emittance in the spill is found by integrating between Xo and Xq+XR 
(the aperture of the electrostatic septum). Once the beam is as far out as the 
electrostatic septum X'«X and the X^ term can be neglected. Thus,
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Figure 4.23 Hypothetical beam exactly on resonance being extracted exactly on resonance

(4.67)

Now express this area as a fraction of the initial emittance, (πAo2) and make the 
approximation (l+∆R/Xo)'1 = (1-∆R/X0), to get

Max. fraction of Ex that can be extracted (4.68)

Assuming the approximate dimensions for the spiral step (10 mm) and the position of 
the electrostatic septum (35 mm) given in Figure 3.19, then ∆ is 0.01/√B [m1/2] and 
Xo will be 0.035/√B [ml/2] or very close to these values. If Ao is also chosen as 0.01/√B 
[m1/2] then the absolutely maximum emittance that can be extracted under these 
conditions is just 1.7% of the original beam. Thus, it appears that whatever is done 
there will be a strong asymmetry in the beam emittances.

References
[1] M. Pullia, Transit time for third order resonance extraction, CERN/PS 96-36 (DI).
[2] M. Pullia, Time profile of the slowly extracted beam, CERN/PS 97-50 (DI).
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I-5 RIPPLE
There are at least two established conventions for quantitatively expressing the 

quality of a spill. The CERN convention uses a parameter of merit called the Duty 
Factor, which has the advantage of being analytic in form, but its name is an 
unfortunate accident of history and it should not be confused with the more widely 
used ‘Duty Factor’ and ‘Duty Cycle’ that describe the ratio of the ‘on’ to the ‘off time 
for linacs, etc. In addition, it does not give a very intuitive picture of the spill quality. 
The second convention is the GSI convention that is linked directly to the needs of an 
active scanning system and has the advantage that it gives a clearer picture of the 
quality. A third model is also used here that quotes equivalent sinusoidal modulation.

5.1 CONVENTIONS

5.1.2 Duty Factor, F
The irregularities of the spill are often quantified by a Duty Factor, F,

where $ = dA/dr, the particle flux in the spill (see Figure 5.1). In cases where it is 
more suitable to think of a continuous flux, (|) will be used and (5.1) will be expressed 
in integral form. In cases where the granular nature of the beam is more evident, dA/dr 
will be used and (5.1) will be expressed in differential form.

Figure 5.1 Particle spill

5.1.2 Spill Quality, Q
An alternative figure of merit used for a spill is the spill quality, Q, defined as

(5.2)

where ϕ and ϕ are peak and average values of the spill rate respectively.
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5.1.3 Sinusoidal modulation of a spill
Unfortunately, the image conjured up by a certain duty factor of say 0.97 is not 

very clear, so to get some idea of what this means, consider a sinusoidal modulation of 
the spill,

(5.3)

where ϕo is the unmodulated level of the spill and ϕr is the modulation amplitude. The 
duty factor in integral form is then,

Duty Factor, (5.4)

The evaluation of (5.4) for a range of sinusoidal modulations is tabulated in Table 5.1 
to give some impression of the meaning of the duty factor. Although the duty factor 
does not easily invoke a mental picture of the spill quality it does have the advantage of 
being able to describe distributions in an analytical way.

Table 5.1 Duty factors for a sinusoidal modulated signal

Duty Factors for a sinusoidally modulated signal

ϕr/ϕ0 100% 80% 50% 20% 10% 5% 1%

F 0.67 0.76 0.89 0.98 0.995 0.999 0.99995

5.2 OVER-MODULATION OF A SPILL
If the modulation of the spill is greater than 100%, the spill will be intermittent, 

or ‘chopped’ and, in the extreme, it will become a series of spikes. Whatever the 
modulation level, the average number of particles leaving the resonance per cycle will 
remain the same, but the integral over the square of the spill intensity will change 
dramatically. Let the form of the spill be described by,

(5.3)

as before, except that now ϕr > ϕo. The ripple will clear a space between the beam and 
the resonance and the spill will only be active during the peaks of the oscillations (see 
Figure 5.2). The average flux rate in the spill will still be ϕ0, but it will be concentrated 
in the spikes.
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The integrals needed for the duty factor are

(5.6)

where the integration limit, t, is found by equating the beam extracted in the peaks 
during one cycle (see Figure 5.2) to the beam extracted in a smooth spill. This leads to 
the relation,

The integration of equations (5.6) (a) and (b) is straightforward. Equation (5.6)(a) 
reduces to ϕ02 as expected and the duty factor becomes

(5.7)

where wt is defined above and has to be calculated numerically. This has been done 
for a range of over-modulation (ϕr/ϕo) from unity to ten and the results from (5.7) and 
the time for which the beam is switched off by the modulation are presented in Table 
5.2. The last entry in Table 5.2 corresponds to a modulation amplitude ϕr that is ten 
times the constant level ϕo and the beam is cut off for -80% of the ripple cycle. If the 
spike were to be approximated by a triangular shape, then the average width would be 
10% of the ripple period for a height of 10 times the de level, which agrees well with 
the more detailed calculation. In practice, the situation of over-modulation is more 
likely to occur at kHz frequencies.

PIMMS January 1999
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* where ∆t/Tp is the fraction of the ripple period for which the beam is switched off by the over-modulation.

Duty Factors for a sinusoidally, over-modulated signal

100% 200% 300% 400% 500% 700% 1000%

wT π 0.396π 0.275π 0.212π 0.174π 0.128π 0.092π
F 0.667 0.386 0.272 0.212 0.173 0.128 0.092
∆t/Tp* 0.0 0.208 0.450 0.576 0.652 0.744 0.816

Table 5.2 Duty factors for a sinusoidally, over-modulated signal

5.3 POISSON STATISTICS IN A SPILL
Even if all elements in the extraction system were perfect, there would still be 

natural fluctuations arising from the randomness of the particle distribution in the 
‘waiting beam’. Once all artificial effects have been removed, these fluctuations would 
obey Poisson statistics (see Appendix IA) and would determine the ultimate quality of 
a spill. A Poisson distribution has the very special characteristic that the mean of the 
distribution, N , equals the square of the standard deviation of the distribution, σ,

(5.8)

The duty factor can now be re-expressed for the special situation of a Poisson spill as,

(5.9)

The Poisson nature of a spill will only become apparent under two rather extreme 
conditions; firstly, for very low intensity spills and, secondly, when sampling a spill at 
very high frequencies. To give some quantitative idea of the above, the duty factor is 
evaluated using (5.9) in Table 5.3 for different expectations of the number of particles 
per measurement bin and, for comparison, the sinusoidal modulation amplitude that 
gives the same duty factor is also included.

Table 5.3 Duty factors for Poisson and sinusoidally modulated spills

Duty Factors for Poisson and sinusoidally modulated spills

Particles per bin 1 2 3 4 10 20 100 250
Duty factor, F 0.5 0.67 0.75 0.80 0.91 0.95 0.99 0.996

Equiv. mod.ϕϕ - 100% 82% 35% 44% 32% 14% 9%
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The spill shown in Figure 5.3 was recorded at GSI, Darmstadt. The spill is 
measured in 30 ps bins and the expected average spill rate was 15 particles per bin. 
From the above, the best possible spill quality would be F = 0.9375, which is 
equivalent to an amplitude modulation of only 36.5%. Clearly, the modulation is in 
excess of this estimate, so there is more than Poisson statistics at work in this spill. 
The spike structure indicates that there is strong over modulation in the kHz frequency 
range.

Open Loop Extraction ( 30 us / Channel)

5.4 DUTY FACTOR AND FREQUENCY
Since all beam spills contain discrete particles, it is possible (in theory at least) 

to sample the beam at such a high frequency that the Poisson statistics become 
apparent. The duty factor will then deteriorate steadily as the frequency rises. This, 
however, is more of academic interest. In practice, frequencies in the spill above the 
sampling frequency (10 kHz) become increasingly unimportant. This statement is 
based on two approximate calculations:

• For voxel scanning the nominal time to fill a voxel is 5 ms, which would be 50 bins at a 
sampling frequency of 10 kHz. An error of one bin then corresponds to the nominal ±2% 
specification for precision in dose uniformity.

• For raster scanning, the finite spot size and scanning speed of the spot combine such that any 
point will ‘see’ the beam for a nominal 5 ms. As before, this corresponds to 50 bins at a 
sampling frequency of 10 kHz.

Thus, it is more correct to define the duty factor for frequencies up to a certain 
maximum frequency, or for measurement bins down to a minimum time lapse. The 
specification and performance of the medical machine will be treated in this way.

PIMMS January 1999

Figure 5.3 Slow extracted spill (Courtesy of GSI Darmstadt)



92

5.5 EFFECT OF TUNE RIPPLE AT LOW FREQUENCIES
A simple analysis of the effects of ripple at low frequencies can be made by 

assuming that the particle flux that enters the resonance from the ‘waiting’ beam 
appears instantaneously in the observed spill. This is a fair approximation when the 
transit times in the resonance are small compared to the ripple frequency. 
Unfortunately the transit times depend upon the circumference of the machine, the 
strength of the resonance, the emittance and so on. For a small medical synchrotron, 
the transit times typically vary from 100 turns up to 4000 turns. There will always be a 
few particles outside this range, since particles can, in theory, take as little as a few 
tens of turns right up to an ‘infinite’ number of turns to leave the machine, but the 
range 100 to 4000 will include the majority of the beam. Now for ease of 
computation, assume that most particles leave the machine within 2000 turns. For a 
revolution time of 0.5 ps, this represents a generous delay of 1 ms. Thus, for 50 Hz, 
100 Hz and 300 Hz ripples (common in power converters), it is reasonable to say that 
extraction is instantaneous. With this simplified picture in mind, consider the 
schematic model shown below in Figure 5.4, in which the ‘waiting’ beam is being 
consumed by a resonance. Whether the relative motion between the beam and the 
resonance is due to one partner, or both, is unimportant for the moment.

Figure 5.4 Simple model for ripple

The relative motion between the beam and resonance will comprise a constant 
velocity, (d(?/dr)= Qq plus a ripple term that may come from either the position of 

the beam via the main dipole field or from the resonance via the tuning quadrupoles. 
Let the ripple have the form,

The flux of particles entering the resonance will be,

where X is the line density in the ‘waiting’ beam. The duty factor will be,
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Duty Factor for power 
converter ripple in the low- 
frequency regime (<1 kHz)

(5.12)

The above assumes that Qq > • In fact, the contrary can and very often, will

exist. Once Qo < ωδδ , the resonance plunges periodically into the beam chopping the 
spill into a series of spikes. The critical ripple for this ‘chopped’ spill is given by,

(5.13)

Equation (5.13) shows how delicately the resonance has to be handled. For example, 
the following parameters would be typical for a small machine,

Qres = 1.666 and Tspill = 1 s.
Thus the tune shift to ‘consume’ the beam; ∆Q = 0.01
And, the average tune speed, Qo = 0.01s-1.
Relation of tune ripple to current ripple, ∆Q/Q = ∆I/I.

The relation (5.13) then shows that the spill will be 100% ‘chopped’ at 100 Hz for a 
tune ripple of approximately 10-5. This translates directly into the current ripple in the 
quadrupoles*,  which represents a tight specification.

The critical values of the ripple at which the spill changes from being 100% 
modulated (F = 0.67) to being separate spikes are given in Table 5.4 for frequencies up 
to 1 kHz. The striking feature is the extremely low values of ripple that are required to 
stop the spill from being ‘chopped’. The levels of ripple needed to ensure a reasonable 
duty factor (say better than 0.98 i.e. 20% modulation) would have to be 5 times lower 
still. This level of stability is not easily, or cheaply, achieved and clearly some form of 
protection other than the ripple filter of the converter itself is needed, if the spill is not 
to be chopped at frequencies above 100 Hz.

Table 5.4 Conditions for 100% modulation of the spill at low frequencies

Conditions for 100% modulation of the spill at low frequencies

Frequency [Hz] (80/0res)critical =AZ//

50 2 x IO'5

100 10'5
300 3.2 x 10’6
1000 9.6 x 10-7

For the PIMMS design t±Q/Q = 1.3 A///.
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5.6 . EFFECT OF TUNE RIPPLE AT MEDIUM FREQUENCIES
As the stable triangle for a certain momentum slowly collapses, it maroons a 

narrow strip of particles in phase space outside the stable region after each turn. The 
line density of the particles in this strip will depend upon the position with respect to 
the three stable fixed points. In the region of the fixed points, the particle velocities 
are low and consequently the particle densities are high. The net result is;

• About 50% of the particles in the elementary strip leave from near a stable fixed point and will be 
the first to emerge in the spill in the form of a narrow spike.

• The remaining particles are spread, more or less evenly over the rest of the spill time. As a rule 
of thumb, the spill lasts as long again, as it took for the first particles to emerge.

In general, there will be a range of momenta with different oscillation 
amplitudes contributing to the spill, Thus at any given instant the spill will contain 
many elementary strip spills of the type described above. Large amplitude particles are 
quicker to emerge than small amplitude particles. The net result is that

• A spill will contain concentrations of ‘bands’ of elementary ‘strip’ spills.

The analysis of ‘strip’ and ‘band’ spills that form the basis of the simple model 
described above is given in Chapter 4.

Consider first an elementary strip spill as illustrated in Figure 5.5. For a small 
machine, the revolution time is in the range 0.5-1.0 ps and the number of turns before 
the particles appear (and also the length of the spill) is typically 1000-2000 turns, i.e 
0.5-2 ms. Thus frequencies of typically 1 kHz and above will be affected by the 
transfer function of the resonance and the plateaux in the elementary spills will overlap, 
but because the leading peaks are narrow (~10 turns) they remain separate. For the 
leading peaks to overlap and smooth out, the frequency must be above 100 kHz.

Figure 5.5 An elementary ‘strip’ spill
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The separation of an elementary spill into a narrow spike and a plateau can be 
incorporated into the simple ripple theory given in the last Section. The particles 
entering the resonance are, as before, equal to the line density multiplied by the relative 
velocity between the beam and the resonance.

Particles in; From (5.11)

Resonance delays all particles and then ejects 
50% in a slow spill and 50% in a spike

The combination of these two terms can be used to evaluate the overall duty factor as,

Duty Factor for power 
converter ripple in the 
medium-frequency regime 
(1-100 kHz)

(5.14)

The extra factor of two compared to the low-frequency formula (5.12) is very 
welcome, but of limited help. In fact, it only enters in the amplitude of the ripple as the 
square root of 2. Overall, the situation is worse than for the low-frequency regime for 
the same Qo, since the increase in co is squared. The critical value of the ripple at 
which the spill changes from being modulated (F = 0.67) to being chopped is in Table 
5.5 for frequencies between 1 and 100 kHz.

Table 5.5 Conditions for 100% modulation of the spill at medium frequencies 
[For d0o/dr = 0.01, gres = 1.666]

Conditions for 100% modulation of the spill at medium frequencies

Frequency [kHz] (8£/<2res)critical =AZ/Z

1 6.8 x W7

10 6.8 x 10-8

100 6.8 x 10‘9
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5.7 . EFFECT OF TUNE RIPPLE AT HIGH AND ULTRA-HIGH
FREQUENCIES
Above 100 kHz the widths of the leading peaks of the elementary spills will 

also begin to overlap, which will finally smooth the ripple effects, but at 1 MHz and 
above the sampling rate becomes high enough to see the influence of Poisson statistics.

For therapy with carbon ions the lowest spill rate would be of the order of 
5 x 106 particle/s. At a 1 MHz sampling rate the expected ‘granularity’ of the beam (5 
particle/bin) would cause a minimum duty factor of 0.833, which would be equivalent 
to a sinusoidal spill modulation of 63%.

A reasonable sampling frequency for hadrontherapy is 10 kHz, which means 
that ‘high frequencies’, as defined here would be invisible to the measuring system. 
Even if the sampling frequency were to be increased, to alleviate problems due to the 
saturation of counters for example, some fluctuation might then be visible in the 
measurements but the relatively long integration times for the dose would make these 
fluctuations unimportant.

5.8 SUMMARY OF THE RIPPLE REGIMES

Figure 5.6 Summary of the spill regimes
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Since many ripple frequencies will be present in the beam, there may also be 
enhancement of the lower frequencies by the higher ones. Since the average relative 
motion of the beam and resonance is unchanged by ripple, the average spill rate will be 
unchanged, so the combination of a high-frequency ripple with a lower one will chop 
the low-frequency modulated spill into bursts of taller spikes. This is illustrated 
qualitatively below.

5.9 DEFENCE AGAINST TUNE RIPPLE
Extremely good quality power converters are needed

Whether it is better to choose conventional or switch-mode units must be 
decided case by case. If the switch-mode frequency can be placed above 20kHz, then 
the preference is for switch mode, but this is not always a practical proposition and 
depends on the power to be delivered and whether a bipolar supply is needed. It is 
also necessary to install DACs with the highest number of bits possible (see Section 
5.10).

Increase of Qo
The next step would be to increase the velocity of the particles as they enter the 

resonance. This can be done in a number of ways and will be described in Chapter 6.

* DAC = Digital to Analogue Converter.
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This is effective at low frequencies, but for higher frequencies the increase in co will 
eventually outstrip the gain from the enhanced velocity.

The amplitude-momentum extraction technique
At medium frequencies, there is a distinct advantage in using the momentum­

amplitude selection technique for entering the resonance as described in Chapter 4. 
This technique is intrinsically smoother in the most difficult frequency range of a few 
kHz.

On-line scanning control
The beam delivery system with the on-line dosimetry system is the last defence 

against a poor quality spill. If it is unable to cope with the fluctuations, then the spill 
intensity has to be reduced and the treatment time extended. Conversely, if the spill 
quality is good, the beam intensity can be raised and the treatment time reduced.

5.10 RAMPING POWER CONVERTERS
Conventional power converters are controlled via a DAC and the setting 

precision is determined by the number of bits in the DAC (see Table 5.6). A 12-bit 
DAC is commonplace, the 16-bit DAC was developed during the 1970s at the ISR [1] 
and is now available commercially. At the present time, the 18-bit DAC is still more of 
a development device than a commercial reality.

Table 5.6 DAC precision

DAC precision

DAC
Precision

12-bit
1 in 4’096

16-bit
1 in 65’536

18-bit
1 in 262’144

To illustrate the potential problem posed by the DAC, consider that the 
resonance is being moved into the ‘waiting’ beam by a tune change driven by a series 
of tuning quadrupoles. Let the current range for the tuning quadrupoles be 50% of 
maximum and let the spill last 1 s for simplicity. The heights of the current steps and 
their frequencies are recorded in Table 5.7 for different DACs.

Table 5.7 DAC frequencies and steps

DAC frequencies and steps

DAC 12-bit 16-bit 18-bit

No. of bits sent for spill (50%)
Bit frequency [kHz]
Height of step A///In.,x

2’048 
2

2.5 x 10'4

32’768
33

1.5 x 10-5

131’072
131

4 x 10'6
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The bit frequency should be compared to the sampling frequency of the on-line 
dose measurement system (typically 10 kHz). Frequencies below the sampling 
frequency are highly dangerous. Frequencies of 4-5 times this frequency are probably 
irrelevant, but the effect of those 2-3 times this frequency depends on their amplitude. 
To give some idea of the importance of the amplitude of current steps, Table 5.8 has 
been constructed from Tables 5.4 and 5.5 and the ripple formulae derived in the earlier 
sections of this Chapter. Table 5.8 lists the ripple amplitudes that just cause 
‘chopping’ (100% modulation, i.e. F = 0.67) over a wide frequency range in an 
unprotected machine. This table is NOT a specification, it is only meant to give some 
feeling for the extreme sensitivity of the resonance to ripple.

* For dgo/dz = 0.01, gres = 1.666. For PIMMS, 80/0 = A/// within a factor 2
** The first figure uses the low-frequency formula (5.12) and the second uses the medium-frequency formula (5.14).

Conditions for a ‘chopped’ beam in an unprotected machine 
(F - 0.67 i.e. 100% modulation)

Frequency [Hz] (5g/0reS)critical *

50 2 x JO’5

100 10’5

300 3.2 x 10'6

1000 9.6 x 10'7

(6.8 x 10'7)**

10’000 6.8 x 10'8

100’000 6.8 x 10'9

• All stationary power converters should be ‘locked’ to prevent them from making single
DAC steps (due to noise or drift in control circuit) during the spill.

Table 5.8 Conditions for a ‘chopped’ beam in an unprotected machine

The relative step height (A///max) of a single DAC bit in Table 5.7 should be compared 
to the critical values in Table 5.8. The relation between \Q/Q and ∆∆I/I will vary from 
one magnet chain to the next, but is typically close to unity. In all cases, the steps will 
cause 100% chopping of the beam. However, once the frequency is well above 
10 kHz, whether the beam is chopped or not is unimportant. Thus, in the example 
chosen, a 16-bit DAC would be essential.

In the case of a dual species machine, the problem of the DAC is aggravated by 
the wide operational range needed to cover both protons and ions. For example, if in a 
proton-ion machine the ions at top energy require a current change of 100% then the 
lowest energy protons would only require 17%. The coarseness of the DAC then 
becomes very apparent and the DAC bit frequency may easily come down into the sub- 
kHz region.

The above considerations lead to the following recommendations:

• As few as possible power converters should be changing during the spill.

• Large inductive loads (e.g. a betatron core) are safer than light inductive loads (e.g. 
resonance quadrupoles).
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The problem of DAC steps is one of the key reasons why the amplitude­
momentum extraction technique using a betatron core to accelerate the beam has been 
chosen for PIMMS. This extraction technique makes it possible to maintain all ring 
power converters constant during the extraction, except for the betatron core. Since 
the betatron core is a single large inductance device it is possible to take extra care 
with this single power converter and with its DAC. By filtering the DAC output and 
applying a vector generator method that anticipates and smoothes out the DAC 
discontinuities, a factor of 100 can be achieved in the ripple [2].

5.11 DAMPING BY EDDY CURRENTS
The question arises as to how much of the current ripple actually appears as 

field ripple seen by the beam. This can be approached in the first instance in a very 
general way by postulating that the instantaneous derivative of a parameter is 
proportional to the separation from its equilibrium value and

(5.16)

where 1/t is a constant and t is better known as the time constant. If now the 
equilibrium value BQ is replaced by a time varying equilibrium value Bosin(cor), (5.16) 
becomes,

This is a standard form and can be integrated to give, 

where the integral is again a standard form*  giving,

(5.17)

For boundary conditions, set B = 0 at t = 0, then const. = and

Steady - state term Transitory term
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The second term in (5.17) is transitory and will be put to zero. The first term in (5.17) 
can then be written as,

Field with damping:

where the phase constant (p equals tan-1(ωt). Thus, the field will lag behind the 
sinusoidal current with a phase angle of tan‘(cot) and will be attenuated by the square 
root term in the denominator of (5.18), unless the time constants of the magnet and 
vacuum chamber are zero and then the attenuation and phase lag will also be zero.

The time constants of the magnets and vacuum chambers in the ring therefore 
have two conflicting requirements:

• Small time constants for low field distortion during ramping to the extraction energy.

• Large time constants to damp current ripple.

