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SOME EXAMPLES OF ENERGY FLOW IN THE ALVAREZ STRUCTURE

I, The Model

protons in 2-π-mode in the low-B region, is either one of the following circuits:
A reasonable model of the Alvarez structure, as used to accelerate

For the purpose of this note there is no difference between them.

We take as starting point a structure without losses. This is 
because we should like to make a distinction between the necessity of energy flow 
and the means of energy flow. Given that power can be fed into the structure at 
one point (for example, at "one end) there are several processes which may result 
in the necessity of energy flow:

Copper losses.
Beam loading.
Transient situations, typically the build-up of 
stored energy.

On the other hand the means of energy flow, i.e. the property 
of the structure which enables it to transport energy from one end to the other, 
seems likely to exist even in a lossless structure. If so, it is reasonable to 
study it first in the approximation where losses are neglected.

In these models the earth line is supposed to represent the outer 
wall of the tank. The series capacitors represent the accelerating gaps with their 
longitudinal electric field, including the fringing field as far as it extends, 
so in principle right out to the cylindrical wall.. The series inductors represent
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the inductance of the "central conductor" which is the stack of drift-t,nbes and 
gaps on the basis that the current returns by the outer cylindrical wall, so 
their stored energy represents that of the whole /)-component magnetic field, 
from the axis to the outer wall. The shunt capacitors obviously represent the 
capacitance between the drift-tubes and the outer wall: the drift-tube support 
stems, which are also a shunt element, are as usual neglected in the first 
analysis and looked at later.

The operating mode is called 2ft because of the way in which the 
structure is used to accelerate particles. From the point of view of all 
electrical field considerations it is more convenient to consider it as mode zero. 
When questions of flatness and tilt, energy propagation and transients, etc. are 
studied, one has to bring other modes into consideration, but they are usually 
all rather near to zero , for typically one is considering modes with a few 
half-wavelengths in the whole length of a tank which contains some twenty or 
more cells. For the behaviour of the modes near zero it is convenient and suf
ficiently accurate to treat the structure as continuous, i.e. tocalculate in 
the limit of very short cells.

We shall therefore let L represent the inductance per unit 
length, — the series reciprocal-capacitance per unit length, and C the o s
shunt capacitance per unit length. We let V be the potential on the drift-tube 
centres (or gap centres) with respect to ground and I the current from left to 
right through the drift-tubes and gaps. We adopt the usual engineering 

. ***) convention that these quantities depend on time by way of an unwritten 
factor e^W\ so that one has

(i)

t) For inductance purposes the longitudinal current in the drift tubes must be 
regarded as crossing the gap from one drift-tube to the next in the form of the 
electric displacement D .

St) Technically, a mode near zero is a mode in which the phaseshift per cell is 
small compared with a radian.
Some writers or wave propagation use e for the time factor; with this 
convention one must write -j for j in (1) and in everything that follows.
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where x is distance measured from left to right and I is the current flowing 
from left to right in the top of the circuit and returning by the earth line.

I is more interesting than V for the structure we are looking 
at, so the second-order equation that we derive from (2) is

In the rest of this chapter we shall list the solutions of (3) 
appropriate to the situation where we either have an infinite length of the structure 
or have not yet decided on the boxidary conditions at its ends.

There are the well known solutions of form coskx, sinkx (standing 
waves) and e**^,  e (travelling waves) where

(4)

provided k is positive.

It is obviously convenient to define

(5)

») The accelerating voltage between adjacent drift-tubes is associated with I 
rather than V .
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The wave equation for ov.v structure then evidently

(2a)

(2b)
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and then we have:

Waves are possible witri
(6)

provided w ) w

If oo is lower than this "resonant" or "cut-off" oo , the well o'
known solutions are the evanescent modes with longitudinal space-dependance 
+ax —axe and e , or coshax and sinhax, and one has:

When we let co and. u)$ be equal, we can take the solutions we 
have and put k = 0 or a - 0, and find that I must than be constant 
(independent of x). Appeal to (2b) shows that then V = 0 and the shunt capacitance 
Cg takes no part in the process:

"Cut-off mode" with I = constant, V = 0, 
provided w = (8)

It may be remarked that with oj =<{= we always got solutions 
in pairs, in the special case oj = these have given us enly one solution: 
there must be another because (j) is a second order equation. This is a well-known 
mathematical phenomenon and we shall have to come back to it.