For the main ring magnets, the choice must lie with the field distortion during 
ramping, but for the betatron core the choice can be tuned for damping the ripple and, 
in particular, the damping of the frequencies introduced by the DAC steps.

Anticipating the results of the PIMMS design, a main dipole with its vacuum 
chamber will have a time constant of the order of 100 ps. Table 5.9 lists the 
attenuation factors to be expected with this time constant for ripple frequencies up to 
10 kHz. It can be seen that at low frequencies (<1 kHz) the attenuation is negligible, 
but between 1 and 10 kHz the attenuation factor increases steadily to a useful value of 
6.4 at the top frequency.

Table 5.9 Attenuation factors for ripple in the PIMMS dipole

Attenuation factors for ripple in the PIMMS dipole

Time constant [ps] 100 100 100 100

Ripple frequency [Hz] 500 1000 5’000 10’000

Attenuation factor 1.05 1.2 3.3 6.4

The main PIMMS quadrupole has a time constant closer to 50 ps and a very 
low field distortion during ramping. In this case, 3 mm thick laminations (rather than 
1.5 mm) would bring its time constant up to that of the dipole and gain some 
smoothing. However, 3 mm laminations are difficult to stamp and the eddy current 
calculation is approximate. Thus, it might be more reasonable (both for the 
quadrupole and dipole) to add an ‘eddy-current shield’ to the vacuum chamber. This 
could then be adjusted experimentally to give a field quality that is just sufficient for 
ramping, while giving maximum damping for ripple. In the case of the betatron core, it 
is probably better to adapt the lamination thickness since the field quality is not an 
issue.
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5.12 SPILL SPECIFICATION FOR VOXEL SCANNING

5.12.1 Basic strategy
In this section, a specimen specification for spill uniformity will be developed 

based on the voxel method of scanning [3]. In Chapter 11, similar specifications will 
be derived for the mini-voxel [4] and ‘true’ raster scanning techniques.

In all three methods the particle flux will be monitored as it enters the patient 
and the dose will be controlled from this measurement. This can be done with an 
ionisation chamber working at 10 kHz or higher. It is assumed that measurements are 
possible down to a few 104 particle/bin.

The overall uniformity (precision) of the treatment plan is requested to be 
±2.5%. This request will be interpreted in the strict sense as ±2.5% relative to the 
current dose rate and not ±2.5% of the maximum dose rate in the tumour. This will be 
implemented by:

• Tailoring the spill intensity and the dwell time for each voxel so that with nominal 
parameters the slightly better target precision of ±2% is obtained.

• A coarse variation of the spill intensity will be obtained by injecting more or less current 
in the machine. This will enable the average spill for a slice of the tumour to be 
matched to the average dose level for that slice.

• A finer adjustment will be obtained by varying the ramp rate of the betatron core.

• However, the ultimate adjustment must be made by the scanning system itself.

It will be clear from the following analysis that if the on-line measurement 
system demands a higher dose and the spill rate is left unchanged, then the relative 
precision improves, whereas, if the demand is for a lower dose the relative precision 
deteriorates. The aim will be to match the spill rate by the methods mentioned above 
to the prescribed dose closely enough that the margin of 0.5% between the 
specification and the target precision is not exceeded when the system calls for a lower 
dose. Within a given tumour the average dose levels required between distal and 
proximal slices may vary by a factor of 50 and, in practice, it may sometimes be 
difficult to reduce the spill intensity sufficiently to ensure the full relative precision for 
very small doses. However, in these cases, the absolute error will be so small that the 
relative error will only be of academic interest.

5.12.2 . What duty factors are needed?
Nominal parameters assumed for a voxel system

In voxel scanning, the beam steering between voxels is carried out while the 
beam is switched off, so only the measurement ‘quantisation’ coming from the period 
of the sampling frequency*  and the delay in cutting off the beam are of importance 
when estimating the dose uniformity. Consider a system with the following 
parameters:

This is referred to as the ‘clock’ error in Chapter 11.
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• A sampling frequency of 20 kHz.
• Adjustment of the spill intensity so that a nominal voxel requires 5 ms of beam time, i.e. 

100 measurement bins of 50 μs.
• The maximum variation in the beam charge to be expected in one bin is 0 to 200% of the 

nominal value (i.e. 100% modulation).
• The order to switch-off the beam is given once the dose exceeds 98% of the desired dose.
• The time delay for switching off the beam is assumed to be 1 measurement bin of 50 μs.

The precision obtained is then explained by the following ‘worst-case’ scenarios:

• Let the previous measurement bin show an integrated dose of just less than 98%.
• The next bin can reach any value up to 100% (i.e. twice the expected value added).
• Now the instruction to switch off is given and one more time bin will pass.
• The final integrated dose can then rise to a maximum of 102%.
• Alternatively, let the previous measurement bin be fractionally over 98% and let several 

of the following bins be empty. In this case, the dose will be just 98%.
• Thus, for the assumptions given the ±2% precision can be achieved.

This scenario can be generalised by assuming that a maximum of one time bin is 
needed to detect a threshold value and that one more time bin is needed to switch off 
the beam. The precision of the voxel model is then contained in the relations,

(5.20) 

(5.21)

where Nbnom is the nominal number of bins needed to fill the voxel and (4/4) is the 
ratio of the ripple amplitude to the de amplitude of the spill. Equation (5.20) consists 
of two terms. The first term is independent of ripple and gives the ‘clock’ quantisation 
error and second adds the precision lost due to ripple. Thus, with the nominal 100 
bins, the nominal spill rate and 100% modulation (i.e. 0-200% charge in a bin) the ±2% 
precision is obtained. If the nominal values were changed so that only 60 bins were 
needed to fill the voxel, then by (5.20), either the modulation would have to be 
reduced to 20% (i.e. 80-120%) to achieve the same precision of ±2%, or the precision 
would have to drop to ±3.33% and the threshold for cutting off the beam would be at 
96.66% of the desired dose. If the nominal number of bins needed to fill the voxel is 
50 and the precision is maintained at ±2%, then the ripple must be zero.

Equation (5.20) can also be used to evaluate the margin that the 0.5% 
(between the specification and the target precision mentioned earlier) gives in the spill 
rate. With 100% modulation, an error of 2.5% is obtained with 80 bins. Thus, the 
margin in the spill rate is +20%, i.e.,

Nominal spill rate should fill 1 voxel in 5 ms (-1 ms, +unlimited *).  (5.22)

The above is rather general and a more detailed specification needs to be 
derived by combining sinusoidal modulations over the full frequency range.

The system can always accept lower spill rates, or periods of no spill, because this only means 
waiting for more beam and it does not cause an error in the dose uniformity.
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Low frequencies
A low frequency is defined as one where the half period is less than the voxel 

filling time of 5 ms. Thus, 100Hz would be the low frequency limit in this case. The 
effect of low frequency ripple is to cause a general increase (or decrease) of the spill 
intensity during the voxel filling time. This can be interpreted as a reduction (or 
increase) in the number of bins needed to fill the voxel and then equation (5.20) is 
applicable for calculating the precision. To keep within the ±2.5% tolerance, low 
frequency modulation must not exceed 20%. Note that the modulation contain several 
frequencies, but principally it covers the network frequency of 50 Hz. Since low 
frequencies are easier to control, this appears to be a reasonable limit.

High frequencies
High frequencies are above the sampling frequency. As the frequency rises 

above this threshold, the effect of the modulation is progressively dies away with 
periodic dips to zero when an integer number of ripple periods fits into one bin. The 
error peaks occur at integer numbers of half periods. The first and most important is at 
1.5x the sampling frequency where the acceptable modulation is limited to 300%.

Medium frequencies
Medium frequencies fill the gap between the low and high regions. If single 

frequencies are considered, the modulation must not exceed 100%, which ensures that 
no bin receives more than twice the nominal charge (the original premise). However, 
the superposition of frequencies is important in this range. If the power converter 
frequencies (300, 600, 900, 1200 and 1500 Hz) and perhaps four DAC frequencies in 
the kHz range for changes during the extraction are considered, then nine frequencies 
could be mixed together. Assuming quadratic addition, this would lead to an upper 
limit on single-frequency modulation of 30%.

Specification
• Maximum of 20% modulation for all frequencies combined below 100 Hz. This is based on the 

general level of the spill and is independent of the higher frequency limits.

• Maximum single-frequency modulation of 30% in the range 100 Hz up to the sampling 
frequency. This assumes the random combination of up to 9 frequencies.

• Maximum of 300% modulation at one and a half times the sampling frequency and higher above.

Note that this is the specification for the spill and that this has to be converted 
to power converter current ripple specifications for a practical design.
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1-6 ‘FEEDING’ THE RESONANCE
How the beam is moved from the stable to the unstable region is of critical 

importance for the quality of the spill. The methods that can be used are described in 
Chapter 3 and the many of the advantages and disadvantages were discussed in 
Chapter 4. The focus will now be placed on the amplitude-momentum method of 
extraction and, more precisely, on the techniques that can be used to accelerate the 
beam into the unstable region. Accelerating the beam into the resonance has the 
considerable advantage that all the optical parameters of the machine can be kept 
constant during the spill. Another key feature of such acceleration techniques is the 
possibility of adding, what will be called, a ‘front-end’ acceleration to increase the 
speed in terms of the rate of change of tune with which the particles cross the 
separatrix. As was shown in Chapter 5, the higher the speed, the better the spill 
quality.

6.1 BETATRON CORE
Induction acceleration with a betatron core (as opposed to a betatron*)  has 

been known for many years [1]. It has been used for extraction on a third-order 
resonance in Saclay [2] and, for purposes other than extraction, in Heidelberg [3]. 
More recently, it has been proposed to drive the slow-extraction process in a medical 
synchrotron [4].

A betatron core is a closed magnetic circuit in the form of a ferromagnetic ring 
through which the beam of a synchrotron passes. A coil wound on the ring controls 
the flux inside the circuit and variations in this flux induces an electric field on the axis 
that is ‘felt’ by the circulating beam and changes its kinetic energy (see Figure 6.1).

The coil of the betatron core and the closed orbit of the particle act as the 
magnetically linked windings of a transformer. Starting from the Faraday-Neumann- 
Lenz law,

(6.1)

The betatron core inverts the geometry of the betatron and so that the magnetic field forms a loop 
around the beam rather than the beam forming a loop about the magnetic field.
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The theoretical expectation that a betatron core should give a smooth spill is 
supported by the experimental result shown in Figure 6.2 [5], which shows a slow 
extracted beam from the synchrotron SATURNE II of Saclay that uses a betatron core 
to extract protons at 2.4 GeV. The spill was measured with scintillators on the 
extraction line. The signal bandwidth, obtained by integrating the scintillator signals, is 
2 kHz and the stability of the spill intensity is about ±20% (corresponding to a duty 
factor of 0.98).

Figure 6.2 Spill extracted with the betatron core of Satume II.
[Bandwidth of 2 kHz obtained by integrating a measurement bandwidth up to 20 kHz]
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where ze is the net charge of the beam particle. The combination of (6.1), (6.2) and 
the standard relation for magnetic rigidity, p - -zeBp, yields

(6.2)

where O is the magnetic flux within the betatron core that is integrated over the cross- 
sectional area of the core S. Now let E be the mean value of the electric field, E, that 
is induced by the core, along the closed orbit of the beam, so that the average rate of 
change of momentum is given by,

where C is the machine circumference and ∆ and Ap refer to the changes over one, 
or more, turns in order that the averages defined earlier have physical meanings. To 
obtain a uniform sweeping of the ‘waiting’ beam, which will be assumed to have a 
uniform density in Ap/p, a constant flux variation is needed during the extraction time, 
Text,

(6.3)

(6.4)
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6.2 STOCHASTIC NOISE

6.2.1 The principle
Stochastic extraction was first proposed by S. van der Meer [6]. The potential 

of this technique as a low-ripple extraction was realised from the very beginning and is 
mentioned in the title of reference. The principle is to apply rf white noise over a 
frequency band A/ that overlaps the revolution frequencies of the ‘waiting’ beam, 
and/or harmonics of those frequencies. The noise can be applied by longitudinal 
kickers or rf cavities. Under the influence of the noise, the particles execute a random 
walk in the longitudinal phase space. This process is akin to diffusion and can be 
treated as such. There are three main applications,

• Beam shaping and homogenisation. If the noise is rectangular in power density 
over the frequency band, the particles will diffuse towards a uniform distribution 
over that frequency band. This can be used to erase ‘memories’ from the beam and 
for making a rectangle distribution for a uniform spill (Figure 6.3).

• Stochastic resonant extraction. The principle of this method consists of diffusing 
the particles towards and across the stability limit rather than driving them across 
as with conventional extraction. Particles are randomly accelerated and 
decelerated by noise, which causes a blow-up of the momentum distribution; the 
ones diffused as far as the resonance will be extracted. If the initial beam is 
gaussian, for example, and a particle sink (the resonance) is placed at one extremity 
of the frequency band, then, as the gaussian distribution spreads out, the particles 
will enter the resonance and be lost as illustrated in Figure 6.4. Another set-up for 
pure stochastic extraction is when the lower border of the noisy region is swept 
across the beam by slowly reducing the carrier frequency [7,8]. In this way, it is 
possible to vary the extracted spill length (up to 1 h, as in LEAR) and to 
compensate for a non-rectangular distribution of the ‘waiting’ beam.

• Combined resonant extraction. The beam is driven towards the stability limit by 
another technique (for example, by using a betatron core, as described in Section 
6.1) and rf noise is applied only in the vicinity of the resonance to hasten the transit 
of the particles into the unstable region. This so-called ‘front-end’ acceleration 
reduces the sensitivity to Q ripple (Figure 6.5).

Figure 6.3 Beam shaping with band-limited noise
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Figure 6.4 Stochastic resonant extraction with band-limited noise

Figure 6.5 Combined resonant extraction with band-limited noise

6.2.2 Diffusion equation
The model of molecular diffusion can be used to describe stochastic diffusion 

under the influence of rf noise [9]. Consider the elementary cube shown in Figure 6.6 
that is inside the diffusion volume. The net flow of particles will be from the high 
density regions to the low density regions.
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Figure 6.6 Description of molecular diffusion
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Since diffusion by stochastic noise is a one-dimensional problem, this 
simplification will be exploited directly and it will be assumed that variations in density 
in Figure 6.6 only occur in the x-direction and that the particle densities are completely 
independent of the other transverse co-ordinates y and z. The accumulation rate of 
particles within the elementary volume, V, can then be related to the particle flows in 
the x-direction in and out of the volume and also to the density changes within the 
volume.

(6.6)

where n is the particle density per unit volume and j is the particle flow per unit area. 
The combination of (6.5) and (6.6) yields,

where D is known as the diffusion constant. The substitution of (6.8) into (6.7) gives,

The same analysis applies for stochastic noise with the substitutions and end result,

In the frequency domain, (6.10) has damped oscillatory solutions of the form [6],
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Accumulation in Vby flow, (6.5)

Accumulation in Vby density,

The flow j can be expressed as,

(6.7)

(6.8)

(6.9)Molecular diffusion equation,

(6.10)

where the harmonic coefficients can be found by

(6.11)

(6.12)
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Whereas in the time domain, (6.10) has solutions of the form [8]

(6.13)

If, for example, at t = 0 all N particles are concentrated at the origin (ψ(x,0) = δ(x)), 
the solution is then a Gaussian distribution

(6.14)

If both drift and diffusion take place at the same time (for example, the combined 
resonant extraction), the total particle current is the sum of diffusion and drift current

(6.15)

where v0 is the drift velocity*  The Fokker-Planck equation, which describes the 
particle density in case of combined extraction, is obtained by substituting (6.15) in 
(6.7) and replacing n with ψ as before.

(6.16)

The stationary solution ψ 0 within the noisy region, with the boundary condition 
ψo(o) = 0 at the resonance (x=0) is [10]

(6.17)

while outside the noisy region

(6.18)

If there is a ripple in the relative velocity between the beam and the resonance of 
angular frequency ® and amplitude r, the flux <|) = <|>04-(ho, will be modulated from 
ψ=ψ0+ψ1. An estimate for the modulation can be found by factorising into a 
part periodic in time and an x-part

(6.19)

From (6.15):

* The drift velocity can be expressed in units of momentum or tune i.e. x => ∆p/p or x => δQ.
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where

(6.20)

is the damping length and v(n = V2Z>co is the phase velocity for the

amplitude to first order of

(6.21)

6.2.3 Duty factor
The modulation of the spill rate may be described by the duty factor, defined as

(6.22)

For conventional extraction [6],

while for stochastic extraction from (6.21)

Duty factor:

(6.23)

The comparison of (6.23) and (6.24) shows that in the second case vw/√2 replaces the 
former drift speed v0. It is clear that by increasing the diffusion constant, D the phase 
velocity vω can be kept large without decreasing the spill temporal length. The 
maximum available rf power and the minimum tolerable bandwidth together with the 
time a particle takes to diffuse out of the resonance (T< 1/D) define a physical upper 
limit of the diffusion constant [9,11]. The choice of D is a compromise between 
insensitivity to ripple and extraction efficiency.

6.2.4 Expression for diffusion constant
An expression for the diffusion constant D can be found in analogy with 

Brownian motion [9]. Considering the probability of finding a particle at a certain time 
t at a distance between r and r + dr, one gets:
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diffusion waves. This results in a modulation of the spill rate with an

(6.24)



112

(6.25)

with [ D ] in m2s-1. For stochastic extraction (diffusion in one dimension) and with the 
usual substitution x=> ∆p/p,

(6.26)

with [D] in s-1. The expression for the one dimensional diffusion constant in ∆p/p 
space as a function of the rms noise voltage VN is [6]

(6.27)

where ∆ is the bandwidth covered by the noise spectrum, Bp the magnetic rigidity 
and R the machine radius. This expression is found considering the beam rms change 
in energy due to the uncorrelated kicks received by each particle on successive 
revolutions and using (6.26).

Analogue expressions can be found in tune space or frequency space using the 
following relations:

(6.29)

where ξ is the chromaticity, Q the tune, p the particle momentum, n the frequency 
dispersion and f the revolution frequency.

6.2.5 PIMMS rf noise parameters
The rf noise parameters (bandwidth and power) have been calculated for the 

PIMMS medical synchrotron at the maximum proton and carbon ion extraction 
energies using the above equations [12]. The situation considered is the one 
represented in Figure 6.7 with momentum spread of the beam (∆p/p)s = 0.004 and the 
momentum spread between the beam and resonance (∆p/p)s-r = 0.001 (for sake of 
simplicity the beam is drawn already shaped).
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Figure 6.7 PIMM extraction configuration in ∆p/p space

The three cases described above have been considered. The results are listed in the 
Table 6.1.

Table 6.1 PIMMS rf noise parameters

PIMMS rf noise parameters

p@ 300 MeV 12C6+@ 425 MeV/u

Shaping
Bandwidth ∆ [kHz] 4.1 3.3
Voltage rms [V] 150 337
Power/∆f [W/Hz] (Z= 50 Ω) 0.12 0.7
Total power [W] 480 2.3.103

Stochastic extraction
Bandwidth A/[kHz] 5 4.1
Voltage rms [V] 216 470
Power/∆f[W/Hz] (Z = 50 Ω) 0.18 1.09
Total power [W] 900 4.4-103

Combined extraction (noise on the resonance)
Bandwidth ∆ [kHz] 1.2 1.1
Voltage rms [V] 52.4 120
Power/∆f[W/Hz] (Z = 50 Ω) 45-10-3 270-10-3
Total power [W] 55 288

In the case of shaping in Table 6.1, a shaping time of the order of 0.1 s (-10% 
of the flat top) was assumed, which gives D - 0.8 x 10-4 s-1. The values for 
stochastic extraction have been obtained in the hypothesis that the spill length is of the 
order of 1 s (which implies D = 1.3x 10-4 s-1). For combined extraction, a 
modulation of the extracted spill of ± 20 % at 2 kHz (duty factor F = 0.98) with a 
ripple amplitude in Ap/p units r = 10~5 has been assumed [12]. In this case, 
£) = 0.8xl0-4 s-1. For all three cases, the values have been calculated with the 
hypothesis of working on the first harmonic to minimise the required total power. 
Nevertheless, the noise bandwidth should be big enough to avoid modulation of the 
extracted spill, because the noise signal behaves like a sine wave at the centre 
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frequency, whose phase and amplitude remain coherent over times of the order (A/) 1. 

In order to reduce modulation from coherency, (A/)”1 should be small compared to the 
diffusion time. This limit can be a problem in the case of combined extraction with 
noise on the first harmonic, where the diffusion time is of the order of ms.

Two possible hardware systems to produce the noise have been investigated: a 
longitudinal ferrite kicker and an rf cavity. The first is the solution adopted in LEAR 
[13]; due to the shorter spill length and therefore the higher power needed for PIMMS 
medical synchrotron, high-power amplifiers are necessary to provide powers of 1 kW 
and more (Table 6.1). These are expensive and could cause distortions in the noise 
spectrum through inter-modulation.

The second possibility (rf cavity) is the cheaper solution, if it is possible to use 
the cavity foreseen for the acceleration of the beam. With the VITRO VAC cavity it is 
possible to work up to the second harmonic, as the peak accelerating voltage is around 
4 kV in the range 0.4 to 8 MHz [15]. For wider bandwidths, a second dedicated rf 
cavity working at higher harmonics should be foreseen.

The estimated cost for the kicker solution is 100 kCHF plus the price of the 
power amplifiers, which can be roughly assessed as 100 CHF/W per unit. For shaping, 
extraction and noise on the resonance at the first harmonic, this correspond to a total 
cost of the order of 700 kCHF. The cost for the third solution with a dedicated cavity 
is of the order of 800 kCHF.

When the cost estimates are considered together with the technological 
problems of:

• Working with such high power levels and
• Ensuring the stochasticity of the process during short shaping and extraction times, 

the conclusion is that stochastic extraction is not the optimum solution for a medical 
spill of the order of 1 s.

6.3 PHASE-DISPLACEMENT ACCELERATION

6.3.1 Motion in longitudinal phase space
Phase displacement [16] is a technique based on the rf system. It is therefore 

useful to recall the theory of particle motion in the presence of an rf field. This motion 
can be described in terms of two first-order differential equations in the variables 
AE = E-Es, A(|) = <[)-(|)s (see for example ref. [17]):

(6.30)(a)

(6.30)(b)
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where ze is the charge, ωo is the revolution frequency, V is the rf voltage, 3 = v/c is the 
particle normalised velocity, h is the harmonic number, n = 1/y2- l/yt2 is the phase slip 
factor, y is the relativistic mass factor, yt the y at transition, E is the total energy, (j) is 
the phase of the arbitrary particle and corresponds to the phase of the rf voltage, and 
the subscript ‘s’ refers to the synchronous particle. For small amplitude oscillations, 
from (6.30) (a) and (b):

The particles oscillate around the stable phase, describing ellipses in the phase plane.
Qs is the frequency of the oscillations and is called the synchrotron frequency. For
larger amplitudes:

where T = sincϕs, and the functions oc(T) and Y(T) can be found from tables [18].