II. Mode Spacing

The simplest useful question about the dispersion properties of 
a standing-wave accelerator structure is the question of mode spacing for a tank 
of length £ . The usual metallic end plates admit the cut-off mode solution at 

w = o)q, the next one admitted will be of form I = cosk^x, if we take the origin

Evanescant modes with
provided (7)



- 5 -

of x at one end of the tank, . *)  wi+h

Putting
from (6), evidently

2 2 rv,w - a) = 2 0) 6u), o o the spacing to this first mode is,

(10)

If we look for the best mode-spacing at given u)q and tank-length
, or for the maximum tank length subject to a practical lower limit on tolerable

mode spacing, the only quantity at our disposal is L C , so one should ask s
roughly what this quantity is likely to be, and what determines it. Consider the
case where the drift tubes are cylinders, short compared with their diameter, with
short capacitive gaps between them. It 
stack, so far as the transverse fields 
the inner conductor of a coaxial line.

is then reasonable to treat this cylindrical
involved in L and C are concerned, as s
Tr this case, independently of the

dimensions, one has

(11)

where c is the velocity of light, so that

(12)

or perhaps move conveniently

where is the resonant free-space wavelength 2tc o/wq and is c/u0»

*) For the other higher nodes = n n . (10')
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The validity of (15 and the influence of the stems are discussed 
a little more in Appendix I „ In what follows wo shall assume in any case the 
approximate equality

(11*)

so that (12) and (15) are also approximately correct.

III. Group Velocity and Energy Velocity for the travelling Waves

One does not use an Alvarez structure in the region oo> 00 , where 0 
travelling waves are possible, but we shall look briefly at this region first as 
it is here that simple concepts of group-velocity and energy-velocity hold.

We already have the dispersion equation (6) : 

or, if one prefers to have gi\ e x. bion of k :

(16)

The phase velocity is oi/k, the group velocity v is dw/dk,
which from (16) gives

(17)

The diagram corresponding to (16) for an Alvarez structure suitable
for accelerating 50 MeV protons is shown in Figure III.
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This figure is drawn 'Hth scales S’.^h that a ratio of one for ordinate 
to abscissa corresponds to the velocity of light, and has been based on the assiirmtion 
that LC is in fact given Ly c (llz» The first few modes of a 12 metre long s
tank are indicated by crosses, and the region where our close-pitch approximation 
can be expected to break down is indicated by not drawing the dispersion curve beyond 
a certain point The phase velocity of P&0.3, used by the protons, is obtained 
by interpreting the zero mode as a 2ti mode, and is also indicated in the figure.

In the region k =j= 0 , where we have some group velocity, it is r? 
interest to compare it with the energy velocity, defined as the ratio

It is convenient to take both quantities as time-averages and to use the
A A
V and I to refer to peak values.

We may take the case of a forward-travelling wave with

(18)

symbo '.s

(19)

then (2b) gives us

(20)

And at any x the energy flow is

where the „ , 1 factor “ appears from the time-averaging.

») Though in fact it would not be much trouble to calculate the curve on into 
this region, allowing for the finite pitch of the structure, using the model 
Fig.I or Fig.II.
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(22)

(23)

(24)

where the numerical factors arise as 1/2 from the time-averaging and }(2 from the 
1 2simple stored-energy formulae “ C V etc.

Hence

Some further remarks on this point are in Appendix II,
PS/4742

The stored energy per unit length is

Transverse electric :

Transverse magnetic:

Longitudinal electric:

(25)

For comparison with (17) we use (5) to eliminate C and (15) 
to eliminate w, obtaining

(26)

This is just the same as the expression we found for group velocity, 
(17), so the group velocity and energy velocity are the same, and they both vanish 
at a) = w , k = o, which is where we in fact use an Alvarez structure.o'

One should not be too surprised at the fact that the energy velocity, 
defined by (18), is zero at o> = For we have calculated for a lossless structure, 
and by taking one given frequency we have effectively cut ourselves off from any 
consideration of transient behaviour: with neither losses nor transients there is 
nowhere for power to go. Our definition of energy velocity (18) relates to the 
velocity with which the energy is in fact moving, not to the energy transport 
capabilities of the structure. It is therefore quite reasonable that this vg 
should depend on circumstances as well as on the structure.
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IV. Energy Transport at zero-mode.

1. Resistive loading.

With our model circuit at zero mode, co = w , k = o, the current I o ’
is constant along the whole length of the structure, and flows from and to ground 
in the end-plates at the two ends, with no voltage (with respect to ground) on the 
drift-tube centres or gap-centres. The simplest way of modifying this model in such 
a way that power flows is to open the right-hand end connection and insert a small
resistor R, open the left-hand end connection and insert a low-impedance voltage
source. In first approximation I is unchanged, power | 12r is transported

a voltage V =IR appears at gap-centres and drift-tube centres along the whole 
length (producing a radial electric field, which combines with the existing
/-direction magnetic field to produce a Poynting vector which integrates
to VI).

This first-approximation thus indicates that we can make as little 
or as much energy flow as we like, according to the value R of the loss-resistor 
that is inserted : to find out whether any distortion of the pattern is produced 
and whether there is any upper linr t to the possible energy flow it is nec ssary 
to look at the exact solution, and for this we shall need the other cut-off frequency 
solution of (3), that exists in addition to (8), as already mentioned on page 4.

At w = 0)°, (j) becomes

(28)

And the general solution is

(28a)

where A and B are arbitrary constants (in general complex, because the two 
solutions can occur with any phase relationship).
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Then using (2b)

(29)

The "A" solution (B = 0) is the one we already listed, (8). A certain 
amount of the "B" solution obviously has to be introduced if our boundary condition 
at one end of the structure is inconsistent with V = 0 .

We suppose that the structure is powered in some way at the near end 
and that the power has somewhere to go in the form of a resistor R at the far end. 
There is a certain convenience in taking the far end to be at x = 0 and the near 
end at x = - .

The boundary condition imposed by R at x = 0 is then, from (28a) 
and (29) :

(30)

(51)

and the solution becomes

ps/4742

We therefore put

(32)

Values at the driven end, x = - C are

(33)
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This is independent of x and evidently equal to the power dissipated 
in R and to the power delivered by the driving source.

We can make the energy flow as big as we like at given A , by 
increasing the loss resistor R .

Evidently from a practical point of view it may be of importance 
that the flow of energy (into a resistor at the far end) causes a distortion of the 
field pattern in the tank, as shown by the -j w C R x term in I , Since this 0 s 
distorting term is pure imaginary, and so in quadrature to the main term, it re
presents mainly (especially if it is relatively small) a phase shift of amount

between the two ends of the tank.

Its influence on the amplitude is small unless this $ is .,at least 
an appreciable fraction of a radian.

In some circumstances it may be interesting to know what energy-velocity 
is available if phase shift 0 is allowed only up to a certain value. The energy 
flow is given by (54). It is

To avoid unpleasantly 
density in the approximation that / 
R in (53) is neglected and we have

complicated expressions we consider the energy 
is small, so that the term proportional to
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To obtain the energy flow we can assume A to be real ; then

Energy flow
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and from (22), (23), (24) we find the energy density co be approximately

(56)

If we suppose, as we have shown to be plausible:

Evidently c 3 a sor^ "standard" energy velocity for this
structure in the sense that if you accept 10 radians phase shift you can have 
1 o/o of c as energy velocity.

Note that it is dependent on the tank length Z? .

For CPS linac tank III is about 12 m and -X is 0.24 m so we get

(58)

A figure which can be calculated from this "standard” energy velocity 
is the phase shift necessary to carry the energy in the steady state for a 
tank of length £ and losses that result in a certain Q . We have:

(59)
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(37)
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Consequently one has near the inpu4' end of the structure

For an order-of-magnitude example one may take Q zv 50,000 , 
fyk nz50 and obtain a / of 1/20 radian or 3°, which is small but by no 

means negligible.

One would be inclined to guess that the phase-shift given by (41) 
would be halved if the losses are distributed evenly along the length, and this is 
readily confirmed (Appendix III), Also it is possible, for a tank of given length, 
to reduce this effect by a factor of 4 by feeding from the middle rather than 
from one end.