Figure 6.8 shows some trajectories in longitudinal phase space for stationary 
((|)s = 0) and moving (<|)s 0) buckets.
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with:

Increasing the amplitude eventually makes the oscillations unstable. The set of 
trajectories representing stable oscillations is called the rf bucket. Its area is delimited 
by the last stable trajectory, called the separatrix. The area and the height of the 
stationary bucket (4>s =0) are given by:

The area and the height of the moving (accelerating or decelerating) bucket are related 
to the those of the stationary bucket by:

(6.32)

(6.31)
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(a) Stationary bucket ϕs = 0
[If below transition the motion is anti-clockwise, if above it is clockwise]

Moving bucket ϕs > 0
[If below transition the bucket is accelerating 
and the particle motion is anti-clockwise, if 

above transition the bucket is decelerating and 
the motion is clockwise]

Moving bucket ϕs < 0
[If below transition the bucket is decelerating 
and the particle motion is anti-clockwise, if 

above transition the bucket is accelerating and 
the motion is motion clockwise]

Figure 6.8 Stationary and moving rf buckets

6.3.2 The principle
Phase displacement acceleration was extensively used at the CERN ISR in the 

early 1960s [19]. It allows the acceleration (or deceleration) of a stacked coasting 
beam using a relatively simple rf system. Empty rf buckets are created outside the 
beam, and then the bucket energy is decreased (or increased) so that it traverses the 
beam. During the traversal, the particles are forced to change their phase and energy 
in order to turn around the bucket, without (ideally) entering it. By Liouville’s 
theorem, phase space density must be conserved, so that the beam will be displaced 
upwards (or downwards), such that the area of the displacement is equal to the bucket 
area, (see Figure 6.9). Multiple traversals can be made so as to bring the beam to the 
desired final energy. If the beam is close to the resonance energy, this method can be 
used to ‘feed’ the resonance.
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Figure 6.9 Principle of phase displacement

The variation of the energy of the beam due to one traversal is given by:

(6.33)

To traverse the beam, the frequency variation A/rf (i.e. the sweep) that must be 
provided by the rf system is given by:

(6.34)

where AE/E is the energy spread of the beam and from (6.30)(b) the speed of variation 
of the sweep is obtained as:

(6.35)

In the approximation that the sweeps are narrow in energy, all the parameters are 
referred to the ‘nominal’ resonance energy. Typical spill lengths for medical machines 
are of the order of 1 s and the spill should be continuous and as smooth as possible. At 
typical extraction energies and for typical values of V and T, a single sweep would last 
a few milliseconds. This means that it is not possible to accelerate the beam by a single 
sweep. Several sweeps with small buckets of a few volts rf voltage would be needed, 
if the extraction time should be about 1 s. The number n of sweeps needed is given by:

(6.36)

where ∆E is the total energy spread of the beam. Each sweep increases the energy of 
the beam bringing the edge of the beam into the resonance. For a continuous spill, it is 
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not possible to wait until the first sweep has ended, but the sweeps must continue one 
after the other. According to CERN ISR experience[19], the minimum distance in 
energy between buckets, for the effect of the preceding bucket to be over, is twice the 
bucket height. This means that, to have a continuous spill, the resonance should have 
a minimum width, in order to always contain a moving bucket (Fig 6.10). Moreover, 
this sets the minimum distance at which the voltage of the buckets has to be switched

PHASE

Figure 6.10 ‘Feeding’ the resonance by phase displacement

If the AE/E of the beam is fixed, then it is necessary to choose the rf voltage and the 
speed of the sweep. This would immediately give the energy increase per sweep 
∆Esweep and T. The choice should be made with consideration for the following points:

‘Scattering’
During the sweep the particles vary their trajectories in phase space, since they 

are accelerated by different amounts. This results in a ‘scattering’ of the particles; the 
degree of which is a function of T. This will increase the machine aperture occupation 
(i.e. the AE/E). The increase in the root-mean square energy of the coasted beam is 
given by [20]:

(6.37)

and after n sweeps the total increase in energy spread AE^rms can be calculated by 
successive iterations with the formula:
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Using tabulated values of a(T) [18], the required value of T is found to be T = 0.25.
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Variation of bucket parameters
Even if the rf voltage is kept constant, the bucket area is not constant during 

the sweep. If the area increases, some particles may enter the bucket and be lost. If it 
decreases, the stack width increases. These effects are small, but become evident after 
a large number of sweeps. In the hypothesis that the machine is operating far from 
transition, the variation of the area of the stationary bucket is given by:

The recommendation is to keep low T (i.e. quasi-stationary buckets) and a minimum 
number of sweeps.

which gives,

The variation of the area of the moving bucket can be set to zero, i.e.

which means that below transition T increases with increasing energy (i.e. Ab 
decreases) and vice-versa above transition. (∆frf is small compared to A£j. The 
corresponding variation in ∆α(T)/a(T) is given by:

where G(T) is a function defined in the above equation and ∆T/T is given by (recalling 
equation (6.35), and again the plus sign is for the case below transition, the minus is 
for above transition):

where the plus sign is for the case below transition and the minus is for above. This 
means that the area of the stationary bucket increases with increasing energy below 
transition, whereas it decreases with increasing energy above transition. The variation 
of α(T) is related to the that of T by:
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6.3.3 Advantages and disadvantages of phase displacement for ‘feeding’ the 
resonance

Advantages:

• No machine parameters are varied, only the rf voltage and the rf frequency change.
• It is easy and quick to start and stop.

Disadvantages:

• To have a quasi-continuous spill, the rf system is quite complicated and expensive since 
several frequencies have to be excited at the same time.

• In the case of voxel scanning, the beam has to be switched on and off during the spill 
[13]. If it were sufficient to slow down the repetition frequency of the rf sweeps, then the 
hardware would be less complicated.

• A strong structure in the spill at the repetition frequency of the rf sweep as well as at the 
rf frequency cannot be avoided.

• One of the most important characteristics of the spill for a medical machine is 
uniformity (low ripple). This can be obtained with a fast crossing from the stable to the 
unstable region. With the phase displacement system, there is no means of improving 
the average speed of the crossing, i.e. the dp/dr at the resonance, which can be very low 
for some particles.

A careful choice of the rf parameters is needed to avoid, or at least to reduce, this 
effect.

Another consideration is needed for rf phase noise. Phase modulation causes 
diffusion of the particles across the bucket separatrix. This results in an increase of the 
beam width, a variation of its average energy, and a loss of particles that leave beam 
inside the bucket. To keep phase noise down to acceptable levels, a phase-lock servo 
loop is needed, which is, in fact, standard practice.

It becomes clear that a compromise has to be taken, in the choice of the 
parameters, in order to minimise the ‘scattering’, minimise the variation of bucket 
parameters and avoid excitation by unwanted resonances. The choice of the 
parameters is then tested with computer simulations. Tracking programs such as 
ESME [211 are commonlv used for this nuroose.

where Q is the tune, /o(Ebeam) is the revolution frequency for a particle inside the beam 
at energy Ebeam, Esweep) is the sweeping frequency corresponding at the energy ESweeP 

and m is the integer at which the equation is satisfied. This can be rewritten as:

Unwanted excitation of betatron resonances
Coupling between harmonics of the rf frequency and the betatron frequencies 

of the ‘waiting’ beam has to be avoided during the sweep, because this would cause 
strong beam losses. Resonance is excited when:
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6.4 UNSTACKING

6.4.1 The principle
Consider a uniform coasting beam (the stack) from which a small slice of the 

energy spread is to be taken and brought to a different energy. Small rf buckets can be 
created (rf voltage of a few tens of volts) with a high harmonic rf system at the edge of 
the stack. A small fraction of the stack is then trapped and accelerated inside the small 
buckets to a different energy. This method is called unstacking. If the stack is close to 
the resonance, this method can be used to transport small numbers of particles to the 
resonance energy, see Figure 6.11.

PHASE

Figure 6.11 ‘Feeding’ the resonance by unstacking

In order to have a theoretical 100% capture and to minimise the longitudinal 
emittance dilution during the creation of the small stationary buckets, the rf voltage 
increase should follow the so-called iso-adiabatic law. In practice, this means that the 
increase should be slow (ideally infinitely slow) with respect to the synchrotron 
frequency Qs- The law that has to be followed is [22]:

(6.38)

where and Vinitiai and Vfinai are the initial and final rf voltages to be applied, Ts = 1/Ωs
and a is the adiabatic factor, defined in terms of Ab the bucket area as
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It can be seen from the definition of a that it should be kept small (ideally zero) in 
order to have an adiabatic process. The parameters in equation (6.38) are chosen by 
trying to optimise the capture efficiency and to minimise the longitudinal emittance 
dilution, which would enlarge the energy spread. The choice has to be tested by 
computer simulations.

Once the desired energy spread is trapped, the acceleration starts and 
transports the particles, inside the buckets, to the extraction energy. The stack has to 
be positioned as close as possible to the resonance area, in order to avoid large 
frequency swings that could cause particle losses (see paragraph 6.3.2). In this case, 
dilution due to ‘scattering’ is of no concern because the stack is not traversed*.  If 
large frequency swings cannot be avoided, when the stack is no longer influenced by 
the rf bucket, (minimum distance 2 bucket heights), the rf voltage can be increased 
(always following an iso-adiabatic law) before continuing the sweep up to the 
resonance energy. Verification by computer simulations is always needed.

6.4.2 Advantages and disadvantages of unstacking for ‘feeding’ the resonance
Advantages:

• No machine parameters are varied; only the rf system is working.

• It is easy and quick to start and stop.

• Several small bucket trains can be performed at the same time in order to obtain a 
continuous spill.

• The particles can be transported deeply into the resonance region, thus avoiding the 
possibility of them being liberated and then ‘re-eaten’ by the movements of the 
resonance separatrix. This cannot be avoided with the phase-displacement method.

Disadvantages:

• Unfortunately this method suffers from the same limitations encountered with phase­
displacement (see Section 6.3.3): a complicated rf system and a strong modulation of the 
spill at the repetition rate of the sweeps.

• Unfortunately, there is no mean of improving the speed at the crossing of the resonance 
separatrix, which is important for the uniformity of the spill. This will depend on the 
position of the particle in the rf bucket, and for some particles the d/?/dr can be very low.

• A resonance width less than the minimum distance between trains (2 bucket heights) is 
not acceptable, since the spill would become chopped.

There are two possibilities: unstacking from the top and unstacking from the bottom In one case, 
the stack will be traversed and in the other not. When the stack is not traversed, then the starting 
energy (frequency) has to be stepped on each cycle, but if the stack is traversed then the phase 
displacement moves the stack down (up) to fill the space left by the accelerated (decelerated) beam.
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6.5 ‘FRONT-END’ ACCELERATION BY EMPTY RF BUCKET 
CHANNELLING
Phase displacement is not a good candidate for accelerating the ‘waiting’ beam 

into the resonance, as explained in Section 6.3, due to the poor uniformity of the 
resulting spill, but paradoxically, it can be very useful for making the beam particles 
cross more quickly from the stable to the unstable region. The technique is called 
empty rf bucket ‘channelling’. This turns out to be a good candidate for attenuating 
the effects of low-frequency tune ripple on spills of the order of one second in length. 
Experimental evidence of the improvement has been reported at CERN PS [23] and at 
IHEP Protvino, Russia [24]. First consider the beam spill S(t) that can be written as:

(6.39)

where N is the number of particles and Q the horizontal tune. The tune change can be 
expressed as the sum of two components, Q0the constant component and Qr the 
component due to unwanted ripple, so that:

(6.40)

The betatron core (see Section 6.1) is used to provide the constant component of the 
acceleration Qo. This high inductance device is well suited to delivering a smooth spill 
and, since the energy stored is high, it has the characteristic of responding slowly to 
transients that could give unintentional beam spikes to the patient.

For a uniform spill S(f), the product of dN/dQ and dQ/dt must be kept constant. 
The form of the stack determines dN/dQ, but this is a slow variation and can be 
controlled by feedback on the acceleration rate from the betatron core. Unfortunately, 
dQ/dt is affected strongly at all frequencies by Qx. The purpose of the rf bucket 
channelling is to reduce the effect of this contribution.

Inspection of (6.40) shows that the contribution of <2r can be reduced, if 0() is 

increased. However, Qq cannot be changed for the whole stack, since it is fixed by the 
spill time, but it can be increased in particular phase-space regions, if the density of the 
particles dN/dQ in those regions is decreased accordingly, so as to keep a constant S(t) 
(see equation (6.39)). The scheme shown in Figure 6.12 has a region of high speed 
and low density created close to the resonance.
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LOW SPEED HIGH SPEED
HIGH DENSITY LOW DENSITY
REGION REGION

Figure 6.12 Extraction with a high-speed, low-density region close to resonance

The parameter that indicates the quality of the extracted spill is the duty factor, 
see Section 5.1, and is given by,

Note that ϕ = dN/dt is used here in order to correspond to Chapter 5 and should not be 
confused with the rf phase. The substitution of (6.40), which is explained more fully in 
Section 5.5, gives

Thus, the duty factor can be improved by an increase in Qo. The increase in Q() need 
only be an increase in the ‘local’ acceleration (in the vicinity of the resonance) and will

A) n
be represented by a factor K. Finally, the ratio can be re-placed by — to give

 p0

where p0 and pr are the rates of change in momentum corresponding to and Qr.
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6.5.1 General theory and description
An empty bucket is created at the resonance frequency corresponding to the 

resonance energy Eres. The hardware should be set in order to keep the bucket 
frequency ‘fixed’ at the resonance frequency for the whole spill time. At the starting 
time, the beam is out of the resonance. The flux of the extracted particles is set by the 
acceleration imposed by the betatron core.

In the longitudinal phase plane, the particles turn around the rf bucket, in the 
same way as happens when accelerating a stack by rf phase displacement, except that 
on this occasion the stack moves and the bucket remains fixed. At the energy of the 
resonance, the particles are swept between the buckets in the small phase interval A<|) 
limited by the bucket separatrices. In this channel, dA/dg is reduced and dQ/dt 
correspondingly increased. In other words, the empty bucket creates a ‘bottle neck’ in 
the phase space, through which the particles are swept with increased velocity KQq see 
Figure 6.15.

PHASE

Figure 6.13 Particle channelling between buckets (arrow), case of a decelerating bucket below 
transition, or an accelerating bucket above transition, and <j)s < 0

[E is the total energy, Eres = 0 is the energy at which the empty bucket is positioned and
1/2 ∆Ebucket is the bucket half height. In the case E = Eres (i.e. ∆E = 0), the bucket limits in phase 

are ϕlow and ϕup and the channel width is ∆ ϕ= ϕ2-ϕ1]

6.5.2 Average multiplying factor K
Since dQ/dt is proportional to dp/dt, and dp/dt is proportional to dE/dt, it is 

sufficient to calculate the improvement of dE/dt when particles cross the resonance 
energy (separatrix). Using the Hamiltonian formalism (see for example [17]), the 
motion in the longitudinal phase plane can be described in terms of two first order 
differential equations in the conjugate variables (AE/Zzcoo, A<|) = <|)-4>s):
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(6.42)

(6.43)

These equations are equivalent to (6.30) (a) and (b), except that they use conjugate 
variables. The corresponding Hamiltonian H is:

(6.44)

With the hypothesis that the acceleration is smooth and continuous over one turn, 

where the bucket is empty, but the particles outside are still affected. A particle that 
crosses the resonance when 0 = 0 is not affected by the rf voltage. Its energy will vary 
by: 

which is exactly equal to the dE/dr given by the betatron core. Other particles will be 
affected in different ways depending on their arbitrary phase and energy. On average:

(6.45)

where ϕ1and ϕ2 are the minimum and maximum phases of the channel (see Figure 
6.14). The average multiplying factor is given by:

(6.46)

which gives:

(6.47)

where T = sin ϕS and ∆ϕ = ϕ2-ϕ1.
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Intuitively, it can be seen that the more the bucket obstructs the available phase 
space, the faster the particles must move. Thus, the closer the bucket becomes to a 
stationary bucket the greater the particle velocity enhancement. For this reason, quasi- 
stationary buckets will be studied more closely.

In the general case, it is necessary to solve equation (6.47), with values of 
and depending on the value of ∆E (see Figure 6.14). Only 0 < ∆E < ∆Ebucket/2, will 
be considered because this is the useful range (see Section 6.4.3). It is useful to 
calculate the Hamiltonians Hi and H2 corresponding to fa and fa, the phase limits of 
the channel. The Hamiltonian H\ corresponds to the ‘internal’ separatrix, and the 
Hamiltonian H2 to the ‘external’ separatrix. Making use of (6.44) and of the bucket 
relation linking fa and fa in the case AE = 0 [25]:

(6.48)

Hi and H2 for the accelerating bucket are found to be:

PHASE

Figure 6.14 Position and parameters of the channel for a general AE = AEp 0 
[Hi is the Hamiltonian corresponding to the ‘internal’ separatrix, 
H2 is the Hamiltonian corresponding to the ‘external’ separatrix]

For the decelerating bucket H1 becomes H2 and vice versa.

ϕ1 (ϕ2) is the root of the equation:

(6.49)
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for

The solution of equation(s) (6.49) can be found numerically and used to find 
the value of the general multiplying factor K as a function of ∆E, using

(6.50)

In particular, for the case ∆E0, Table 6.2 gives the values of the parameters 
concerned for the four different acceleration conditions:

Table 6.2 Some useful bucket parameters
[cos ϕs, cosϕ1, and cos ϕU are given by the Taylor series expansions]

From Table 6.2 and equation (6.45)

and for the average multiplying factor, K

The last formula has an easy geometrical interpretation;: in the case ∆∆E = 0, K is given 
by the ratio between the whole phase segment 0-2π and the sub-segment containing 
the allowed phase-space trajectories. In the hypothesis (usually true) that ϕs« 2π
using (6.48) and Table 6.2 the channel width becomes,
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and the multiplying factor,

(6.51)

This agrees with the particular case given in reference [23] for the CERN/PS 
synchrotron, where an empty bucket is created above transition.

6.5.3 Positioning the rf bucket
It can be seen directly from Figure 6.12 that the resonance energy of the 

particles depends on their betatron amplitude, the higher the betatron amplitude the 
lower the resonance energy, and vice versa. Qualitatively, it can be stated that in order 
to obtain a high multiplying factor for all the particles, two conditions have to be 
fulfilled. One on the bucket height and the other on the bucket position.

First condition
states that the beam energy spread engaged in the resonance has to be smaller than the 
bucket half height, i.e.

(6.52)

Since the height of the rf bucket is given by:

condition imposes a constraint on the rf voltage:

(6.53)

Second condition
relates the position of the bucket to the resonance energy. In order to have a positive 
improvement for all the betatron amplitudes, one should position the bucket as shown 
in Figure 6.15. This is the case of a stack starting from energies lower than the 
resonance energy and below transition.
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Figure 6.15 Position of the bucket with respect to the resonance region (in the case of PIMMS)

6.5.4 Adjusting the rf voltage
The parameters of the rf bucket are determined by considering a fictitious 

particle trapped in the bucket at the synchronous phase. The rf frequency will be the 
revolution frequency, or the harmonic, needed to keep the particle energy constant at 
the synchronous phase (in this case dB/dt = 0). The energy losses or gains in the 
bucket will be those needed to compensate the changes that take place in the machine 
(in this case the energy gain in the betatron) i.e. (see [26]):

which can be written as (see [17]):

(6.54)

where R is the mean radius of the orbit and Bp is the beam rigidity. The link with the 
beam momentum p is given by [27]:

(6.55)

where A is the atomic mass number, p is the beam momentum and c is the velocity of 
the light. The combination of (6.54) with (6.55) gives:

Thus the rf voltage is proportional to the energy change in the core and inversely 
proportional to T = sin ϕs. In order to have a large multiplying factor, K, the rf voltage 
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should be kept high in order to have a low T, since this shrinks the width of the 
channel. The limit will be fixed by the maximum rf voltage available.

6.5.5 Dependence of K on the ripple and improvement in duty factor
The amplitude of the ripple and its frequency dependence degrade the 

improvement in duty factor, as explained in [26]. With the hypothesis of a smooth and 
continuous momentum increase during extraction,

(6.57)

where po is the momentum of the particle (without ripple), ∆p/p is the momentum 
spread at extraction energy, Tspill is the spill time in seconds. The ripple contribution to 
the momentum at the frequency ω can be written as:

(6.58)

where pro is the constant component, and prω is the modulated component of the 
amplitude of the ripple at the particular frequency considered. By defining:

(for

pr becomes:

The total momentum derivative during extraction is therefore:

(6.59)

In the general case, (0 < AE < AEbxlcket/2) the average multiplying factor is given by 
(6.46). Inserting in (6.46) the results of (6.55) and (6.58) gives the new multiplying 
factor (for simplicity pr(co)= pr):

The duty factor is given by equation (6.41), inserting the new value for K\
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In the case of AE = 0, a new expression for K is found. Let Ko be the average 
improving factor coming from (6.51). After the insertion in (6.51) of the results of 
(6.56) and (6.59)

(6.61)

and the duty factor can be written as:

It is also interesting to know the minimum K value and hence the poorest value to be 
expected for F. The minimum K and F values are calculated for AE = 0 and for 
maximum pr and are given by:

It can be seen that the multiplying factor decreases if the frequency of the ripple 
increases, or if the spill time increases. As an example, the multiplying factor for a 
100% modulation (i.e. pr = p0) from (6.60) leads to:

6.5.6 Recommendations
In conclusion, some practical recommendations should be kept in mind:

• The bucket half height should be higher than the energy spread engaged in the 
resonance, which sets a minimum value needed for the rf voltage.

• The bucket should be properly positioned with respect to the resonance region.

• The rf voltage value will depend on the machine, on the available hardware, and on the 
beam parameters.

• The empty bucket must always give the same magnitude but opposite acceleration rate as 
that given by the betatron core.
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Empty rf bucket channelling improves the spill quality during slow extraction 
by increasing the dp/dt at the resonance crossing. The improvement is not the same for 
all particles, but depends on their betatron amplitude. Furthermore, it depends on the 
amplitude and the frequency of the ripple. The method becomes less effective as the 
ripple frequency increases.

Another characteristic of this technique is that the particles are extracted in a 
small interval of the longitudinal phase interval 0-2π This results in a modulation of 
the spill at harmonics of the rf frequency (few MHz). In the case of medical machines, 
the degradation of the spill quality at frequencies above 10 kHz is of no concern, since 
the modulation coming from such high frequencies is averaged by the slow extraction 
process, the physical spot size and the integration time in the on-line dosimetry system 
[28].

References
[1] K. Johnsen, Betatron core for the electron storage ring, PS/Int. AR/60-29.
[2] J.C. Ciret, Extraction du faisceau de Saturne II par acceleration betatronique le 

Gephyrotron, GERMA 76.02/1E-117 (1976).
[3] Ch. Eilert, D. Habs, E.Jaeschke, T. Kambara, M. Music, D. Schwalm, P.Sigray, A. Wolf, An 

induction accelerator for the Heidelberg Test Storage Ring TSR, Nucl. Instr. And Meth. 
A314 (1992) 399-408.

[4] Private communication, Ch. Steinbach, Betatron acceleration during extraction, Minutes of 
the Meeting on Slow Extraction from Synchrotrons for Cancer Therapy, CERN 13-14 
February 1996.

[5] L. Badano, S. Rossi, Characteristics of a betatron core for extraction in a proton-ion 
medical synchrotron, CERN/PS 97-19(DI).