2. Transient propagation, sinusoidal.

Evidently energy has to be transported in transient situations : 
for example, to raise the level of the far end of the tank stored energy is required 
and this must, losses or no losses, flow down the tank from the feeding end. So one 
would expect phase shifts or delays or other forms of pattern distortion to be 
associated with any transient situation.

l) Comparing (41) with (13) one finds that the condition for / to be small is 
of the same form as the condition that the mode spacing 6 should be large 
compared with the mode width w /Q ,

(40)

If we continue to take a model in which all the losses are 
concentrated at the far end, this will exist along the whole length of the 
tank, and we have from (37)

(41)
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We continue to work in the no-losses approximation, as it seems 
reasonable to suppose that, to a fair approximation at least, these problems of 
transient-propagation are independent of small losses.

The most elementary way of getting some information about behaviour 
under transient conditions is to use our knowledge of behaviour at frequencies on 
either side of w , (6) and (7) , to construct a modulated situation out of side-bands.

Let us suppose that, by some means unspecified, we can modulate the 
level of the near end (i.e. loop end) of the tank according to

With the well-known rotating vector diagram:

(42)

Fig.4a
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The boundary condit’’ ^n at the far end of the tank is V - o and 
therefore ~ = 0 , for all three frequencies, so the centre frequency will 
be flat along the length of the tank, w t will be of cosine form with peak 
at the far end, and w - will be a hyperbolic cosine with its minimum at the 
far end.

At the far end, the vector diagram becomes

PS/4742
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We have supposed small compared with the spacing to the next 
mode.

The main features of the situation at the far end of the tank can 
be seen from this vector diagram:

1) The end of the resultant describes an ellipse, so there is 
phase modulation as well as .amplitude modulation.

2) The amplitude modulation is roughly as big as it is at the loop 
e.nd - propagation along the length of the tank does not significantly smooth 
out the modulation.

3) The amplitude-modulation at the far end of the tank is in phase 
with that at the near end. Since group velocity normally shows up as a progressive 
phase-shift of any modulation, this means that the group velocity is apparently 
infinite.

4) The phase-modulation at the far end is in such a sense that it 
lags the near end of the tank during times when the amplitude is increasing, i.e. 
times when energy is flowing in the positive direction.

In principle any sort of time-dependent behaviour can be built up 
out of sidebands and studied by this method, but it is rather cumbersome, so 
we next look at the possibility of handling the frequency u>q, modulated in a 
quite general way.

3. Transient propagation, general

We go back to our equation (3) for the structure and generalise i’t to 
apply any form of time-dependence by writing ZTr in place of jw :

>3/4742

fourth order terms
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Now let us suppose that

(43)

(44)

where F is assumed to be only slowly varying with time (compared with the 
e^U^ factor). In general F is complex, so it is capable of representing changes

of amplitude or changes of phase of the basic w signal. o

We put (44) into (43) and obtain (using the definition (5) of w^):

(45)

where we use the primes to indicate differentiation with respect to x and the 
dots for differention with respect to time.

Our assumption that F is slowly varying means that it is reasonable 
to neglect F in comparison with J F , at least in a first approach to the 
problem. So we have

This is the well-known equation for conduction of heat (or for 
diffusion, etc.) in one dimension, with only the difference that the diffusivity 
D is in our case a pure imaginary. It is worth listing the most important simila
rities to a heat-conduction problem and the most important differences.
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(46a)

(46b)

or alternatively

where D is given by
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and from (46b) one may verify that it has. These are not the dimensions of a 
velocity.

2) The equation satisfies a scaling law. If some solution F is 
known, then one may increase all distances by a factor say r and all times*) 

2 by r and one again has a solution,

A special case of this is the following: take a semi-infinite tank 
with the feeding loop at this end and put onto this loop some R.F, whoso amplitude 
is time dependent, but with a form of time dependence which is unchanged by a 
change of time-scale. A delta-function or step-function, at t = o, ■are practical 
examples. After say 1 ps the x-dependence of F wil have a certain form; then 
at 4 ps the x-dependence will have the same form but with all lengths doubled, 
and in a certain sense it will be possible to say that the signal has travelled 
twice as far down the tank.

3) Evidently disuurounces whose variation with x or with time 
is rapid move around as though with a high group velocity, those whose variation 
is slow appear to move with a low group velocity.

4) In the conduction of heat, and in diffusion, where we have the 
equation (46a) with D real, the transport of heat or material is always associated 
with a gradient of temperature or concentration. In our case with D imaginary 
one can expect a gradient in the phase of F, rather than in its magnitude, to 
be associated with transport of signals.

l) Excluding, of course, the time ” and the distance •
0 ’

1) Physical const; its and the paramet.rs of the hardware <nly 
appear in the form of the group of factors that make up D , One may see from 
(46a) that D must have the dimensions
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5) In principle ai / of the known solu.ions to the one-dimensional 
heat conduction problem can be taken ovex- as a solution of our problem, only by 
taking account of the fact that T) is ■’r>Agina'vy. In practice this does not seem 
to be very profitable, at least for the two examples below.

(i) One well-knovm solution to the heat conduction equation is the 
spreading Gaussian. With a delta-function or most other sufficiently concentrated 
initial distributions of temperature and with infinitely remote boundaries one 
finds a solution

With D real this is a curve of Gaussian form with width increasing 
1/2 -1/2 /proportionally to t and peak height decreasing like t , the area (proportional 

to total heat) being constant.

With D imaginary (47) becomes a useless expression: it does not 
tend to a delta-function, or other plausible form of idealised initial condition, 
at small t, and as x increases its amplitude does not decrease but the rapidity 
of its oscillations (with x or with t) increases without limit.

(ii) For a utnk o.. ^.inlue length and simple boundary conditions 
at the ends it is natural to consider expressing the x-dependence of F in the 
form of a Fourier series. One may recall that Fourier analysis was invented in 
connection with the heat-conduction equation. Let us take the boundary condition 
F’ = 0 at the tank ends, and expand in longitudinal modes of which the n’th 
depends on x like

(48)

(49)
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This gives us

(50)

Substitute in (46a)

The time-dependence of the solution is therefore of form

(51)

(52)

(53)

In heat conduction the various longitudinal Fourier terms die away 
with various timeconstants, the short wavelength ones faster, and one readily gets 
a qualitative feeling for the way in which a temperature distribution becomes 
flatter and smoother and tends to a very simple asymptotic form; now we see 
from (53) that in our problem with imaginary D there is no such decay! the 
F’s of the longitudinal modes just go round and round in the complex plane, and 
in fact (53) is not really anything new, it is just the old formula for the mode 
spectrum (10’), derived in a curious and round-about way.

Although this result is discouraging and we shall not pursue the 
Fourier method further, it seems probable that the straightforward and reliable 
method of finding out in detail what happens when one starts to build-up an empty 
tank is to make the expansion in terms of a complete set of orthogonal normal 
modes appropriate to a specified boundary condition at the loop end of the tank.

PS/4742

and with D given by (46b), this gives
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An elementary way of getting something useful out of the equation 
(46) is to solve it by successive approximation.

We put

(55)

and we note that the usual solutions in which all questions of energy-transport etc. 
are disregarded are ones where F" is assumed zero while F is taken to be what
ever the pulsed nature of the RF supply dictates; such a solution is compatible 
with (55) only if YD is neglected. In other words, neglecting questions of energy 
transport is equivalent to assuming infinite diffusivity.

Thus the appropriate method of successive—approximation is to
expand F in ascending powers of 1/D ;

(56)

Substitute this into (55) and equate terms of the same order:

(57)

Since we are neglecting losses, it is reasonable to look at the 
situation with a linear rise, as happens in the early part of an RF pulse before the 
finite Q makes the envelope level off. So we put

Therefore
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The general soluticn of this is

(60)

We can put C equal to zero, because any constant (independent
of t and of x) part of F can be absorbed into F by a suitable choice of o
the origin of t.

Taking the far end of the tank as being at x = o, and the boundary
condition there as F> = 0, we have also B = 0, and the solution is

very small
It seems reasonable to suppose that this

*)t , but is approximately correct when the
solution is not good at
second term is small

compared with the first.