[6] S. van der Meer, Stochastic extraction, a low ripple version of resonant extraction, 
CERN/PS/AA Note 78-6.

[7] R. Cappi et al., Ultraslow extraction, CERN/PS/DL/LEA 82-3.
[8] G. Molinari, H. Mulder, The improved ultra slow extraction noise system at LEAR, Proc, of 

the 4th European Particle Accelerator Conference, London, 1994, pp. 2376-2378.
[9] D. Boussard et al., Slow extraction at 400 GeV/c with stochastic RF noise, SPS Improvement 

Report No. 179.
[10] W. Hardt, Moulding the noise spectrum for much better ultra slow extraction, 

CERN/PS/DL/LEAR Note 84-2.
[11] W. Hardt, Remarks on stochastic extraction, CERN/PS/DL Note 78-5.
[12] Private communication, L. Badano, Feeding the resonance with noise, Minutes of the 2nd 

Meeting on Slow Extraction from Synchrotrons for Cancer Therapy, CERN 2-3 September 
1996.

[13] S. Rossi, Elements for a comparison between active scanning systems: raster and voxel 
scanning, Minutes of the PAC Meeting, CERN, December 1995.

[14] G. Molinari, L’extraction stochastique de LEAR, CERN/PS/AR Note 92-05.
[15] M. Crescenti, G. Primadei, and A. Susini, A New Compact Large Frequency-Swing RF 

System for Hadron Acceleration: Test Results, CERN/PS 97-60 (DI).
[16] K.R. Symon, A.M. Sessler, Methods of radio frequency acceleration in fixed field 

accelerators with applications to high current and intersecting beams of particles, Proc. 
CERN Symposium on High Energy Accelerators and Pion Physics, Geneva, 1956 (CERN, 
1956), Vol. 1,44-58.

[17] W. Pirkl, Longitudinal Beam Dynamics, Proceedings of CAS Rhodes, CERN 95-06 Vol. 1
pp. 233-257.

[18] C. Bovet, R. Gouiran, I. Gumowski, K.H. Reich, A Selection of Formulae and Data Useful 
for the Design ofA.G. Synchrotrons, CERN/MPS-SI/Int. DL/70/4.

[19] E. Ciapala, Stacking and Phase Displacement Acceleration, Proceedings of CAS Paris, 
CERN 85-19 Vol. 1 pp. 195-225.

PIMMS January 1999



134

[20] E.W. Messerschmid, Dispersion of stacked protons in synchrotron phase space by a 
modulated radio-frequency voltage, CERN-ISR-RF/72-28

[21] J. MacLachlan, User’s Guide to ESME v.8.2 (1996). S. Hancock, private communication.
[22] M. Crescenti and S. Rossi, PIMMS RF Programme, Minutes of the Meeting on Proton Ion 

Medical Machine Study, CERN February 1997.
[23] R. Cappi and C. Steinbach, Low Frequency Duty Factor Improvement for the CERN PS Slow 

Extraction Using RF Phase Displacement Techniques, 1981 Particle Accelerator Conference, 
Washington, March 11-13, 1981.

[24] A. Maksimov, IHEP Protvino, Russia, private communication.
[25] J. Le Duff, Longitudinal Beam Dynamics in Circular Accelerators, Proceedings of CAS 

Paris, CERN 85-19, Vol.l p. 137.
[26] M. Crescenti, RF Empty Bucket Channelling Combined With a Betatron Core to Improve 

Slow Extraction in Medical Synchrotrons, CERN/PS 97-68 (DI).
[27] D. Carey, The Optics of Charged Particle Beams, Harwood Academic Publishers 1987, p.3.
[28] U. Amaldi and M. Silari (ed.), The TERA Project and The Centre for Oncological

Hadrontherapy, Frascati INFN Publisher, Second Edition Vol. 2 Chap. 7, (1995).

* * *

PIMMS January 1999



135

1-7 LATTICES
It is useful to review briefly the types of ring lattice that can be used for the 

slow extraction schemes discussed in the earlier chapters, as well as some of the basic 
design choices. Note that the three examples of ring lattices are all drawn to same 
scale.

7.1 REGULAR-CELL LATTICE
The simplest structures are built by concatenating several identical cells. The 

individual cells may be FODO, doublet, triplet or a variant of these. Figure 7.1 is an 
example of such a lattice taken from Reference 1. This example is based on a doublet 
cell. The natural choice for this lattice (and that chosen in Ref. 1) is to use a tuning 
quadrupole to move the resonance into the beam as illustrated in Figure 3.2 (IV).

The main advantages are:

• Simplicity.
• Small numbers of components.

The main disadvantages are:

• Equipment for injection, extraction, rf etc. has to be adapted to fit the rigid layout of 
straight sections.

• No dispersion-free regions in which the resonance sextupole and the rf cavity can be 
installed.

• With the quadrupole extraction, the lattice functions are changing during the spill.

The movement of the separatrix during the extraction makes the Hardt 
Condition inapplicable, achromatic transfer between the electrostatic and magnetic 
septa would require an undesirably large phase advance between septa (see Section 
3.12) and ‘front-end’ acceleration is not easily applied. This type of machine would be 
adequate for a beam delivery using passive spreading, but would be less suitable for 
active scanning.

Figure 7.1 A regular cell lattice for a medical machine [1]
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7.2 ‘SQUARE’ RING LATTICE
The primary problem with the regular-cell lattice is the inflexibility of its layout. 

Ideally, one would like to adapt the drift spaces to the tasks they are required to 
perform. A first step in this direction is to create the ‘square’ lattice, in which the 
dipole magnets are collected into four ‘corners’ separated by four straight sections 
with focusing. Figure 7.2 shows the example of the EULIMA ring taken from 
Reference 2. The sides of the ‘square’ are one pair of long straight sections (on 
opposite sides) and one pair of short straight sections. The lattice is symmetric about 
the centres of the long and short straight sections. Injection and extraction are placed 
in the long straight sections with the two remaining short straight sections being used 
for rf, diagnostics, etc. There is no zero dispersion region in this example. The 
underlying cell structure is a split FODO.

The main advantages are:

• The straight sections can be designed with longer or shorter lengths (in opposing pairs) 
with relative ease.

• The dipoles are usually combined into either four 90° units, or perhaps eight 45° units, 
which makes a compact structure.

The main disadvantages are:

• The magnet yokes and the coils are more difficult to manufacture than say the twelve 
smaller units of the regular-cell lattice in Figure 7.1.

• Extracting the beam from within a single straight section may require rather extreme 
fields for the extraction elements (since the phase advance is low), which implies that 
this type of structure is better suited to protons than to light ions.

The Hardt condition can be arranged and the achromatic transfer between the 
electrostatic and magnetic septa is automatically satisfied while the extraction is 
confined to a single straight section. All extraction schemes could be applied in such a 
lattice.

Figure 7.2 EULIMA - A ‘square’ ring lattice [2]

PIMMS January 1999



137

7.3 CUSTOMISED RING LATTICE
As the optics becomes more sophisticated, the need to customise the lattice 

becomes stronger. Inevitably, the ‘wish’ list for the lattice becomes very long and, in 
the case of a medical machine, the main points would be:

• The resonance sextupole should be in a dispersion-free region with the horizontal 
betatron amplitude function large and the vertical betatron amplitude function small.

• The phase advances from the sextupole to the electrostatic septum and the electrostatic 
septum to the magnetic septum should be chosen according to the extraction scheme.

• The lattice at the septa should have small vertical betatron amplitude functions for 
aperture reasons and large horizontal betatron amplitude functions for efficiency reasons.

• The dispersion function needs to be shaped for the Hardt Condition (most probably D>0 
and D '<0) at the electrostatic septum.

• If possible, the transit between the two extraction septa should be achromatic.

• To ensure that the longitudinal and transverse oscillations remain uncoupled, rf cavities 
should be sited in dispersion-free regions.

• Chromaticities are better made negative below transition and positive above transition 
for stability.

• The co-existence of the separatrices and the ‘waiting’ beam in the same machine 
imposes more than the usual constraints on the positions of obstacles in the aperture 
such as collimators, dumps and septa, but primarily, it is necessary to arrange for the 
separatrices to grow in a balanced way in the aperture.

Whenever a conflict occurs in the design, the overriding need is that of a stable 
reproducible spill and this will dominate the design choices at all levels. For example, 
the overall closed-orbit distortion is not a critical factor, but the local distortions at the 
sextupoles and septa are critical.

Operational considerations favour separate-function lenses for focusing and the 
provision of separate lenses for correction systems, although this may be counter to 
economic and/or space considerations. The magnets will be ramped and will therefore 
have to be laminated to ensure a sufficiently good field quality, but, for reasons of 
sensitivity to ripple, it is counter-productive to make the time constants too short (see 
Section 5.11). In general, precision and reproducibility are improved by avoiding 
backleg windings and trimming supplies on main lattice magnets. Individual correctors 
are preferable for operation.

Arranging small vertical beam sizes in the main lattice dipole saves ampere- 
turns and hence power. Equally, small vertical beam sizes in septa and kickers can 
help the designs considerably.

With the above points in mind, a customised lattice for PIMMS was designed 
and is shown in Figure 7.3. The underlying cell structure is a partially split FODO 
where the F is split but the D is not. This could also be viewed as a triplet structure.
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Figure 7.3 The PIMMS customised lattice

7.4 BASIC CELL TYPES
Figure 7.4 summarises four types of lattice cells upon which ring designs are 

usually based. It is difficult to compare these cells in an absolute way, but, to give 
some idea of the general properties, all the cells have been scaled to give 72° phase 
advance in both planes over a distance of 9 m. Beside each diagram, the data for the 
integrated, normalised quadrupole gradients (MAD sign convention) and the maximum 
and minimum betatron amplitudes functions are noted. In terms of the maximum 
betatron amplitude functions, the cells vary over a range of 1.30, but this is not so 
much when it is realised that the beam sizes are proportional to the square roots of 
these values and vary only by a factor of 1.14. The integrated gradient strengths vary 
much more and change by a factor 2.3 between the economical FODO cell (I) and the 
triplet (III). However, the tuning ranges of these cells are so large that it is unwise to 
pay too much attention to these generalisations. In most cases, it is better to choose 
the cell type upon which to a base a lattice according to the requirements of the user. 
The PIMMS lattice, for example, resembles the split FODO inasmuch as the F is split 
to produce quasi-constant lattice functions inside septa. The structure also resembles 
the triplet and this aspect provides some of the smallest vertical beam sizes in the 
machine inside the extraction and injection equipment where large gaps would be 
expensive in terms of power and equipment. It is true that one would expect a lower 
overall power consumption in the lattice, if the structure could be modified to a 
FODO, but then the septa would not be so well treated and the gradients at injection, 
that are already uncomfortably low, would become even lower and more prone to 
fluctuations from remanent fields. In this case, it is felt that the power gain would be 
marginal and the disadvantages too important to neglect, but of course in a different 
machine, with a different purpose, the final choice could be very different.
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(I) FODO

(II) Doublet
Betatron amplitude functions [m] versus distance [m]

(III) Split FODO, or F OF DOD
Betatron amplitude functions [m] versus distance [m]

Figure 7.4 Lattice cell types
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• The FODO cell (I) is perhaps the best known and provides the most efficient 
focusing system. The optimum phase advance in a FODO cell for beam size is 
-76°, which is close to the case shown.

• The doublet structure (II) conveniently provides one long and one short drift 
space, but since the quadrupoles are closer together they must be stronger and the 
power consumption increases.

• The split FODO, or FOFDOD, structure (III) provides a flexible lattice in which 
the FOF and the DOD spacing can be varied over a wide range without instability. 
Of the examples shown, it has the smallest beam sizes and the quasi-constant 
regions of the betatron amplitude functions, in which one plane is higher than the 
other, can be used to create a semi-independence between the planes even over 
long pieces of equipment. However, the power consumption is again higher with 
respect to the FODO.

• The triplet structure (IV) provides, a low-0-shape for the lattice functions in both 
planes in the long drifts. This is especially useful for equipment that needs small 
apertures in both planes. The peak that occurs at the centre of the triplet is usually 
arranged to be in the vertical plane so that the horizontal betatron amplitude 
function is kept small at all positions. In this way, space is created for the 
horizontal dispersion function and the two planes end up on aggregate as being 
well balanced from the point of view of aperture.

7.5 COMMENTS
♦ The general consensus of opinion is that proton machines for passive 

spreading should be made as small as possible with as few dipoles as 
possible, which favours the ‘square’ ring with either a quadrupole or an rf- 
driven extraction. The lower magnetic rigidity of the protons reduces the 
overall size of the dipoles to a point where the extra complexity of the coil 
and yoke design for the large bending angles is not so important.

♦ When active scanning is considered, there is an advantage in using light 
ions because these particles scatter far less in the body and the spot size can 
therefore be controlled more effectively than for protons. A synchrotron is 
then the preferred machine and a customised lattice adapted to the Hardt 
Condition with the amplitude-momentum extraction scheme driven by a 
betatron core and some form of front-end acceleration will give the best 
results as regards a smooth spill.

♦ This leaves the case of protons with active scanning. The recommendation 
would be to use a synchrotron with a customised lattice that can apply the 
Hardt Condition, a betatron core and some form of front-end acceleration. 
If the equipment already exists, or space is a critical problem, then the 
betatron core should take priority. If the betatron core cannot be installed, 
then a quadrupole extraction is the next choice, but the quadrupole should 
have a time constant of at least 100 ps in order to gain some smoothing for 
the multi-kHz ripple.

PIMMS January 1999



141

♦ The lattice should NOT be chosen without first choosing the extraction 
method and the type of treatment to be performed. The best results are 
obtained by making an integrated choice.

The example ring lattices given in this chapter were all machines designed for 
use with light ions. For proton operation only, the lattices would have been smaller. 
The progression from the regular-cell lattice to the customised lattice is accompanied 
by an increase in the dispersion function. This is to be expected. In the customised 
lattice, the dispersion function is forced to zero, which means that there is an 
oscillation about the average value of 3 to 4 m with troughs going to zero and peaks 
going to about twice the average value. If the lattice were much larger, it would be 
possible to use a dispersion suppressor and to avoid this oscillation.

References
[1] Chen Wuzhong, Design of a light ion medical synchrotron, GSI-92-24 (October 1992).
[2] G. Cesari, P. Lefevre, D. Vandeplassche, Feasibility study of a synchrotron for the European 

light ion medical accelerator, CERN/PS/91-08(DI).
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1-8 MATCHING TO GANTRIES
In the extraction line, a rather special situation is met in which a fixed transfer 

line must be matched to a section of line, called the gantry, that has to be able to rotate 
through a full 360° without affecting the beam spot at the patient [1] (see Figure 8.1). 
Emittance inversion insertions are fairly commonplace in accelerator laboratories, but 
not lines with full rotational optics as required in this case. In cyclotron-based 
facilities, the problem is solved by making the beam distribution rotationally symmetric 
at an interface between the fixed and rotating lines. A rotationally symmetric beam 
requires equal emittances, equal lattice parameters and zero dispersion. Unfortunately, 
the slow-extracted beam from a synchrotron, as described in Chapter 4, is far from 
fulfilling these requirements. The problem is soluble in an elegant way, but it requires 
the extraction line(s) and the gantry(ies) to be designed according to an overall plan. 
Finally, the high magnetic rigidity of the carbon beam makes it desirable to investigate 
forms of gantries other than the iso-centric gantry shown in Figure 8.1.

Figure 8.1 Schematic view of an iso-centric gantry

8.1 MATCHING METHODS
A gantry makes it possible to deliver the radiation dose to the tumour from 

different angles and hence to spread out the entry dose and to avoid critical organs. 
The value of the gantry is clear, but it raises the problem of how to make the optics of 
the transfer line and gantry completely independent of the gantry rotation, so that there 
is:

• No change in spot size and shape at the treatment volume.
• No correlation between momentum and position.
• No change of the beam optics inside the gantry.

There appear to be only two methods of matching, that satisfy all the above 
requirements, and a third method that partially fulfills them. A brief description of 
these methods is given below before the tools are developed for analysing them.
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Symmetric-Beam Method:
This method requires a fully symmetric beam at an interface point between the 

fixed beam line and the gantry. A fully symmetric beam would have gaussian or KV 
distributions with equal emittances and lattice functions and zero dispersion functions. 
These requirements automatically mean that the beam will be rotationally symmetric in 
real space.

Round-Beam Method:
In this method the phase advances in the gantry are made multiples of it in both 

transverse planes. This matrix family has the top right element zero and acts as a 
telescope giving constant magnifications of the betatron amplitude functions. In the 
general case, the alpha functions are dependent on the incoming betatron amplitude 
functions, which may be acceptable in a gantry design, but is not aesthetic. In most 
cases, the entry and exit alpha functions would be made equal and most probably zero, 
so that the transfer matrices for each plane will have all zero off-diagonal terms. The 
one-to-one, or identity matrix is then a special member of this family. This type of 
matrix will map the beam directly to the patient at the exit with a constant 
magnification. If the input beam is round then the output beam will also be round, but 
scaled by the magnification, and the rotation of the gantry will not be evident. In this 
case, a round beam means Expx = Ezpz with gaussian or KV distributions, which is a 
slightly less stringent condition than that required for the symmetric beam method. 
The dispersion function must also be zero as for the symmetric beam method. The 
only problem that occurs is that the optics inside the gantry changes with rotation, 
which could affect the beam steering/scanning in gantries that incorporate scanning in 
their optics. Although each case has to be studied separately, it is often possible to 
freeze the optical parameters in the last section of the gantry where the steering occurs.

Rotator Method:
The complete solution to this problem is the ‘rotator’ which is a section of 

quadrupole lattice with phase advances of 2π and π in the transverse planes that is 
placed just upstream of the gantry [2]. This module has to be physically rotated by half 
of the gantry angle. Mathematically, the mapping from the fixed line to the rotating 
gantry is exactly one-to-one and one-to-minus-one and there are no restrictions on the 
lattice functions or the dispersion vectors. As will be explained later, the practical 
design does require some care and beam sizes may impose practical limits.

8.2 TOOLS FOR DESCRIBING THE MATCHING METHODS

8.2.1 o - Matrix Formalism [3]
Statistical average of a distribution

Let y be a vector containing the transverse phase-space co-ordinates of a 
particle. The statistical averages that describe a distribution of particles in phase space 
are then contained in the co-variance a-matrix defined as,

Definition of co-variance matrix, <*  = (y y T) (8.1)

* K-V stands for Kapchinskij-Vladimirskij and refers to distributions that are correlated such that 
Ex+Ez = constant for each particle. This form of correlation erases any indication of rotation 
asymmetry without skewing the 4-D ellipsoid i.e. <xx> and similar cross terms remain zero.
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The elements of the σ-matrix are therefore given by,

(8.2)

Transformation properties of the σ-matrix
Let M represent a linear transformation, so that,

(8.3)

The use of this linear transformation with the definition of the σ-matrix gives* ,

Hence,

Transformation (8.4)

The matrix M can either be a transfer matrix for any linear lattice, or a rotation matrix, 
describing the rotation of a section of beam line. The knowledge of the σ-matrix at 
one point in a linear lattice is therefore sufficient to calculate the cr-matrix anywhere 
else provided the transfer matrices are known. This applies equally to lattices where 
sections have rotated about their axes.

Invariance
Consider, W =yTo-1y, providing o1 (known as the error matrix) exists.

The evaluation of W can be made at two positions related by y2 = My1 so that,

With (8.4) and the standard relationship
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The substitution of this result in (8.5) gives,

Thus, W is an invariant of the beam,

Invariant, (8.6)

An uncoupled beam
An uncoupled beam is one that has no correlation between the two transverse 

phase spaces so that all elements of the matrix that couple the horizontal and the 
vertical phase spaces vanish to give the form shown below.

(8.7)

The invariant W for an uncoupled beam is formed as before,

Thus, for an uncoupled beam the general invariant, W, separates into two independent 
invariants, Wx and Wz

(8.8)
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This can also be written as,

(8.9)

8.2.2 Link between the σ - matrix and the Courant and Snyder formulation
If the beam is uncoupled, it is sufficient to consider just one transverse plane. 

The derived invariant for the x-plane from (8.8)

(8.8)

(8.9)

With the help of the definition of the statistical emittance,

(8.10)

the invariant Wx can then be rewritten as,

(8.11)

By comparison with (8.9), the Courant and Snyder parameters can now be defined as,

(8.12)

It is quickly verified that these definitions satisfy the Courant and Snyder relationship,

Finally, the bridge between the a-matrix and the Courant and Snyder parameters is 
completed by writing the σ-matrix for an uncoupled beam in terms of the Courant and 
Snyder parameters,

(8.13)
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Hence it is possible to evaluate the σ-matrix for the uncoupled beam, extracted 
from the accelerator, in terms of the usual lattice parameters and then to find the 
σ-matrices at any position downstream (e.g. in the rotator, gantry, etc.) by the use of 
the appropriate transfer and/or rotation matrices. Once the beam is coupled, either 
after a rotation or after a coupling element such as a skew quadrupole, the Courant 
and Synder formalism no longer applies, but the sigma matrix maintains a full 
description of the beam and the 1-σ beam sizes in the planes of the normal modes can 
be found very easily from the square roots of the matrix elements σ11 and σ 33.

8.3 SYMMETRIC-BEAM METHOD
In the symmetric beam method, the gantry is matched directly to the fixed beam 

line coming from the accelerator. This situation is shown schematically in Figure 8.2.

Figure 8.2 Equipment layout for the symmetric beam method

Assume that the beam coming from the accelerator is uncoupled. The a-matrix 
at the end of the fixed beam line, just in front of the gantry is then given by,

(8.14)

If the gantry is rotated by an angle v, the positions and angles of all particles just at the 
junction can be described in the rotated co-ordinate system (u,v) by multiplication with 
the rotation matrix Rv,
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The σ-matrix after a rotation can be derived from the original matrix by using the 
transformation according to (8.4) to give,

(8.16)

where s = sinv and c = cosv and v = the angle of rotation.

The matrix a2 gives the various averages in the rotated gantry co-ordinate system (w,v) 
in terms of the beam parameters of the fixed beam line co-ordinate system (x,z).

If the gantry is not rotated (v = 0 and sinv = 0), all terms in the off-axis 
quadrants are zero and the main terms regain the form of the uncoupled matrix. 
Similarly, for a rotation v = 90°, the matrix a2 is of the same form as the uncoupled 
matrix but with x and z interchanged.

For the beam to be symmetric with respect to rotations, the matrix o2 must be 
independent of the rotation angle v and the following constraints have to be fulfilled at 
the entry to the gantry:

which is equivalent to,

To have the same lattice parameters in both planes is not very limiting in 
practice, but the constraint of equal emittances is a more severe problem, especially for 
resonant extraction from a synchrotron. Entering and leaving with zero dispersion 
functions is also a fairly strict optical condition for the gantry.

The above conditions demand that the beam be symmetric in real space and in 
the two transverse phase spaces. It is not sufficient to have only a physically ‘round’

For example, uncorrelated, truncated gaussians would form a square image in real space that would 
make rotation visible, although the emittances etc. could still be equal.
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Symmetric beam conditions, (8.17)

To these conditions, it is necessary to add that the beam distributions in x and z 
must be either gaussian or K-V in order that the rotation of the beam spot is not made 
visible by a structure in the beam that does not affect the statistical expectations* .
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beam at the interface point. This is quickly seen by considering a simple case of a 
beam with αx =αz =0 and Ex =n-Ez. To make this beam round in real space, 

EXBX = EZBZ is required and from this it follows that Bx =— Bz and because of αx,z 
n

being zero yx = n • yz. From the above conditions Exyx = Ezyz must also be fulfilled 
and it follows that: 

which forces the choice of n to be unity for equal emittances.

8.4 ROUND-BEAM METHOD
In this method, the equipment layout is the same as for the symmetric-beam 

method (see Figure 8.2), but additional constraints are placed on the gantry optics in 
order to relieve partially the constraints on the beam at the interface point.

The general transfer matrix for a section of line can be written as,

(8.18)

where the subscripts 1 and 2 refer to the entry and exit parameters respectively and Ap 
is the phase advance through that section. If the phase advance is adjusted to an 
integral number of π, then the matrix simplifies to,

(8.19)

Although this form could be accepted as a gantry matrix, it is far more likely that the 
alpha functions would be made equal at the entry and exit and very probably zero. 
Equation (8.19) would then be rewritten as,

(8.20)

where m is the magnification factor equal to the square root of the ratio of the betatron 
amplitude functions at entry and exit. This type of matrix is known as a ‘telescope’ 
and will be discussed further in Section 9.2 The identity, or one-to-one matrix also 
belongs to this family.
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The rotation of the gantry is described with a rotation matrix Rv that was given 
in (8.15). Thus the overall transfer matrix from the end of the fixed beam line to the 
treatment volume is then given by the product of (8.15) and (8.20) assuming equal 
magnifications in the two planes for simplicity:

where an even number of π have been chosen for the phase advances for simplicity.

At the treatment volume, the spot size and shape have to be independent of the 
rotation angle. To derive the required beam parameters at the matching point, it is 
sufficient to consider only the 2x2 transfer matrix To for x and z, (the matrix for x', z' 
being the similar):

If now the incoming beam had an asymmetry e.g. |x| < xo and z = 0, then at the 
treatment volume the distribution can be described in the gantry co-ordinate system 
(w,v) with the matrix To as,

(8.23)

This means that the beam, seen from the gantry co-ordinate system, is rotated at the 
treatment volume by the negative gantry angle v (see Figure 8.3).

The rotation of the beam at the patient cannot be avoided, but it can be made 
of no consequence by entering the gantry with a ‘round’ beam, so that the patient 
always ‘sees’ the same particle distribution independent of the gantry angle. In this 
case, a ‘round’ beam in real space requires,
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Figure 8.3 Rotation of the beam in the round-beam method
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(8.24)

at the interface point with gaussian or K-V distributions.

This constraint is slightly less strict than that required for the symmetric beam 
in Section 8.3, but the optics (beam sizes etc.) are not constant inside the gantry with 
rotation. For gantries using passive spreading after the last bend, the variable optics 
are of no consequence, but for gantries which incorporate active scanning, this could 
be a problem.

8.5 ROTATOR METHOD
The only truly rotational solution that also includes the dispersion vectors is the 

rotator method. Consider a section of bending-free transfer line with a betatron phase 
advance of 360° in the x-plane and 180° in the z-plane and ventry = veXit- The transfer 
matrix for this line will be;

(8.25)

Figure 8.4 Equipment layout for the rotator method
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Round beam conditions,

Now let this line be rotated by an angle v with respect to the normal fixed transfer line 
and let v be just half of the rotation angle of the gantry, 2v. The layout of the 
equipment is schematically shown in Figure 8.4.
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The transfer matrix from the exit of the fixed beam line to the interface point at the 
entry to the gantry is found by multiplying the rotation matrix for the angle v, the 
rotator and a second rotation matrix also for the angle v.

Thus, the final overall transfer matrix maps the incoming normal modes directly to 
those of the gantry without any cross-coupling and independently of the rotation angle.

Rotator (8.26)

Since a dispersion vector in a bending-free region behaves as a betatron oscillation to 
first order, the rotator will automatically match the dispersion vector (D,D’) into the 
gantry at the same time as it matches the normal modes. Thus there are no 
fundamental limitations on the beam symmetry, or on the dispersion functions or any 
changes to the optics inside the gantry with rotation angle. The fact that the rotator 
can match a dispersion vector into the gantry opens the possibility of a simplified 
gantry design with fewer quadrupole magnets and with the dispersion bump closed in 
the fixed part of the beam line. Note, however, that the beam is coupled inside the 
rotator.

The beam distribution is also of less consequence with a rotator. For example, 
although two truncated, uncorrelated gaussians would form a square boundary to the 
beam spot, the spot would always have the same orientation with respect to the gantry 
system. This point is relevant to the present study, since the slow-extracted beam will 
have sharp parallel edges in one plane and gaussian edges in the other. The spot will 
therefore not be round and the invariance of the orientation inside the gantry system 
will be of paramount importance for the scanning system.

8.6 ROTATOR DESIGN EXAMPLES
So far, the rotator has been represented by its 4x4 transfer matrix and the only 

constraint for its design was that the phase advances in the transverse planes must be 
2k and k. The overall transfer matrix, however, cannot give any information about 
beam sizes, chromatic effects etc. inside the structures. In the following Figures 8.5 to
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8.7 , the lattice functions and structures are shown for three different rotators at the 0° 
and 90° points.

Figure 8.5 Three-cell regular FODO rotator (a) not rotated, (b) rotated by k/2 
[Three cells of phase advance per cell pp=120°, Pq=60°, entry values of 0p=2.23m, 0q=3.69m, 

ap=1.77, aq=-1.85, two quadrupole families]

A rotation by 90° is equivalent to changing all the focusing lenses of the lattice 
into defocusing lenses. When viewed in this way, it is not surprising that the regular 
FODO rotator leads to very large fluctuations of the lattice functions. In the unrotated

Figure 8.6 Three-cell triplet rotator
[Three cells of phase advance per cell pp=120°, Pq=60°, entry values of 0p=0q=4m, ap=aq=0, 

two quadrupole families]
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whereas in the rotated case these ratios increaseFODO

alarmingly to This effect is strong when the entry values

for the alpha functions are large and have opposite signs. This gives the first hint that 
rotators are best made with zero alpha functions at the entry and exit. This is further 
supported by the triplet rotator of Figure 8.6, in which the ratios of the betatron 
amplitudes functions at 0° and 90° remain exceedingly well behaved at

The p-plane and ^-planes swap at 90°.
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In Figure 8.7 a doublet matches symmetric lattice parameters into a FODO 
channel that gives the required phase advance. The lattice functions at 0° and 90° are 
again well behaved with B^- = 9 and B^ = 9.7 . The exotic behaviour of the FODO 

Pp p,
rotator is thus avoided by entering with equal alpha-values set to zero.

8.7 LENGTH SCALING
So far gantry structures and rotators have been mentioned as examples of 

lattice modules with phases advances that are an integral number of tc. In the next 
Chapter, similar modules will be proposed for closed-dispersion bends and extension 
modules. Since it is very often that a lattice has to fit an existing building, it is 
interesting to know how these structures can be scaled while maintaining their special 
phase advance properties. Starting from the equation of motion for the horizontal 
plane:

where the general focusing constant, K(s) = h2 (s) - k(s) and h(s) is the inverse of the 
local radius of curvature and k(s) is the local normalised gradient. The substitution of 

the solution x(s) = ^3(5) cos leads to the well-known equation of the betatron 
amplitude function,

This equation determines the P-function for the whole structure and therefore also the 
phase advance |ll(s) = [p-lds. To scale a structure, equation (8.28) is rewritten with 
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Thus rotators should be designed to have equal alpha functions equal to zero at 
entry and exit. The complete evaluation of beam sizes at all rotation angles will be 
dealt with in Section 8.8.

(8.27)

(8.28)
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the inclusion of scaling factors (k, for the length; X for the focusing and t for the p 
function), so that

After some re-arrangement, this equation yields the relations between the scaling 
factors

8.8 BEAM SIZES IN ROTATORS

8.8.1 With zero dispersion
The o-matrix formalism can be used to study the beam sizes inside the rotator. 

It is assumed that the initial beam coming from the accelerator is uncoupled. The a- 
matrix then comes directly from (8.7),

(8.7)

The transformation of the o-matrix through the lattice was given in (8.4) as 
o2 = Ma.Mt , where M can be written as,

where C and S are sometimes known as the principal trajectories. The exact forms are 
given below and can be found by comparison with the well-known general transfer 
matrix given in (8.18). The subscripts 1 and 2 denote the initial (rotator entrance) and 
final (a point downstream in the rotator) values respectively, Ap is the phase advance 
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(8.29)

Scaling with constant phase advance

From a = , it follows that a remains unsealed and that y scales inversely with p.
2 ds

The quadrupole apertures are determined by the beam size. Since the emittance is 

constant the apertures scale like: A = jEfi => Vk VW the gradients scale 

i -ylike A: => —k .and, finally, it follows for the pole tip field: B le => k /2B le.
K P P

(8.30)
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through the lattice and all four equations exist in both planes with the appropriate 
lattice parameters.

(8.31) 

(8.32)

(8.33)

(8.34)

Let the initial σ-matrix in the normal transfer line before the rotator be uncoupled. The 
effect of the rotation can be expressed as,

The matrix σ2 can now be transferred along the rotator using the transfer matrix M: 

where M is evaluated using the principal trajectories of (8.30).

The full expansion of the matrix σ3 can be avoided if only the beam size is 
wanted. The Qi.i and a3.3 terms give the rms beam sizes <p2> and <q> in the co­
ordinate system of the rotator, but expressed in terms of the original beam parameters. 
The two terms in the final a-matrix are given below.

where, 5 and c are sine and cosine of the rotation angle and Cp>q and Sp.q are the 
principal trajectories of the rotator. The following Figures 8.8-8.10 show the beam 
sizes inside the three rotators as seen in the co-ordinate system of the rotator as a 
function of the rotation angle. Beam sizes in these examples are calculated for 
Ex = 2 [ti mm mrad] and Ez = 10 [tl mm mrad].
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(a) (b)

Figure 8.8 Horizontal (a) and vertical (b) beam sizes inside a FODO rotator 
when rotating from 0 to k (the form repeats for k to 2k)

(a) (b)

Figure 8.9 Horizontal (a) and vertical (b) beam sizes inside a triplet rotator 
when rotating from 0 to k (the form repeats for it to 2k)

(a) (b)

Figure 8.10 Horizontal (a) and vertical (b) beam sizes inside a Doublet/FODO rotator 
when rotating from 0 to it (the form repeats for it to 2k)
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8.8.2 With finite dispersion
When calculating the beam size from the a-matrix using equations (8.35) and 

(8.36), the average position of the beam is ignored. Fortunately, this omission is easily 
corrected by tracking the single particle that is exactly on the central or closed orbit of 
the beam. For simple orbit distortion, the normal 2x2 matrices with the appropriate 
rotation matrices can be used. For off-momentum beams, the normal 3x3 transfer 
matrices must be used that include the momentum effects.

8.9 SPREADING AND SCANNING SYSTEMS
The last action of the optical system is to ‘spread’ or ‘scan’ the beam over the 

tumour. Beam spreading is the more conventional approach, in which the tumour is 
treated either as a volume or in thick slices. Beam scanning divides the tumour into 
thin slices with many pixels and adapts the beam to treat each pixel separately. These 
two main approaches are summarised in Figure 8.11. Note that Figure 8.11 is far from 
being comprehensive and that many variants and combinations exist. In particular, no 
mention is made of systems that move the patient as part of the scanning procedure or 
displace steering magnets to economise on magnet apertures.

Irradiation field is shaped by collimator and bolus to fit tumour

Figure 8.11 Beam spreading and scanning

Source to surface distance (SSD)
Passive spreading and divergent beam scanning both suffer from a finite source- 

to-surface distance (SSD) that leads to an enhancement of the surface dose (see Figure 
8.12). The maximum angle of divergence is a matter of discussion. In reference 4, the 

PIMMS January 1999



160

maximum divergence is quoted as ±1° and this criterion is used to relax on the strict 
requirement of parallel scanning. However, for passively spread beams in Ref. 5 a 
minimum SSD of 2m is quoted. If the field of irradiation is ±10 cm then a SSD of 2 m 
corresponds to ±2.9°.

Positioning of the scanning magnets
After the last gantry magnet. In this case, the scanning is forcibly divergent, but this 
layout has the great advantage that the gantry magnets do not need enlarged apertures. 
Thus, the weight and cost of the gantry are reduced.

Incorporated in the gantry optics. Once the scanning magnets are moved further 
upstream into the gantry the focusing of the last dipole and possibly some quadrupoles 
can be used to create a parallel scanning system. If spaces are available at the correct 
phase advances, then parallel scanning is possible with a single magnet in each plane, 
otherwise two magnets are needed per plane. However, a usual compromise is one 
magnet per plane with approximately the correct phase advance. The loss of parallel 
scanning is only partial and is offset by the advantage in size and cost gained by 
reducing the gap in the last dipole magnet of the gantry.

Figure 8.12 Enhancement of surface dose with divergent beams
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Figure 9.1 Schematic view of an example extraction layout

9.2 ‘TELESCOPES’
Before describing the individual modules, it is useful to review the properties of 

‘telescopes’ with integer k phase advances. The general transfer matrix from (8.18) 
can be written as,

(9.1)

where C and 5 are known as the principal trajectories and the other symbols have their 
usual meaning. The family of telescope modules of interest is characterised by having:

Definition of a ‘telescope’ module (I): 5=0 and C' = 0. (9.2)

From inspection of (9.1) and since P can never be zero, Ap must be nn to satisfy 5 = 0 
and a must equal ot0 to satisfy C'= 0. Note that both conditions are independent of 
the initial values of oco and B0. Thus in the Courant and Snyder formalism,

Definition of a ,’telescope’, module (II) ∆μ = nπ and α0 = α. (9.3)
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The lattice functions can be transmitted through a structure by a standard 
matrix expression,

When the lattice is matched for C' = 0 (9.2) and α = α0 (9.3), CS' will be unity and 
(9.5) simplifies further to:

(9.6)

Thus for any incoming set of lattice parameters, it follows that

‘Telescope’ magnification: (9.7)

9.3 EXAMPLE OPTICS WITH A RIESENRAD GANTRY
Figure 9.2 shows the ring and extraction line of the example optics. The line is 

modularised with very specific functions for each module. The base condition for 
handing the beam over from one module to the next is BX = BZ = 3 m, Dx = Dz = 0 and 
αx = αz = 0. However, the ‘telescope’ modules will locally modify the betatron 
amplitude functions by some magnification factor. As shown in Figure 9.1 the idea is 
to match out of the accelerator into a long straight line from which the gantry lines are 
derived. The gantry lines can turn to the left or the right and extra units can be 
inserted at will. It is stressed that the layout in Figure 9.2 is an example and that in 
principle there is considerable flexibility within the limits of the modular design.

9.3.1 Initial conditions
To evaluate the beam characteristics at the entrance to the line, simulations of 

the extraction process have been made for the PIMMS synchrotron. By recording the 
position of the particles at the entrance to the electrostatic septum, the expected beam 
distribution can be studied and used to define the initial conditions at the entry to the 
extraction line. Figure 9.3, is the result of such a simulation in phase space of the plane 
of extraction. The stable triangle can be seen situated at the vacuum chamber with one 
separatrix reaching out towards the electrostatic septum. The segment of separatrix 
that is cut off by the septum is indicated. The procedure followed here to situate the 
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segment in an unfilled ellipse rather than fit an ellipse directly to the segment is treated 
in the Section 9.3.2.

Figure 9.2 Layout of example optics for ring and extraction line 
[Horizontal plane drawn on a 9 m square grid]

Figure 9.3 Simulation of the extraction phase space at the electrostatic septum

The extracted segment in Figure 9.3 appears as a simple line, but in practice 
this line is composed of many lines coming from the stable triangles of different 
momenta (emittances). The thickness of these lines depends upon the emittance in the 
orthogonal plane and the coupling from the sextupoles (mainly the resonance 
sextupole). Figure 9.4 shows in more detail the extracted segments for maximum 
amplitude (emittance) in x (short lines) and zero amplitude in x (long lines) and for 
maximum amplitude in z (thick lines) and zero amplitude in z (narrow lines). The 
ellipses shown in the same figure are chosen to contain the segments and to have 
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reasonable lattice functions. The segments can then be considered as rotating in the 
unfilled ellipses as the beam goes along the extraction line.

0.0009 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,

Figure 9.4 Simulation of the extracted beam and ‘unfilled ellipse’ at the electrostatic septum

The difference in the spiral step for particles with different momentum 
deviation (different emittance) causes a shift in the centre of the segment for a different 
momenta. This can be taken into account with an initial dispersion and derivative of 
the dispersion defined by the distance between the centres divided by the momentum 
difference. The unfilled ellipses are chosen such that the dimension perpendicular to 
the segment is large, so that the width of the segment is unimportant.

Finally the set of initial conditions chosen for the PIMMS extraction line in this 
simulation is the following:

Note that in the horizontal plane the segments, and therefore also the unfilled 
ellipses, are determined geometrically by the resonance and are invariant with beam 
energy. In the vertical plane, the emittance comes directly from the circulating beam 
(with a small perturbation from coupling) and is beam energy dependent. This 
introduces the rather strange situation where the extracted segment is reasonably 
normal in the vertical plane, but in the horizontal plane, it is invariant with beam energy 
in one dimension and partially adiabatically damped via coupling from the vertical 
plane in the other dimension.
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9.3.2 Direct and indirect fitting of an ellipse
The simulations presented in the previous section show that the phase-space 

'footprint' of the slow-extracted beam from a synchrotron differs markedly from the 
fast-extracted beam, or a beam from a cyclotron:

• In the plane of extraction, the phase-space shape is close to being a narrow rectangle 
(known as the ‘bar’ of charge) that corresponds to the segment of the outward-spiralling 
separatrix that is deflected out of the machine by the electrostatic septum.

• In the orthogonal plane, the phase-space shape is the same as that of the circulating 
beam to first-order.

Figure 9.5 shows this situation schematically for a mono-energetic beam at the 
entrance to the extraction channel.

Figure 9.5 Schematic view of the phase-space 'footprint' of the beam in the extraction channel

If the severed segment of the separatrix were viewed at the entry to the 
electrostatic septum and if it were rotated until it was horizontal, it would be:

• 5-10 mm long depending on the momentum.
• -0.00005 rad wide.
• The particle density for a given momentum would be quasi-constant over the ‘rectangle’.

Courant and Snyder representation by ’direct fitting’
The conventional approach to representing beams is to find a closely fitting 

ellipse. In the case of a rectangle, the fitted ellipse would be somewhere in the range 
between the inscribed ellipse and the circumscribed ellipse. This is shown 
schematically in Figure 9.6 and the emittances and fitted lattice functions are 
summarised in Table 9.1.
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Figure 9.6 Direct fitting ellipse 
[‘Beam-rectangle’ (full width 10 mm, full divergence 0.05 mrad) = 0.16 π mm mrad]

Table 9.1 Direct fitting of inscribed and circumscribed ellipse

The range in emittance between the inscribed and circumscribed ellipses is 
already a factor of two which indicates that the fitting is not a natural action in this 
case. Furthermore, adiabatic damping in the vertical plane reduces the coupling to the 
horizontal plane (effect is proportional to the vertical emittance and the resonance 
sextupole strength) as the energy increases. Thus, at the top extraction energy, the 
horizontal emittance is reduced to approximately 50% of its value at the lowest 
extraction energy, which is reflected in a parallel change in the betatron amplitude 
function from 200 m to 400 m (see Table 9.1). This is an extremely strong energy 
dependence to take into account in the optics.

The length of the extracted beam segment is well known, but the divergence is 
more difficult to calculate and very difficult to measure. Firstly, it is very small and, 
secondly, it is very sensitive to vertical closed-orbit distortions at the resonance 
sextupole. A distortion of 4 mm can increase the beam divergence by a factor 4, which 
in turn reduces the betatron amplitude of the fitted ellipse by a factor 4. Thus, the 
fitted ellipse is strongly dependent on machine conditions such as the closed orbit.

The central orbit of the extraction channel is defined as the central momentum 
of the extracted beam. In Table 9.2, the results of a first-draft-lattice design show the 
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approximate situation at the lowest extraction energy, where the spiral step variation 
with momentum alters the length of the extracted segment. The fitted ellipse must 
follow these changes and this results in an extremely strong chromatic effect in the 
betatron amplitude function.

Table 9.2 Variation of the extracted beam segment with momentum deviation

Variation of the extracted beam segment with momentum deviation

Full length Full divergence Bx
[mm] [mrad] [m]

∆p/p = -0.0006 6 0.05 120
∆p/p = 0.0 8 0.05 160

Ap/p = 0.0006 10 0.05 200

The direct approach of closely fitting an ellipse to the extracted beam therefore 
leads to a number of undesirable effects:

• A Bx that changes with energy (factor 2), because the horizontal size of the beam is 
constant while the beam divergence undergoes a quasi-adiabatic damping.

• The absolute value of Bx is not well known. In practice, the coupling from the vertical 
plane is very sensitive to vertical closed-orbit distortions at the resonance sextupole and a 
distortion of 4 mm can give a factor of four increase in the emittance and a factor of 4 
reduction in the horizontal betatron function.

• The variation in spiral step with momentum deviation causes a strong chromatic effect 
in Px-

Courant and Snyder representation by 'indirect fitting'
The extracted beam can be treated as part of an ‘unfilled’ ellipse in the 

horizontal phase space. Since the transfer line is short, the motion of the beam will be 
coherent and its phase-space shape will be preserved. The orientation in the chosen 
ellipse and hence the beam width will be given by the phase advance down the line (see 
Figure 9.7).

The ‘unfilled’ ellipse is chosen from the infinite family of ellipses that have the 
‘bar of charge' as a diameter. The choice is best made so that,

• The divergence of the ellipse is far greater than that of the beam. The match between 
the ‘bar’ of charge and the diameter of the ellipse is then insensitive to the changes in 
the 'bar’s' divergence. The larger the divergence of the ellipse the narrower the bar can 
be made when turned upright in the ellipse.

• The px-value of the ‘unfilled’ ellipse should be adjusted so that maximum beam sizes in 
the extraction line at the gantry exit are convenient values.
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The different momenta in the beam can be transported in similar ellipses, but of 
different emittances to reflect the different lengths of the ‘bar’. In this scheme, it is 
essential to be able to control the horizontal phase advance in order to know and to be 
able to adjust the horizontal beam size at the patient.

Figure 9.7 Rotation of the 'bar of charge' with phase advance

9.3.3 Matching section
The first part of the extraction line, from the electrostatic septum to the 

magnetic septa, is inside the main ring, but off-axis. This is known as a ‘distorted’ 
orbit and has been calculated and introduced as a special section of lattice in which the 
quadrupoles, for example, are re-expressed as combined function magnets with edge 
angles calculated from the particle trajectory. After passing the second magnetic 
septum, there is a doublet and a long drift space before a final doublet and the bending 
magnets needed to close the dispersion bump from the ring. The long drift has two 
functions:

• The small 0X provides the phase advance to bring the dispersion function to zero.

• The vacuum pipe can be removed to allow the passage of a vehicle round the ring.

After matching the dispersion to zero, three quadupoles are inserted to match the 
lattice functions to the input of the next section while leaving a long drift at the end to 
provide space for the chopper. When the dispersion is zero, the different bars of 
charge corresponding to different momenta are overlapped at the centre. The 
geometry and the optical functions in this section of lattice are shown in Figures 9.8 
and 9.9.

9.3.4 ‘Chopper’
The ‘chopper’ (see Figure 9.10) is a system comprising four dipoles powered in 

series that allows the switching of the beam on and off. When the dipoles are not 
powered, the beam is absorbed in a dump. On the contrary, when the dipoles are 
powered, the beam is translated parallel to itself by the first two dipoles and is brought 
back to the axis by the second two. This circumvents the dump and allows 
transmission of the beam. As the dipoles are powered in series the beam stays on axis 
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downstream of the chopper at all times during the flat top and the rise and fall. Thus 
the beam position at the patient can be guaranteed as soon as transmission starts and is 
independent of fluctuations and the ‘rounding’ in and out of the power converter on 
the ramp. This device can be used for scheduled beam interruptions as well as 
emergency interruptions.

Figure 9.8 Plan view of the matching section and the ring

Figure 9.9 Optical functions in the matching section
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The chopper is not a module in the sense of the optics modules, such as the 
rotator. It requires a few metres of free space with a small betatron amplitude function 
at the position of the dump block in the direction of the deflection. In the present 
scheme, it is placed between the matching section from the ring and the phase shifter. 
Figure 9.11 shows the phase space distributions in the two planes at that position.

Figure 9.10 Schematic drawing of the chopper

Figure 9.11 Phase space plot of the beam at the centre of the chopper

9.3.5 Phase Shifter
As mentioned above and discussed in Section 9.3.3, the horizontal beam 

envelope is not adequately described by the betatron amplitude function. This implies 
that the standard way of changing the beam size through focusing is not suitable in this 
case. Fixing the values of Bx, αx, and εx fixes the unfilled ellipse in which the ‘bar’ of 
charge is contained, but the ‘bar’s’ orientation depends on the phase advance. This 
situation can be used to provide an independent method for changing the beam size at 
the patient by varying the phase advance while keeping the lattice functions Bx and αx 
constant in the line. A dedicated insertion that changes the phase advance without 
modifying the downstream lattice parameters has therefore been designed and will be 
referred to as the ‘phase shifter’. To fully exploit the variation in beam size, at least 90 
degrees of variation in the phase advance is needed (if the footprint of the beam in the 
horizontal phase space is parallel to one of the axes at the minimum or maximum phase 
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advance). Since the ellipse in the vertical phase space is filled, the vertical phase 
advance is unimportant. In Figure 9.12, the optical functions inside the phase shifter 
are shown for the phase advance ∆μx between 2.2 and 3.9 radians (97.5°), which 
allows the choice of any orientation of the bar of charge at the end of the line. The 
beta functions outside the module do not change, whatever phase advance is selected. 
In order to obtain a smooth change in the lattice functions, the vertical phase advance 
has been kept constant in Figure 9.12, but this parameter could be varied to help the 
matching if needed.

9.3.6 ‘Stepper’
To change the beam size in the vertical plane, a dedicated module, called the 

‘stepper’, has been designed to vary the vertical betatron amplitude function over a 
wide range while keeping all the optical parameters in the horizontal plane, including 
horizontal phase advance, constant. Assuming that at the minimum extraction energy 
the vertical, rms, geometrical emittance of the circulating beam is the same for protons 
and ions and is equal to 1.65 π mm mrad, then the range needed at the patient for Bz is 
2-23 m. Since the gantry and the deflection section out of the main extraction line will 
be telescopes in the z-plane in order to contain the betatron amplitude functions in the 
rotator, it is possible, to a certain extent, to choose the range of the stepper in Bz. The 
ratio Bmax/Pniin does not change, but the absolute value depends on the magnification 
factor chosen. In the gantry, a factor 3 will be applied, while in the deflection section a 
factor 0.5 is used. This implies that the stepper has to cover the range 2/3 Bmin to 2/3 
Bmax, that is 1.333-15.333 m. In Figure 9.13, the Bz covers the range 1 to 17 and at the 
end of the module with an entry value of 3 m, Bx = 3 m at entry and exit, αx = αz = 0 at 
entry and exit and ∆μx = π During the matching, the vertical phase advance was held 
constant at 2.9 radian for Bz = 1-11 m, but then to facilitate the minimisation the phase 
advance was allowed to vary, which interrupts the continuity between the traces in 
Figure 9.13.
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Figure 9.13 Optical functions in the ‘stepper’
Bz = 3 m at the entry and steps from 1 to 17 m in steps of 2 m at the exit. ∆μx = π radian, ∆μz 

varies from 2.9 to 3.23 radian, Bx = 3 and αx = αz = 0 at entry and exit]

9.3.7 Phase shifter - ‘Stepper’
The modules shown in Figures 9.12 and 9.13 are in fact identical and it is 

possible to combine their functions into a single unit. This is inconvenient inasmuch as 
a single module has to span over a two dimensional parameter space, which makes the 
operation more complicated and may reduce the global ranges, but it represents a 
considerable saving in space. Figure 9.14, shows the beta functions in the ‘phase 
shifter-stepper’ for four extreme cases in the parameter range.

Figure 9.14 Extreme optical functions in the combined ‘phase shifter-stepper’ 
[(a), (b) Bz = 1 m and ∆μx = 2.2 and 3.9 radian; (c), (d) Bz = 17 m and ∆μx = 2.2 and 

3.9 radian]
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9.3.8 Closed-dispersion bend
A one-to-one structure with a 2π phase advance is a very convenient structure 

in which to embed a bend with a closed-dispersion bump. Figure 9.15(a) shows the 
lattice functions of such a lattice module and 9.15(b) shows the geometry. The lattice 
functions are shown with the range of 1 to 17 m in the vertical plane. Since the bend is 
designed as a one-to-one module the maximum values are over 35 m. This module 
would be used with a gantry that requires zero dispersion at its entry and has a 
magnification of 1.35. In the next section, an example has been chosen where the bend 
is designed to de-magnify the vertical betatron amplitude function in order to limit the 
large vertical beam sizes.

In Figure 9.15(b), the outline is shown of the extension module that would 
continue to the next gantry. The lattice functions in this module would be very similar 
to the those in 9.15(a).

(a) (b)
Figure 9.15 Deflection section in the form of a one-to-one module

9.3.9 Open-dispersion bend
An open-dispersion bend has to be designed for a specific task, which in the 

present example is the matching to a Riesenrad gantry. As anticipated in the stepper 
section, a magnification factor of 0.5 has been chosen for the deflection module in the 
vertical plane. In the horizontal plane, the lattice is one-to one for Bx = 3 m αx = 0 to 
Bx = 3 m αx = 0. The dispersion has to be matched such that the dispersion bump 
closes in the gantry. Figure 9.16(a) shows the lattice functions in the bend for the full 
range of the vertical amplitude function and Figure 9.16(b) shows the geometry.

In Figure 9.16(b), the outline is shown of the extension module that would 
continue to the next gantry. The lattice functions in this module would be very similar 
to those in 9.16(a) although an extra quadrupole has been added before the bend.
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(a) (b)
Figure 9.16 Open-dispersion bend

[Initial optical functions, BZ = 1.333, 4, 8, 12 and 16 m]

9.3.10 Riesenrad gantry
The Riesenrad gantry inverts the conventional iso-centric gantry geometry by 

placing the heavy accelerator equipment on the axis and positioning the patient on the 
outside as shown schematically in Figure 9.17. This configuration is felt to be a 
possible solution for an ion gantry and will be discussed in more detail in Part II.

Figure 9.17 Schematic view of a Riesenrad gantry

The optical structure is essentially a single bending magnet preceded by a some 
quadrupoles to match the optical constraints. The Riesenrad gantry cannot have a 
closed-dispersion bump because there is only one dipole, but, thanks to the rotator, the 
dispersion bump can be closed in the deflection section. Thus, the remaining 
constraints are to:

• Maintain reasonable values of Bx and BZ inside the structure.

• Obtain the desired values for Bx and αx.

• Obtain an nπ phase advance in the vertical plane.
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As anticipated, a magnification factor of 3 has been chosen and an example lattice is 
shown in Figures 9.18(a) and (b).

(a) (b)
Figure 9.18 Plan view (a) and optical functions (b) in the Riesenrad gantry

9.3.11 Verification by tracking
Finally, the whole line has been tested by tracking the extracted particle 

distribution with different settings for the phase shifter-stepper. The phase-space 
footprints at the patient are shown in Figures 9.19 and 9.20 for Bz = 1.5 m and the two 
extreme horizontal phase advances that corresponding to vertical and horizontal 
positions of the ‘bar’ of charge. These two figures demonstrate the efficiency of the 
chosen system for varying the horizontal dimension of the beam. The vertical beam 
size is adjusted by varying Bz in the stepper that is situated upstream near the 
extraction from the synchrotron. In this way, a single module can control the both 
beam sizes for all the gantries in a complex.
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Figure 9.19 Phase space footprint for ∆μx = 2.39 rad in the phase shifter

Figure 9.20 Phase space footprint for Apx = 3.96 rad in the phase shifter
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1-9 EXTRACTION LINES
The particular ‘footprint’ of the slow-extracted beam segment in phase space 

and the need to control the beam sizes in a lattice with rotating optical elements create 
a rather special problem for the extraction transfer line. The design concept presented 
here regards the whole line from the electrostatic septum inside the ring to the patient 
as an integrated system built mainly from ‘telescope’ modules with integer π phase 
advances. The beam size in the plane of the extraction is controlled at the patient by 
altering the phase advance in the line in order to rotate the extracted beam segment in 
phase space at the patient. The vertical beam size is controlled by stepping the vertical 
betatron amplitude function over a range of values and passing the changed beam size 
from ‘hand-to-hand’ through the ‘telescope’ modules to the patient. The matching to 
the gantry is assured by a module called a rotator. An example of this optics is given 
with a preliminary design for the optics of the so-called Riesenrad gantry.

9.1 DESIGN CONCEPT
The principal ingredients of the design of the transfer line and delivery system 

can be summarised as:

• Matching the unequal emittances and non-zero dispersion functions to a rotating gantry 
by the use of a rotator.

• Using ‘telescope’ modules that have ‘one-to-one’, ‘one-to-minus one’, or a fixed 
magnification with integer n phase advances. The rotator already fits this category. A 
module from the same family with a 2?t phase advance is ideal for embedding a bend 
with a closed dispersion bump and this type of structure can also be adapted to the 
Riesenrad gantry [1].

• Exploiting the ‘bar’ of charge to create an independent control of the horizontal beam 
size by rotating the bar in an unfilled phase-space ellipse using a phase shifter at the 
entry to the line.

• Controlling the vertical beam size using a ‘stepper’ that steps the betatron amplitude 
function over a range of values, whilst keeping all the parameters in the horizontal plane 
constant, and then hands the chosen beam size through the telescope modules all the way 
to the patient.

• Placing the phase shifter and stepper at the exit to the accelerator so that they can act for 
all gantries in the complex.

• Avoiding unnecessarily large beam sizes in the rotator, for example, by using the 
telescope modules to de-magnify and then re-magnify the betatron amplitude functions 
in the vertical plane.

This general strategy has been adapted to an example lattice for a cancer 
therapy facility. The layout also includes such practical features as a beam ‘chopper’, 
space for diagnostics in a dispersion-free region, a long drift space for a vehicle track 
around the ring and a modular layout of the treatment rooms, see Figure 9.1. The 
medical specifications (see Table 1-1) require spot sizes 4-10 mm full width at half 
height with either protons between 60 and 250 MeV, or carbon ions between 120 and 
400 MeV/u. The beam at the patient should also be achromatic.
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1-10 MULTIPLE SCATTERING
Multiple coulomb scattering is important in medical machines in several 

contexts. First, it plays a role in the stripping foil before injection into light-ion 
machines. In general, the emittances coming from the linac are smaller than those 
required to generate the spot sizes at the patient with reasonable values of the betatron 
amplitude function and this opens the possibility of using the stripping foil to dilute the 
emittance before injection. In the main ring, scattering and electron capture are 
concerns for the quality of the vacuum. In the beam delivery system, scattering is used 
to prepare the beam for the patient. It is usual to use a ridge filter to increase the 
momentum spread to widen the otherwise narrow Bragg peak and, in passive beam 
delivery systems, the irradiation field is made uniform by a specially designed double 
scatterer. Finally, the scattering in the patient’s body adversely affects the spot size, 
which is more noticeable for protons than light ions.

In this chapter, the basic theory for multiple scattering will be reviewed with 
the emphasis on the practical aspects of applying the theory. The aim is to incorporate 
multiple scattering in the traditional Courant and Snyder theory for beam optics, as 
well as the usual Monte Carlo single-particle tracking.

10.1 CHARACTERISTIC MULTIPLE SCATTERING ANGLE

10.1.1 Highland’s formula
Charged, high-energy particles traversing an absorber are liable to small 

deflections due to attractive and repulsive electrical forces of the orbital electrons and 
the nucleus of the absorber. This single scattering may occur many times during the 
traversal of the particle through the absorber and can add up to an appreciable net 
deviation from its original path. In order to calculate how much a particle may be 
scattered, it is necessary to know a characteristic scattering angle and its distribution.

There is common agreement in the literature that multiple scattering is best 
described by the theory of Moliere [1] with the corrections made by Bethe [2], Fano 
[3] and Scott [4]. For an extensive review of the different approaches to multiple 
scattering see Ref. [5]. The distribution in Moliere’s theory is approximately gaussian 
for small angles, but for larger angles it behaves more like Rutherford scattering with 
larger tails than those of a gaussian distribution.

Unfortunately, Moliere’s theory is technically complicated and not easy to 
apply, but it is often sufficient to make a gaussian approximation for cases where the 
tails of the distribution are not of particular interest. This is true for most accelerators 
and medical applications where the effects of small scattering angles are dominant. In 
most cases, particles with large scattering angles will, in any case, be lost on the 
vacuum chamber walls.

A good approximation for the characteristic scattering angle 0O in a gaussian 
distribution is the approximation developed by Highland [6]. The Highland formula 
gives the RMS value of the distribution of scattering angles when projected onto a 
plane. The formula appears in the literature in a number of forms that fit different 
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situations with varying degrees of precision, usually in the range of a few per cent. 
Highland’s original formula appeared as,

where L is the scatterer thickness and Lx is the radiation length. The length units must 
be consistent and are usually either [g/cm2] or [cm]. zinc is the charge number of the 
incident particle, p is its momentum and p its relativistic beta value. This formula is a 
fit that is meant to take into account the fall thickness of the scatterer and the energy 
loss.

10.1.2 Improved Highland equation
Another popular description which can be found in [7] was given by Lynch and 

Dahl [8], sometimes called the improved Highland equation. The gain in improvement 
is achieved by applying a gaussian fit to a central region of a Moliere distribution. 
They found that the best results can be obtained for the central 98% of such a 
distribution. This results in:

According to [5], there is no real advantage in this approach and since the 
results from equations (10.1) and (10.1a) only differ for large scatterers no use will be 
made of (10.1a) here. A drawback of using the Highland formula is that it was 
obtained using data for 1 GeV protons, yet the literature claims that the accuracy is 
better than 5% in the range 10~3 <LI Lt <10, except for very light elements and very 
low velocities. However, in the energy range of protons used for hadron therapy the 
error is much larger even for relatively small absorbers (< 2Lr). Figure (10.1) shows 
experimental data taken from [5] for 160 MeV protons scattered in lead. The dashed 
line shows the prediction by the original Highland formula.

The situation can be vastly improved by modifying equation (10.1) by taking 
into account the rapid change of energy of the incident proton, especially for thick 
absorbers. This yields in a generalised Highland equation [5],

The integral under the square root in Equation (10.2) has to be evaluated 
numerically, yet it is sufficient to perform the evaluation using Simpson’s rule,

(10.3)
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for a number of slices. The number of slices depends on thickness of the scatterer. 
Absorbers where the average energy loss is smaller than 50% of the original particle 
energy can be calculated in a single slice. For scatterers larger than this limit extra 
slices should be introduced, but since (1/pBc)2 changes rapidly for a particle towards the 

end of its path, the slices should not be of equal size, but should be chosen in such a 
way that the integral steps are roughly equal. A good choice seems to be to make the 
following slice 1.6 times smaller than the previous slice. In total, no more than 8 slices 
are needed for any material for absorbers up to 97% of the path-length of an incident 
particle.

Figure 10.1 Comparison between measured data and the original Highland formula for 
160 MeV protons

The term is dependent on the energy of the particle, which is governed 

by the Bethe-Bloch Equation (10.18), which will be discussed later. Integrating 
(10.18) is complicated, however, and it is a lot easier and more accurate to use range 
tables to calculate the energy loss, which is also discussed later on. This makes the 
approach of using the Simpson rule for (10.3) for integrating (10.2) even simpler, since 
only the initial, final and midpoint energies have to be known.

The improvement of the generalised Highland equation (10.2) can be seen in 
Figure 10.2 which shows the same data as Figure 10.1, but with the prediction of 
Equation (10.2).
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Figure 10.2 Comparison between measured data and the generalised Highland equation for 
160 MeV protons

10.1.3 Sub-dividing scatterers
In general, it is a bad idea to subdivide a scatterer for numerical calculations. It 

neither improves the accuracy, nor does it save any time.

 Whenever possible, calculate the scattering angle in one go, possibly 
subdividing the integration into several parts as described above (10.2-3).

 Adjust integration steps to be 1.6 times shorter than prior step.

 When dealing with different layers or composite materials, always calculate a 
combined absorber using an average atomic number from the composites of the 
absorber.

Nevertheless, there are situations where one cannot easily accommodate the 
above rules. One of these situations is when one wants to know the size of a beam 
somewhere in the middle of a fairly large scatterer. Here, the best procedure is to 
calculate the positions and angles of the particles always starting from the entry of the 
particle into the absorber. Never use intermediate results to continue the results of the 
scattering. Always restart from the beginning in one go to calculate effects of 
scattering at a later point.

10.2 SCATTERING SEEN THROUGH THE TWISS FUNCTIONS
The aim here is to incorporate multiple scattering in the standard Courant and 

Snyder beam optics theory. Once scattering can be parameterised and described by the 
phase-space ellipses, it can be included in lattice optics programs and even made part

PIMMS January 1999



183

of matching routines. It is then possible, for example, to match to specified emittance 
values (providing of course that they are bigger than the original values), or to adjust 
the beam size as a function of the emittance and the betatron amplitude function 
combined, which is the situation within the patient’s body for the spot size.

10.2.1 A thick scatterer with an uncoupled beam
The sigma matrix explained in Section 8.2 is a convenient way of describing the 

beam before and after the scattering process. Assuming that the beam is uncorrelated 
at the entry to the scatterer, the correspondence between the sigma matrix formalism 
and the Twiss formalism is given in Section 8.2.2 and is summarised by equation (8.13) 
that is repeated below.

Bearing in mind that for hadron therapy the specification for the dose 
uniformity is typically ±2%, the Highland formula [6,7] is sufficiently accurate to 
describe the multiple Coulomb scattering in a thick scatterer for the energies and 
materials normally used.

Although some aspects of scattering in an uncorrelated beam have been 
described earlier, this will now be redone using the sigma matrix formalism with 
Highland’s formula. The analysis will start with an uncorrelated beam and will be 
extended later to the correlated case. The approach used here is more rigorous than 
that commonly found in the literature, since the correlation between angle and 
displacement, which occurs during scattering is taken into full account and thus 
provides a more general result. The earlier work made simplified assumptions which 
were well suited to thin scattering foils.

Consider a particle with the co-ordinates (y1 y'1). After passing through a 
scatterer, the particle will suffer a scattering angle 0S and a displacement δy and will 
assume the new co-ordinates (y2, y 2), The scattering is completely isotropic and 
unrelated to either y1 or to y'1, but there is a correlation between 0s andδ y [9]. Three 
relationships can be established. Firstly, the change in divergence,

(10.4)

By squaring (10.4) and then averaging over the whole beam, the increase in divergence 
can be related to the characteristic scattering angle of (10.1).
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where (02) = 02 and 2<y10s> = 0 because y and 0S are uncorrelated. Thus, the new

divergence is given by,

Similarly,

(10.5)

(10.6)

As mentioned earlier, the scattering is isotropic and has no correlation with y1 or y1' so 
the last two terms in (10.7) average to zero. The second term, however, makes a finite 
contribution, since large scattering angles tend to be associated with large 
displacements. This is intuitively obvious, since to have received a large displacement 
the trajectory angle must have been large on average while crossing the scatterer. If 
the angle is large on average while crossing the scatterer, it will on average be large at 
the exit of the scatterer. Reference 4 gives the correlation as ^3/2. Using the 
definition of the correlation coefficient,

it follows that

Thus (10.7) becomes,

The changes due to scattering are described statistically by Equations (10.5), 
(10.6) and (10.10) and provide the three relationships needed to solve for the Twiss 
functions after scattering. Thus, using the correspondences in the matrix equation of 
(8.13),
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where from [9]. Finally, the change in the cross-term yy'is given

by,

(10.7)

(10.8)

(10.9)

(10.10)

Scattered ellipse for a 
thick scatterer; (10.11)
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The right-hand sides of each equation in (10.11) are fully evaluated by the conditions 
at the entry to the scatterer and by the characteristics of the scatterer. Re-writing 
(10.11) with three constants E2y2 = A; E2B2 = B and E2α2 = C and substituting into the 
Twiss relation leads to the solution of the three equations by

10.2.2 A thick scatterer with a coupled beam

This approach can now be generalised to coupled beams. The sigma matrix for 
a coupled beam has additional matrix elements:

(10.14)

By adding the scattering in each term, squaring and then averaging over the 
beam, the overall effect of the scattering can be evaluated as before. The calculations 
for the elements not describing the coupling remain the same, since scattering is 
isotropic. The only additional work to be done is to deal with the three coupled terms 
in the matrix.

which can be transformed to

Since scattering does not couple between the x and z planes all correlation 
products containing elements from two different planes equal to zero. Therefore,
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Consequently E2 can be evaluated as

Scattered emittance: (10.13)

Similarly all other coupled terms stay unchanged after scattering and only the 
uncoupled matrix elements change.
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And finally,

Thus, it is possible to treat the effect of a scatter on a coupled beam with the 
same methods as for an uncoupled beam, which is a welcome simplification although, 
at first, a little surprising.

10.2.3 Approximation for a thin scatterer
The above formulation often appears in an approximate form for thin 

scatterers. In a thin scatterer, it is assumed that the position of the particle is 
unchanged by its passage through the scatterer so that only the change in divergence 
needs to be taken into account. Neglecting the terms depending on L in (10.11) gives,

The thin scatterer approximation is useful for such applications as stripping 
foils and vacuum windows.

10.2.4 Comparison with a simulation
A simple comparison with tracking shows the validity of Equation (10.11). An 

uncorrelated gaussian beam of 100’000 protons at 180 MeV with a momentum spread 
of 0.1 % and a spatial cut-off at 2a was generated and tracked through a copper foil 
3.67 mm thick. The absorber adds an average RMS angle of 0O = 20.4 mrad (using 
Highland’s formula (10.1)). The beam scatter plot in real space changes considerably 
as can be seen from Figures 10.3 and 10.4 that show one phase plane and the real 
plane before and after the scatterer. The uncorrelated beam is rectangular in real 
space, but elliptical in phase space, which can be seen from a careful study of Figure 
10.3.
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Scattered ellipse for a 

thin scatterer;

Equation (10.12) is still valid and yields,

(10.15)

(10.16)



Figure 10.3 Phase and real space of the initial simulated beam

Figure 10.4 Phase and real space plots of the scattered beam

PIMMS January 1999



188

The numerical data corresponding to Figures 10.3 and 10.4 is collected in 
Table 10.1. The estimated Twiss parameters of the scattered beam obtained by 
statistical analysis of the distribution calculated by tracking agree extremely well with 
those calculated using the ‘ellipse’ equation (10.11).

Table 10.1 Comparison of calculated beam parameters and those obtained by tracking

Comparison of calculated beam parameters and those obtained by tracking

Input beam Beam after scattering

Parameters for Statistical Calculated by Estimated
generated estimation from modified optics statistically from

distribution generated 
distribution

theory tracking results

Erms.x [π mm mrad] 2.30 2.30 77.3 76.5
Erms,z [π mm mrad] 2.30 2.30 77.3 76.6
Bx [m] 6.25 6.27 0.19 0.19
Bz [m] 6.25 6.25 0.19 0.19
αx 0.00 0.00 0 0.00
α 0.00 0.00 0 0.00

10.3 MULTIPLE SCATTERING AND TRACKING
This topic will be discussed with reference to passive beam spreading systems 

that are based on specially designed scatterers that create a large (typically 
20 x 20 cm2) uniform (ideally <±2%) irradiation field. The design of such scatterers 
can be achieved using Monte Carlo tracking techniques, whereby a few 105 particles 
are tracked repeatedly through the scatterer optimisation loop that modifies the shape 
of the scatterer according to the particle density field that is created. Final runs with 
the order of 106 particles are needed to assure the specified accuracy to a high 
confidence level. An added complication in the design of such a system is the need to 
equalise the energy loss for all particles, which necessitates an additional scattering 
layer of adjustable thickness of lucite.

10.3.1 Energy loss from particles passing through matter
The energy loss for low energy particles passing through an absorber is 

dominated by ionisation. For heavy particles, i.e. particles heavier than a muon, this is 
well described by the Bethe-Bloch equation [7,12] 

(10.17) 

where K equals to 4πN Ar2mec2, Z is the atomic number, A the atomic mass of the 

medium, zinc the number of elementary charges of the incident particle, B is the velocity 
of the particle in units of the speed of light, I is the mean excitation energy in eV, me is 
the mass of the electron and re is the classical electron radius and finally, Tmax is the 
maximum transferable kinetic energy that can be imparted to a free electron in a single 
collision.
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The equation (10.17) is remarkable in two ways: firstly, it is strongly dependent 
on the velocity B and, secondly, it is only very weakly dependent on the mass (via the 
maximum transferable kinetic energy Tmax) of the incident particle. Since the ratio of 
A/Z is relatively constant over a large range of elements, it is possible to generate 
universal energy-loss curves by plotting the equation (10.17) versus the area density in 
g/cm2. For ultra relativistic particles equation (10.17) can be extended to take into 
account shell effects and density corrections. For low-energy particles these correction 
factors can be neglected.

Fig 10.5 Bethe Bloch energy-loss curve

Figure 10.5 shows the dE/dx curve for charged pions in copper. Note that the 
energy loss per path-length is plotted versus momentum and not absorber thickness. In 
this way (10.17) is used for particle identification. The plot shows that the Bethe- 
Bloch equation can be cut conveniently into three regions. For low energies, which is 
the region of interest for medical purposes, the energy-loss is roughly proportional to 
B_5/ 
p . The curve reaches a minimum at about 1 GeV/c, where a particle is called a 
minimum ionising particle (MIP). Finally, the energy loss rises again for ultra 
relativistic particles (relativistic rise).

The energy loss of a particle can be calculated by integrating (10.17):

(10.18a)

For particles with a kinetic energy larger than that of a MIP, it is usually sufficient to 
calculate the energy loss by evaluating:

(10.18b) 
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where ∆ is the absorber thickness. Unfortunately, particles for medical synchrotrons 
are well below the level of a MIP and therefore equation (10.18b) cannot be used. 
Instead the calculation of the energy loss, ∆E, has to be done using numerical methods. 
One of these methods is the use of range tables, discussed below.

10.3.2 The range
Once the energy loss in an absorber can be calculated, it is natural to ask at 

what distance 50% of the particles will have lost all their kinetic energy T. This is 
known as the range R of a particle and can be found by integrating the inverse of 
(10.17), that is

(10.19)

The particle ranges are often plotted in tables and can be used to efficiently calculate 
the energy loss of particles passing through an absorber. For examples of such tables 
see reference [10, 11].

10.3.3 Energy straggling
The energy loss of a particle in matter is a statistical process. Equation (10.17) 

only describes the average energy loss of a particle, but does not describe the energy 
loss distribution. Calculating this distribution is mathematically complicated and is 
generally divided into two distinctive cases: thin absorbers and thick absorbers.

The case of thin absorbers it extremely difficult to calculate. The distribution, 
is asymmetric with long tails (see Figure 10.6). It was first described by Landau[12]. 
Part of the asymmetry is due to fact that a small energy loss is much more probable 
than a large one and that there is a cut-off for large energy losses given by the largest 
transferable kinetic energy Tmax. The Landau theory has to be applied where the 
thickness of the absorber is only of a few hundred micrometers, e.g. for stripping foils.

Scatterers used for passive beam spreading on the other hand, can be treated as 
thick absorbers. For thick absorbers, where the number of collisions is large, the 
energy loss distribution can be shown to be gaussian. This follows directly from the 
Central Limit theorem in statistics. This very general theorem states that the sum of N 
random variables, all with the same distribution, approach a gaussian-distributed 
variable in the limit of N —> °°. The Central Limit Theorem therefore allows the 
calculation of the energy loss distribution without any subsequent knowledge of the 
distribution for a few-, or for single-scattering collisions. The width of this distribution 
was first calculated by Bohr (for non-relativistic particles) [12] for an absorber of 
thickness L:

(10.20)

which can easily be extended to relativistic particles via
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(10.21)

cluster S/N

Figure 10.6 Landau plot for the energy straggling in a 300 μm thick silicon detector using a 
RU106 source

10.3.4 Energy loss calculations using range tables
When calculating the energy loss of a particle traversing an absorber, equation 

(10.17) is found to be numerically demanding and evaluating the integral (10.18a) may 
be prohibitive in the case of many simulated particles. It may therefore be more 
efficient to apply the following method.

A range table with a sufficient number of entries is used to calculate the range 
of a given particle with an initial energy Eo. Values of E0 that are not included in the 
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table have to be interpolated linearly. Knowing the value of Ro at Eo makes it possible 
to determine the average energy loss by subtracting the absorber thickness L from Ro, 
resulting in the ‘leftover’ range Ri.

Now the range table is inversely searched to find the energy Ei that 
corresponds to a range of R}. Subtracting E\ from Eq results in the average energy loss 
∆E (∆E= Eo-E1). Again, values not found in the table have to be interpolated 
linearly. If the range table is populated densely enough, an accuracy of 0.13% can be 
achieved [10], well within experimental limits.

The computational cost of a ‘look-up’ table is small when using appropriate 
algorithms, such as a bisection search on an ordered table. Despite modem algorithms 
for numerical integration, such as Romberg’s method[13], the use of range tables is far 
more efficient than the direct approach of evaluation of the integral in (10.18a).

10.3.5 Monte-Carlo recipe for calculating scattering in matter
Equation (10.1) gives the RMS value of the scattering angle when the three- 

dimensional scattered distribution is projected onto a plane. This can now be used to 
track a number of individual particles.

Consider a particle traversing an absorber of thickness x and being scattered 
along its path (see Figure 10.7). The projection of this path is y ~ xψplane, where

(10.22)

A particle that has received a kick and exits with a non-zero value of 0plane also 
has a greater chance of having a non-zero displacement yplane. There is a correlation 
between 0plane and y which is statistically expressed via a correlation coefficient py0. It 
has a value [9] of

(10.23)

For a Monte-Carlo simulation it is probably most convenient to use two 
independent gaussian random numbers (z1, z2) with zero mean and variance one and 
then to set

(10.24)
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This ensures that the correlation is properly taken into account. After the calculation 
of the scattering, one has to correct the energy absorbed by the scatterer. This can be 
done using the method described in Section 10.3.4. Of course the average energy loss 
should be randomised as well, using yet a third gaussian number z3 and computing:

(10.21)

using the initial beam energy Eo and the width of the energy straggling calculated 
according to (10.21).

Figure 10.7 Schematic view of a particle traversing an absorber
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I ll ACTIVE SCANNING
So far this report has been concerned with the production of a smooth spill 

from the third-integer resonance, since this is a fundamental requirement for an 
efficient scanning system. The better the spill quality, the faster and more accurate the 
scan becomes. Fortunately, the scanning system itself is tolerant to high-frequency 
fluctuations and can be made to correct on-line for low-frequency fluctuations. The 
system’s ability to compensate for a poor spill quality is the main subject of this section 
and is evaluated with reference to a target error of ± 2% in the dose distribution. The 
performance depends on the scanning technique applied and the technological 
limitations of the equipment. Should the spill irregularities overwhelm the capabilities 
of the system for compensation, then an alarm message must be issued and the beam be 
switch off.

There are three techniques for active scanning:

• Voxel (volume pixel),

• Mini-voxel

• Raster scanning.

Voxel scanning [1] was already discussed in Chapter 5 and will be briefly reviewed 
below. Mini-voxel scanning [2] resembles voxel scanning, except that the voxels 
overlap. Finally, true raster scanning uses a continuous motion of the beam spot that is 
modulated in velocity according to the spill intensity. Thus, mini-voxel scanning is an 
intermediate stage between the static voxel scanning and the dynamic raster scanning. 
In this chapter, the three techniques will be discussed and the practical limitations due 
to the discrete measurement intervals, the delays in the electronics and the response 
time of the power converters will be analysed.

11.1 MINI-VOXEL SCANNING

11.1.1 Comparison of voxel and mini-voxel scanning
It is useful at this stage to recall the main principles of voxel scanning. Let 

each voxel have a physical size VF corresponding to the FWHM of the beam spot (see 
Figure 11.1(a)). The full cross-section of the tumour is covered by a mesh of distinct 
voxels, which are all irradiated separately. For each voxel, the scanning magnets are 
adjusted while the beam is turned off. The beam is then turned on until the desired 
dose for that voxel is delivered. After the beam is turned off, the magnets are 
readjusted for the next voxel. This technique is simple and the on-line dosimetry is 
relatively straightforward. However, it is sensitive to the alignment of the voxels with 
slow extracted beams. This is due to the near-rectangular distribution of the beam spot 
in one direction which will produce ‘hot’ and ‘cold’ spots with small misalignments. 
The treatments times are also increased by the regular switching off of the beam.

In mini-voxel scanning, the beam spot crosses from one ‘main’ voxel position 
to the next in n discrete steps of size Win (see Figure 11.1(b)). The operational 
principle is to dwell at each intermediate position until the required fraction ( 1/az) of the 
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full dose for a normal voxel is delivered and then to move on at the maximum scanning 
velocity to next intermediate position without switching off the beam. The particles 
that arrive after the decision to move are all attributed to the next mini-voxel position 
by the control system. This may appear strange, since an arbitrary sharing of say 50% 
in the last position and 50% in the next position would be closer to reality. However, 
the overall dose distribution is better managed, if this flux is attributed to the next 
position where there is still a dose deficit. In principle, a perfect correction can then be 
made at this position, except that it is misplaced by the mini-voxel step size. This 
procedure is repeated for the next move and so on. Intuitively, it appears that the 
smaller the mini-voxel step the better the smoothing, which suggests that true raster 
scanning could be the ideal technique. Mini-voxel scanning is quicker than voxel 
scanning and more efficient in its use of the beam.

11.1.2 Influence of the beam distribution
In slow-extracted beams, the particle distribution is practically rectangular in 

one transverse direction and gaussian in the other. The rectangular distribution must 
be aligned with the principal direction of scanning. In this way, the tails of the 
gaussians overlap between adjacent scan lines and render the alignment of adjacent 
rows insensitive to small positional errors. In the scanning direction, the multiple 
overlap of the rectangular shape smoothes the effect of alignment errors mentioned 
earlier with reference to voxel scanning and prevents the formation of ‘hot’ and ‘cold’ 
spots.

11.1.3 Theory of mini-voxel scanning
With the rectangular beam distribution, it is easy to sum the dose at a given 

position as the beam spot steps past. In this case, the dwell time tD at each mini-voxel 
will be proportional to required number of particles Nt and will be related to the full 
dose by,
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where Masked is the number of particles that would correspond to the full dose desired 
at that position. The control system must keep a running total of the doses received at 
all mini-voxel positions with the goal of reaching the value of NDesired specified by the 
treatment planner for each position. At any given position, the critical step is the last 
step the beam makes while covering that position. The decision to move will be based 
on the measured dose at that position reaching a specified threshold. This is illustrated 
in Figure 11.2.

Figure 11.2 Working principle of the mini-voxel scanning

Figure 11.2 shows the expected situation. The last mini-voxel position at the 
trailing edge of the spot has approximately NDesired/n deficit in its accumulated dose. 
Once it is full, the beam will step forward. The discrete measurement intervals of the 
on-line dosimetry system will cause small irregularities in the doses of the completed 
mini-voxels. In principle, the mini-voxel positions further downstream, that have yet 
to be completely irradiated, have larger deficits in their accumulated doses and it is not 
critical for them when the beam moves. Problems can arise in two situations:

• Firstly, if the dose delivered while the spot is moving exceeds the deficit at the next 
mini-voxel position (perhaps due to a beam spike), then there is no way to compensate 
and the scan stops with an out-of-tolerance point.

• Secondly, if the treatment planner asks for a dose reduction between adjacent mini­
voxels that is greater than the dose deficit at the next position, then the dose is already 
exceeded before the beam has completely stepped past that position.

Thus, there is a limit on the rate at which the dose level can be changed that is further 
reduced by the quality of the beam spill. In theory, it is possible to make quicker 
changes and, for example, to create a sharp edge to the scan by shrinking the spot size, 
but this is a considerable operational difficulty. In the following, the analysis will be 
based on the case of constant spot size during a scan.

In order to evaluate the performance of a mini-voxel scanning system as 
described above, it is necessary to build a mathematical model that represents the 
distribution of the beam as closely as possible. The scan can be adequately represented 
in one dimension (see Figure 11.3). The number of particles delivered to the line 
element of length W/n is given by integration of the particle flux divided by number of 
steps during the crossing time. Let be the time at which the decision is taken to 
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move from the position in which the beam does not touch chosen line element to the 
first position in which it covers the line element. Let this be the first step. Several 
steps later at time tn, the decision will be taken to move from the last position in which 
the beam covers the line element to the position that is just beyond. Let this be the 
(n+l)th step. Let the power supply delay t, be the time that the power converters 
need to start moving the beam. This delay is given by the internal switching frequency 
of the power supply. The delay of the electronics is small in comparison with the 
switching time of the power converter and can be considered as included. Finally, 
assume that the velocity of the movement is constant and it is equal to the maximum 
scanning velocity vmax-

Figure 11.3 Model of mini-voxel scanning (crossing one spot width)

In this scenario, the number of particles, NL, on the line element of length W/n 
will depend on the starting time to and contributions from five integrals:

• NT1 (t0, t0 +T) is the particle flux during the power converter delay in the first step.
• NM1(t0 + T + T+W/nvmax) is the particle flux during the movement time to the next

position.
• Nc(t0,tn) is the main integral that quantifies the total particle flux during the time 

to of the decision to move onto the line element up to the time tn when the decision 
is made to finally leave the line element.

•NTn(tntn+T) is the particle flux during the power supply delay for the (n+l)th 
step.

• NMnfrn + Vn+vW/nvmax) is the particle flux during the movement time for the 
(n+l)th step.

These integrals are combined to give the best approximation to the particle flux 
deposited on the line element,

(H.2)
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Note that during the two movements, half of the integrated flux is attributed to the 
previous position and half to the next position, which is exact in the case of a uniform 
spill. Note also that both Mi and Mw are subtracted, since the spot movement has not 
yet moved and hence these particles enter the previous line element. Similarly, the last 
two integrals are added, although they occur after the decision to move.

In (11.2), two types of error are shown explicitly. The first is a ‘delay’ due to 
the electronics and power supply, £Deiay(0 and the second is the ‘movement’ error that 
will be called SMoveCO- The definitions of these errors are,

(11.3)

where ^Desired is the desired line density [particle/m]. These errors appear with negative 
signs at the beginning (step 1) and with positive signs at the end (step rz+1). In the 
ideal case of a uniform spill and a uniform scanning speed, these errors would cancel.

In a practical system, there will be an additional error that is caused by the 
‘quantisation’ of the times t0 and tn. These times must be ‘locked’ to a clock that 
defines the measurement time interval, Tbin and the limits of the main integral will have 
to occur at integral numbers of Tbin at To and Tn. There is no problem with to and To 
since this is a choice of origin, but in general tn will be less than Tn, because the system 
will only learn that the desired dose has been achieved on the next clock cycle. An 
error for this ‘clock’ effect, similar to (11.3), can be defined as,

A first indication of how a practical a scanning system would perform can be 
obtained by evaluating the influence of sinusoidal fluctuations in the spill. The 
fractional errors arising from the ‘delay’ and the ‘movement’ and the ‘clock’ for a 
given element of line of length W/n can be expressed as,

(11.5)

Note that the ‘delay’ and ‘movement’ errors at the end of the irradiation have 
been modified to take account of the ‘clock’ time. If the particle flux is of the form 
ϕ(t) = ϕo(1 +Ar cos(ωt)), where Ar is the ripple amplitude, ϕo is the nominal flux of 
particles and co is ripple angular frequency, then
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(11.6)

The error can vary widely according to whether the delay is equal to the ripple 
period and so on, but for a given system, the variation depends only on the starting 
time. Figures 11.4, 11.5 and 11.6 show the general forms of these errors and their 
relative importance. The first graph shows the ‘clock’ error, the second shows the 
‘delay’ and ‘movement’ errors combined, since these are identical in their effect and 
finally the third graph shows the behaviour of the total error. All graphs have been 
plotted against the starting time for the following conditions:

• Sinusoidal fluctuation in the spill of the form ϕ(t) = ϕ0(l+Ar cos (ω)),

• Amplitude ripple modulation, Ar = 0.1,

• Nominal particle flux, ϕ0 = 2 x 108 particle/s,

• Ripple frequency/= 100 Hz,

• Sampling time bin, Tbin = 100 μs,

• Delay time in electronics and power converters, T = 100 μs,

• Maximum scanning velocity, vmax = 10 m/s,

• Beam spot size, W = 10 mm

• Number of steps to cross beam spot, n = 10.

Figure 11.4 Dependence of the ‘clock’ error on the starting time

In Figure 11.4, only the ‘clock’ measurement error is shown. This is the 
principal error in voxel scanning, since the beam is switched off during the movement 
between voxels. For Figure 11.4, the discrimination level for the decision to move (or 
to switch off the beam in voxel scanning) was set to 100%. Thus the minimum 
measurement error is equal to 0%. The plot shows that the error just exceeds the 
specified limit of +2% for certain values of the starting time. This can be solved by 
including an off-set and setting the discrimination level for switching to somewhere 
between 98 and 99.5% of the desired dose.
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Figure 11.5 Dependence of the combined delay and movement errors on the starting time for 5, 
10, 15 mini-voxels

Figure 11.6 Dependence of the total error on the starting time

The total error shown in Figure 11.6 exhibits a total excursion of just over 3%. 
As with the ‘clock’ error in Figure 11.4, this can be brought within the tolerances by 
biasing the discrimination level down to say 98%.

11.1.4 Ripple specification for mini-voxel scanning
It is important to be able to use the analysis of the mini-voxel scanning to 

derive a specification for the maximum permissible ripple that the system can accept in 
the beam spill. This specification can then be used to determine the corresponding 
specifications for the power converters in the main ring. One possible approach is to 
form an inequality based on the expression (11.6) and to solve

(H-7)

where 0.04 is the maximum error ±2 %. The main inconvenience is that before the 
equation can be solved, the time t0 for which the error is maximum has to be found for 
each frequency, or an approximated maximum error has to be derived.

For a particle flux of the form <|)(r) = (J)0( 1 + Ar cos(ω)) the maximum ‘clock’ 
error can be found analytically. The maximum number of particles in one time bin will 
be obtained at the peak of the particle flux i.e. for time t = 0 in the case of the cosine
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function. Integration of the particle flux over interval -Tbin/2 to Tbin/2 gives the 
maximum ‘clock’ error.

(11.8)

An example of the variation of the maximum ‘clock’ error with ripple 
frequency is shown in Figure 11.7. The spill ripple is assumed to be a sinusoidal 
fluctuation of the form = ϕo( 1 + Ar cos(ω)) with the amplitude modulation Ar = 1, 
the nominal particle flux ϕo = 2 x 108 particle/s, the sampling time Tbin =100 μs, the 
electronic and power supply delay t = 100 μs, the maximum scanning velocity 
Vmax =10 m/s and the number of steps n = 10.

Figure 11.7 Variation of the maximum ‘clock’ error with the ripple frequency

The maximum ‘clock’ error is bigger for the smaller spot size because the same 
particle flux was assumed in both cases. The dwell time on each mini step is then 
shorter and this causes a bigger error when the sampling time, Tbin, is kept constant. 
Thus, the ‘clock’ error is proportional to the spot size and decreases with frequency in 
the region 1 to 10 kHz. For higher frequencies, it oscillates around a non-zero value 
that depends on the spot size.

The movement error is maximum and positive when the ripple is at its minimum 
value during the initial movement at To and at its maximum during the final movement 
at Tn, see Figure 11.8. The maximum error is then given by the shaded area as, 

(11.9)

where co = 2πf. The delay error has a similar form to the movement error and can be 
included in the same expression.
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Figure 11.8 Schematic view of the maximum movement error

The variation with ripple frequency of the combined maximum delay and 
movement error is shown in Figure 11.9 for an amplitude modulation Ar= 1, the 
nominal particle flux ϕ0 = 2 x 108 particle/s, the sampling time Tbin = 100 μs, the 
electronic and power supply delay t = 100 μs, the maximum scanning velocity 
Vmax =10 m/s and the number of steps n = 10.

Figure 11.9 Variation of the combined maximum delay and movement error with the ripple 
frequency

The combined maximum delay and movement error is largest at low frequency 
and tends to zero at high frequencies. This behaviour does not correspond exactly to 
the original model. The expression (11.9) is fully valid for high frequencies or low flux 
intensities where the time of integration tn is longer than the half period of the ripple. 
Under the conditions mentioned above (ϕo = 2 x 108 particle/s), the average value for 
tn is 5 ms, which corresponds to a frequency of 200 Hz i.e. that for frequencies lower 
than 100 Hz the expression (11.9) is not valid because the time tn is shorter than time 
between minimum and maximum of the ripple oscillation and the maximum error can 
not be reached. The correct ‘low-frequency’ formula has the form,

(11.10)

The low-frequency dependence of the combined maximum delay and 
movement error under the chosen conditions (i.e. Tn« 50 Tbin = 5 ms) is shown in 
Figure 11.10.
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Figure 11.10 Variation of the combined maximum delay and movement error with 
ripple frequency computed according to the ‘low-frequency’ formula (11.10)

Combining the ‘high’ and ‘low’ frequency formulae (11.9) and (11.10) gives an 
accurate picture of the variation of the combined maximum delay and movement error 
with the ripple frequency. This is shown on a log scale in the Figure 11.11.

Figure 11.11 The combined maximum delay and movement errors versus ripple frequency

Now that the maximum error functions have been established for the ‘clock’ 
and the combined delay and movement errors, tolerances can be determined for the 
permissible ripple over the full frequency range by solving (11.8), (11.9) and (11.10), 
taking care to apply the low-frequency and high-frequency formulae. This result is 
shown in Figure 11.12.

The maximum permissible ripple modulation depends strongly on the spot size. 
The requirements on the medical machine are to change spot size continuously 
between 4 and 10 mm (FWHH). Figure 11.12 shows that the maximum permissible 
modulation in the spill diminishes as the spot size is reduced. For the minimum spot 
size of 4 mm the equations do not have reasonable solutions, which means that for the 
conditions chosen the dose precision of ± 2% cannot be reached for the 4 mm spot. 
This is caused in particular by the measurement error that is greater than 4% at all 
frequencies. In other words, the dwell time at one mini-step position is too short in 
comparison with sampling time. The possible solutions are to:

• Decrease particle flux (to increase the irradiation time)

• Shorten the sampling time (to reduce the ‘clock’ error)

• Reduce the number of mini-steps (to increase the dwell time).
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Figure 11.12 Maximum permissible ripple amplitude with ripple frequency to obtain ±2% 
dose uniformity

[Conditions: Sinusoidal fluctuation in the spill of the form ϕ(t) = ϕ0(l+/Arcos(cot)), nominal 
particle flux ϕo = 2 x 108 particle/s, sampling time Tbin = 100 μs, electronic and power supply 

delay t = 100 μs, maximum scanning velocity vmax = 10 m/s and number of steps n = 10]

In all cases, the aim is to increase the ratio of the dwell time to the sampling time to 
reach a total measurement error of less than 4%.

The plot in Figure 11.12 can be conveniently divided into three regions in the 
frequency domain:

• 1 to 10 Hz where the maximum permissible ripple amplitude depends mainly on the
‘clock’ error and is relatively high.

• 10 to 1000 Hz where the maximum permissible ripple amplitude declines to a minimum
because of the growing importance of the delay and movement errors.

• 1 to 10 KHz where the maximum permissible amplitude tends to 100% as all errors,
except the ‘clock’ error, tend to zero.

11.2 RASTER SCANNING
In true raster scanning, the beam is moved continuously with a scanning 

velocity that is controlled by a feed-forward loop using the measured intensity of the 
incoming particle beam. For higher intensities than nominal, the scanning velocity is 
increased and, for lower intensities, it is decreased to obtain the desired dose. Three 
levels of approximation will be considered in the theory present in this section.

11.2.1 Instantaneous measurement and velocity changes (1st approximation)
If a ‘point’ beam is moving continuously along a line, then the line density of 

the particles, λ(s), deposited by the beam will be,
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(ll.11)

where N is the number of particles, δ and 8s correspond to small steps in time and 
distance, ϕ(t) is the particle flux and Vscan(0 is the speed of the moving beam spot. This 
is illustrated in Figure 11.13.

Figure 11.13 Particle distribution by a ‘point’ source

Under ideal conditions these parameters would have exactly their nominal time 
independent values and the desired dose would be achieved by adjusting only the 
scanning velocity by a dose factor R,

Under practical conditions, the particle flux 0 varies with the time, but for sufficiently 
slow variations, a reasonable result should be obtained by adjusting the scan speed 
according to the particle flux at some slightly earlier time (t-T),

(11.13)

where T is the lag before the velocity correction (assumed in this model as being 
instantaneous) is made and includes the delays needed for the electronics, the 
computation and the power supplies. Thus each measurement bin is compared to the 
reference flux level ϕO. This is the simplest way of correcting the spill fluctuations. 
The substitution of (11.13) into (11.11) gives the actual line density deposited and if 
this is divided by (11.12), the relative error is obtained,

(H.14)

In principle, the shorter the delay between measurement and correction and the more 
frequently the measurements are made, the better the compensation of irregularities in 
the spill intensity 0(r) becomes. This type of correction is known as a simple 
compensation and is limited to frequencies much lower than 1/x.
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11.2.2 Instantaneous response but finite measuring times (2nd approximation)
In this model, the quantisation and finite length of the measurement time is 

taken into account. This filters out the frequencies above the sampling frequency. The 
flux will be measured in bins Tbin, so equations (11.13) and (11.14) should be more 
accurately written as,

This situation is illustrated in Figure 11.14, where at time t the velocity is set 
according to the flux measured at a time t earlier using (11.15) and at time r+Tbin the 
velocity is set according to flux at a time T-Tbin earlier. The error at the time t can be 
calculated from (11.16). The time lag includes the time to measure one bin, to read 
and treat the data and to change the power converters.

Figure 11.14 Measurement of particle flux

According to equation (11.15), the velocity follows the particle flux with time 
lag rand then the error oscillates according to (11.16). This is illustrated in the Figure 
11.15.

(a)
Figure 11.15 (a) Dependence of the normalised particle flux and normalised scanning velocity 

on the time, (b) Dependence of the relative error of the dose on the time

(b)
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Equations (11.12) to (11.16) all describe a scanning system that has zero spot 
size. The inclusion of a finite spot size helps to smooth the fluctuations, providing that 
the time needed to traverse one spot width is larger than the delay, t, and larger than 
the ripple period. The scanning velocity remains unchanged, but the error equation is 
modified slightly. Consider a point on the track of the spot. This point will ‘see’ the 
beam for the time that the spot takes to traverse its own width, see Figure 11.16.

Chosen point Distance

Figure 11.16 Schematic view of the spot smoothing

If the spot width is W, then,

In order to simplify (11.17), the lower limit of the time span for the integration 
has been set to W/vo. Providing vscan does not vary widely this should be a reasonable 
approximation. Consider a sinusoidal ripple fluctuation in the spill of the form 
(j>(r) = <j)0(i+Ar cos (coz)), then the expression for the scan velocity according to (11.15) 
is

and the fractional error with zero spot size according (11.16)

and fractional error with a finite spot size W according to (11.17) is written below with 
the use of (11.19).
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An analytic solution to (11.20) can be obtained with a symbolic algebra program, but 
the result is too complicated to be useful. The analytic solution depends on the 
parameters of the system (sampling time Tbin, delay t and nominal velocity v0), chosen 
parameters (time r0 and spot size W) and ripple parameters (modulation Ar, frequency / 
and co = 2 k/) as expected.

As for the mini-voxel scanning system, the ripple frequency and the chosen 
spot size determine the error of the dose. The dependence of this error on the 
frequency and spot size for modulation Ar = 0.2, sampling time Tbin = lOOps, delay 
t = 100 ps, nominal velocity v0 = 2 m/s and starting time t0 = 0 is shown in the Figure 
11.17.

The error is maximum for the smallest spot size and for the frequency between 
1 and 3 kHz. The exact value of the frequency for which the error is maximum varies 
with the starting time t0 and level of ripple modulation. For the low frequencies up to 
100 Hz the compensation by controlling the velocity is effective. At frequencies above 
100 Hz, the system becomes too slow to follow fast changes in the spill. For 
frequencies above 1 kHz, the spot size starts to smooth ripple and this becomes 
effective above 4 kHz ripple. The spot size smoothing plays a significant role in the 
raster scanning process. The critical frequencies are between 1 and 3 kHz, where the 
compensation is too slow and the number of oscillations in the spot is too small to 
compensate fluctuations by the spot-size smoothing.

Figure 11.17 Dependence of the fractional error on the spot size and frequency
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The errors in Figure 11.18 for a given t0, but different spot sizes, have similar 
variations with frequency. The system over-doses in the low to medium frequency 
range up to 5.8 kHz, under-doses for higher frequencies up to 8 kHz and finally for 
still higher frequencies the error tends to zero. The phenomenon of the overdosing and 
under-dosing is caused by the velocity compensation. The major difference between 
the curve for a 4 mm spot and a 10 mm spot is the amplitude of the residual error 
oscillations that is naturally smaller in the case of 10 mm spot because of the better 
spot smoothing.

Figure 11.18 Dependence of the fractional error on ripple frequency

11.2.3 Ripple specification for raster scanning (2nd approximation)
The first stage is to determine the maximum error at each frequency and then to 

convert this to a specification for the maximum permissible ripple over the frequency 
range. The maximum error for a given frequency depends on the starting time t0, 
which defines the phase advance (the dependence of the error on the to is periodic). 
The situation for modulation Ar = 0.5, the sampling time Tbin = lOOps, the delay 
t = 100 ps, the nominal velocity v0 = 2 m/s, the frequency 150 Hz and the spot size 
W = 10 mm is illustrated in Figure 11.19.

Figure 11.19 Dependence of the fractional error on the starting time to

The error curve is slightly off-set above zero because the frequency of 150 Hz 
is located in the over-dosed region. The maximum fractional error also depend on the 

PIMMS January 1999



211

ripple amplitude (see Figure 11.20) which means that for each frequency and each 
ripple amplitude the maximum error has to be found.

Actual time [s]
Figure 11.20 Dependence of the fractional error on the starting time t0 for different amplitude 

modulations

The maximum permissible ripple amplitude is given by solving inequalities that 
follow from (11.20).

(11.21)

Numeric solution of the inequalities (11.21) for the conditions of sinusoidal 
fluctuations in the spill, the sampling time Tbin = 100 |is, the electronic and power 
supply delay t = 100 p,s, the maximum scanning velocity vmax = 2 m/s and spot sizes of 
4 to 10 mm is shown in Figure 11.21 and the detailed zoom in Figure 11.22.

Figure 11.21 Dependence of the maximum permissible ripple amplitude against frequency
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Figure 11.22 Dependence of the maximum permissible ripple amplitude against frequency in 
the range Ito 1000 Hz.

Figures 11.21 and 11.22 show that for low frequencies between 1 and 10 Hz 
the velocity compensation is very effective over the full range of spot sizes and 
modulation between 90 and 100% is permissible. With increasing frequency, the 
permissible modulation drops because of declining efficiency of the velocity 
compensation. At low ripple frequencies the spot smoothing is negligible.

The curve for the 10 mm spot has minima at odd multiples of 100 Hz and 
maxima at even multiples 100 Hz, whereas the curve for the 4 mm spot that has 
minima and maxima shifted by 50 Hz. The maxima correspond to the situation where 
the spot size contains an integral number of ripple periods (minimum error) assuming 
the average scanning velocity equals 2 m/s. The number of wavelengths integrated by 
the spot increases and the difference between maxima and minima decreases.

For the practical interpretation of the results, the bottom envelope of each 
curve has to be taken. Figures 11.21 and 11.22 show that the frequency interval for 
which the ripple amplitude is small (between 10 and 20%) is very wide (0.12 to 
4.75 kHz for the 4 mm spot and 1.1 to 4.5 kHz for the 10 mm spot). Both curves 
permit 100% ripple modulation at 5.8 kHz, 8 kHz and 10 kHz where the system passes 
from the over-dosing to under-dosing and vice versa.

11.2.4 Finite times for response and measurement (3rd approximation)
The final level of approximation simulates the real system in which the system 

gives the measured flux every Tbin and the scanning velocity is changed in steps 
corresponding to Tbin. Once the velocity is set, the value is kept constant over the next 
measurement bin, when a new value of the velocity can be computed. A schematic 
model of the relation between the flux measurement and the velocity control is shown

PIMMS January 1999



213

in Figure 11.23. The only disharmony between the model and the real world is the 
instantaneous change of velocity from one value to the next.

Figure 11.23 Measurement of particle flux and control of the velocity

The expression for the scanning velocity (11.15) has then to be adjusted by unit 
step function 0 to the form

Using expression (11.22) in equation (11.16) for fractional error with zero spot size of 
previous model one obtains

(11.23)

and for the fractional error with finite spot size W

(11.24)

The scanning velocity changing in steps controlled by particle flux according to 
(11.22) and the fractional error for zero spot size computed according to (11.23) are 
shown on Figure 11.24.
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a) b)
Figure 11.24 (a) Dependence of the normalised particle flux and normalised scanning velocity 

on the time, (b) Dependence of the relative error of the dose on the time

The Figure 11.24 shows that the improved model has caused a deterioration in 
the efficiency of the system. For example, at the frequency of 200 Hz, only 6% of 
ripple is acceptable compared to 10% in the previous model shown in Figure 11.14. 
Furthermore, the ability of the system to correct fluctuations in the spill drops with the 
increasing frequency of the ripple. For high frequencies, the maximum error with a 
zero spot size can be even higher than the ripple modulation. In practice, this situation 
will not occur because the finite spot size will smooth out this effect.

The behaviour of a raster scanning system with a simple velocity compensation 
can be summed up as:

• At low ripple frequencies, the velocity compensation is effective for smoothing.

• At high frequencies, the finite spot size is effective for smoothing,

• But, at high frequencies, the velocity compensation becomes counter-productive and 
deteriorates the otherwise near-perfect smoothing from the finite spot size.

This is the reason in Figures 11.21 and 11.25 for the second dip after 5 kHz. The 
overall performance of the raster scanning system with simple velocity compensation is 
shown in Figures 11.25 and 11.26. The dependence of the maximum allowable ripple 
amplitude is similar to that obtained with the previous model (see Figures 11.21 and 
11.22), except that the general performance is less good. The differences are due to 
the velocity control regime.

11.3 SUMMARY
Two dynamic active scanning methods have been investigated for comparison 

with the static voxel scanning method. The initial conditions and requirements used 
were those of the PIMMS machine. To simplify the problem only sinusoidal ripple was 
assumed and only single frequencies were assumed to be active in the spill at any one 
time. This approach should be sufficient for comparing the methods, but the 
specification of the a practical system will need to be tightened to account for the 
mixing of several ripple frequencies.
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Figure 11.25 Dependence of the maximum allowable ripple amplitude with ripple frequency

Figure 11.26 Dependence of the maximum allowable ripple amplitude with ripple frequency in 
the reduced range 1-1000 Hz

The same equipment (power supplies, detectors, extraction lines, magnets) can 
be used for all three methods. The only differences reside in the on-line flux 
measurement system and the control system (software) that has to work according to a 
different philosophy for each method.

Both dynamic methods pose similar demands on the spill quality for the largest 
spot size of 10 mm. The compensation of spill fluctuations is very good for the low 
frequencies between 1 and 10 Hz (using simple velocity compensation) and for 
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frequencies higher than 8 kHz (using the automatic smoothing from the finite spot 
size). For the intermediate frequencies the maximum allowable ripple modulation 
drops and, in the case of mini voxel scanning, it stays on the level 20% in the region 
100 to 1000 Hz. In the case of raster scanning, the critical frequencies are between 1 
and 3 kHz where the level of acceptable modulation drops to 15%.

The smaller the spot size, the more marked the differences between mini-voxel 
and raster scanning. Up to 10 Hz the raster scanning can accept all spot sizes with 
almost equal and high efficiency, whereas mini-voxel scanning has problems so severe 
that 4 mm spots cannot be accepted for the test parameters. Between 100 and 
3000 Hz, the difference among spot sizes becomes more noticeable in the case of 
raster scan but the maximum allowable modulation is never lower than 8%.

The efficiency of both methods can be enhanced by decreasing the particle flux, 
which for mini-voxel scanning increases the dwell time and for raster scanning slows 
the scanning velocity. This would attenuate the ‘clock’ error that plays the major role 
in the mini-voxel and voxel methods. However, this means an increased time for 
treatment.

Another way of tolerating larger ripple amplitudes is to increase the sampling 
frequency and hence to reduce the ‘clock’ error. This approach would be more 
beneficial for mini-voxel scanning than raster scanning where the delay and movement 
errors play a more important role. Decreasing the delay and movement errors is a 
technological problem that depends on the internal switching frequency of the power 
converter. The raster scanning method stands to gain most from advances in this 
domain.

The raster scanning could be improved, if the simple velocity compensation 
could be ‘filtered’ so as to act on low frequencies only. This would remove the 
negative impact of this technique at high frequencies where it introduces more error 
than it corrects and reduces the efficiency of the spot smoothing. It is also possible 
that the useful frequency range of the velocity compensation technique could be 
extended by powerful, on-line, real-time computing to frequency analyse the signal and 
to predict the underlying wave form. Some simple algorithms were tried, but no 
spectacular gains were achieved. However, it would seem possible that an 
improvement could be made in this way.
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APPENDIX IA

POISSON STATISTICS

Basic problem
Consider N boxes, in which M balls have been randomly hidden. Make M<N, 

so that some boxes must be empty and make the boxes so small that they can contain 
only a single ball. The probability that a box contains a ball will be,

If n boxes are randomly selected, the probability of finding some specified sequence of 
m balls and (n-m) empty boxes is

There will be several ways of specifying the sequence of balls and empty boxes and the 
overall probability of finding m balls, independent of the sequence, will be,

Of course, the sum of all the probabilities of finding no balls, one ball, two balls, three 
balls etc. up to n balls will be unity,

Consider now the identity

where m is the average number of balls that one would expect to find in n boxes and 
this equals the probability of finding a ball, times the number of boxes that are 
searched.
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and the probability that it is empty will be,

(A-l)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

where y is a variable and differentiate with respect to y,

If y = 1, then
(A-7)
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Now differentiate (A-6) a second time with respect to y,

Statistics of the ‘waiting beam’
The above model corresponds to the beam ‘waiting’ for extraction. The 

particles within this beam will be randomly distributed by rf noise between two limiting 
frequencies (momenta). The boxes correspond to the infinitesimally small phase-space 
volume needed to contain a particle. Thus N»M and p « 1 and q will be very small, 
so that equation (A-8) becomes,

If now the beam is moved slowly into the resonance and n ‘boxes’ are sampled at 
regular time intervals, then the mean number of particles in each time bin and the 
variance of these samples will be given by equation (A-9).

This is known as Poisson statistics. There are two features in the above which 
characterise this type of statistics. Firstly, there can only be no more than one ball in a 
box. This means that it is not possible to force a second particle into exactly the same 
phase space as another particle. Secondly, the very large number of boxes ensures that 
p « 1 and q is small. This reflects the very small ‘granular size’ of a beam, which is 
indeed mostly space.

Example calculation
The overall beam gives the probability of finding, or not finding, a particle at 

given moment (i.e. in a ‘box’. Let there be 108 particles in the beam and let N be the 
number of ‘boxes’, which is very large, but need not be specified. The probability of 
finding a particle is then q = 1O8/7V and of not finding a particle, p = (1-g). Now, 
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If y is again made equal to unity, then

From (A-7), m - (m)2 = nq(l - nq), which when added to the previous result gives,

(A-8)

(A-9)
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sample the spill from the beam in time bins of n = 10-5  Nboxes. Suppose that the whole 
spill last 1 s (N boxes) and a bin last 10 ps (n boxes). From (A-9),

Thus it is expected that the spill will have on average 103 particle every 10 ps 
and the distribution in the time bins will have a standard deviation of o « 30.
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Hardt condition, choosing dispersion 42-43
Hardt condition, with zero chromaticity 51
Highland’s formula 179-182
Highland’s formula, generalised 180
Highland’s formula, improved 180
Horizontal beam size control 3-4
‘Hot’ and ‘cold’ spots 1,195
Intrinsic smoothing 3
Iso-centric gantry 143
Kobayashi Hamiltonian 9,14-16
Kobayashi Hamiltonian, generalised 16-18
Kobayashi Hamiltonian, shifted 53-54
KV distribution 144
Lattice 135-141
Magnetic septum 31-32,43-44
Mini-voxel scanning 195-205
Momentum-selection extraction 27-29
Monte Carlo tracking with scattering 188-193
Movement error 199-201
Multiple scattering (see Scattering) 
‘One-to-minus one’-module 161
‘One-to-one’ module 161
Open dispersion bend 174-175
Over-modulation of the spill 88-90
Passive spreading 1,159-160
Performance parameters 5-6
Phase displacement acceleration 141-120
Phase shifter 171-172,173
Phase-space map 14,18-19
Poisson statistics in a spill 90,217-219
Quadrupole-driven extraction 27-29
Ramping power converters 98-100
Range of charged particles in an absorber 190,191-192
Raster scanning 205-214
Regular-cell lattice 135
Resonant extraction 2,25-52
RF bucket 115
RF-knockout-driven extraction 27-29
Riesenrad gantry 5,163,175-176
Ripple in the spill 87-91
Rotator 3,152-155
Rotator design 153-155
Rotator method 144,152-153
Rotator, beam sizes 156-158
Round-beam method 144,150-152
Scaling 155-156
Scatterers, subdivision 182
Scattering, in absorbers 179-193
Scattering, in phase displacement acceleration 118
Scattering in the Twiss formalism 182-186
Scattering in ‘thick’ absorbers 183-185
Scattering in ‘thin’ absorbers 186
Separatrices, resonance 15,19-20,32-34
Separatrix, rf 115
Sextupole 9-11
Sextupole, chromatic effects 21-23
Sextupole, closed-orbit distortion 18
Sextupole, nomenclature, F and D type 11
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Sextupole, normalised gradient 10
Sextupole, normalised strength 10
Sextupole, resonance excitation 20-21
Sextupole, sign convention 11
Sextupole, virtual 20
Sextupole-driven extraction 27-29
Sigma-matrix formalism 144-147
Sinusoidal modulation of the spill 88
Slow extraction (see resonant extraction)
Source to surface distance 159-160
Spill 9,53-85
Spill quality factor 87
Spill specification, mini-voxel scanning 201-205
Spill specification, voxel scanning 102-104
Spiral step and kick 13,29-31
Split FODO 139-140
‘Square-ring’ lattice 136
Stable triangle 15
Stationary bucket 115
Steinbach diagram 25-26
Stepper 161,172-173
Stochastic noise 107-114
Stochastic resonant extraction 107
Stopband 25-26,36
Strip spill 61-68
Strip spill length 65-67
Strip spill spike 62,67
Strip spill tail 62-67
Symmetric beam method 144,148-150
Synchrotron 2
Synchrotron frequency 115
Telescope module 161,162-163
Third-order resonance 9-23
Transfer between septa 44-51
Transit time, storage time 53,55-61
Triplet 139-140
Tune distance, modified tune distance 12
Tune ripple 76-82,92-97
Tune ripple, defence against 97-101
Uncoupled beam 146-147
Uncoupled beam with scattering 183-185
Unstacking 121-122
Vertical beam size control 4
Voxel scanning 102-104,195
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