When the second term is relatively small it can be interpreted as
a phase shift which falls like t :

(62)

On the approximation L C fa c t this is s

2 2E,g, for C.P.S. tank II or III x = 144 m

and one obtains 0.1 radian.

<) What is wrong with (61) is that it does not satisfy the initial condition, 
F(x,o) = 0 at all x, that we want. If we attempt to use F = At where H 
is the unit step function, in place of (58), then the neglected
F term is infinite- at t = 0 end one is no closer to the reel physical problem.

(61)
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As to the sign of vr'g phase-shift, we can see from (61) that 
the far end. of the tank lags the loop end, in the same way as we found at (33) for 
propagation into a resistor and al 4 ) page ±6 for sinusoidal modulation 
at times when the energy flow is positive, ‘

Both the sign and the approximate magnitude of this predicted 
* ’ i)phase shift agree with preliminary measurements made on the CPS linac, tank III .

. It is clear that the detailed behaviour of the amplitude as a function
of x in the early part of the RF pulse must be more complicated than any of the 
examples that we have looked at. In particular, an accurate solution has to agree 
with the fact that no signal can travel faster than the velocity of light.

V, Summary

1, The general phase-gradient formula

An interesting fact appears if wn compare the phase-gradients 
that we have found in the lumped-resistor load case (33), the distributed losses 
case of Appendix III, the sinusoiz mokf ation case 1/2), and the transient 
build-up (62). One finds a phase-gradient given by

(63)

where v$ is the local value of energy rolocity, whether this energy flow is into 
losses or into a region of increasing stored energy.

If the result is so general one would expect to be able to demonstrate 
it from the wave equation of the structure, (2), and the formulae for energy flow 
and energy density. An outline of such a proof is given in Appendix IV.
We are therefore justified in assuming that (63) will also hold when the energy 
flow is occasioned by beam loading.

») Private communication of C.S.Taylor, December 1964.
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2. Conclusions

Longitudinal energy flow in an Alvarez structure produces a 
longitudinal gradient of RF phase. The numerical coefficient may be estimated 
from considerations of a rough mod 71, or obtained from the dispersion characteristics 
of the structure if they are known. Then one may calculate the upper limit on usable 
tank length dictated by phase-difference considerations under given conditions.

Although we have not solved the problem of the longitudinal variations 
of amplitude associated with transient conditions, what we have done tends to 
suggest that they are small except under conditions where the phase shifts are 
intolerably large.

H.G.Hereward

Distribution? (open)
Scientific Staff MPS Division 

” " AR "
M*G.N.Hine
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Appendix I

The value of L Cs

for an Alvarez structure.

The drift-tubes support stems will have capacitance to ground which 
is to be added to C , but they also act as parallel inductive path which will s z-J
reduce the effective value of C by 1/w L , When the length of the stems is of s s
the order of Xo/4 it is difficult to say which of these effectd will predominate.

It has been pointed out that one can determine the curvature of the
dispersion diagram for the structure, in the neighbourhood of cut-off, by measuring 
the frequencies of the first few longitudinal modes of a given tank. To know this 
curvature is to know the effective value of L C$ and is probably sufficient for 
all practical propagation problems.

*) Private communication from P.Lapostolle.

The relationship (11) :

is nostfamiliar for coaxial lines, but is not special to a coaxial cylinder geometry: 
any two-conductor system with transverse cross-section independent of the longitudinal 
coordinate x satisfies the relationship; that is why such a structure always has 
a transmission-line mode which propagates with the velocity of light.

One can suppose the fact that our central conductor is broken into 
drift tubes and gaps will have a similar effect on L and Cg as has the 
corrugation of the inner conductor of a coaxial. Such corrugation always increases 
L C$ ; sometimes one regards it as being fins or irises which increase the shunt 
capacity, sometimes as slots which add inductance to L , Thus one would tend to 
expect
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Appendix II

Some remarks on energy velocity.

It is worth elaborating a little our remark at the end of Chapter III 
to the effect that it is reasonable to find v dependent on circumstances, as 
well as on the structure. In the calculation of energy velocity for the travelling 
wave, case, we did not specifically introduce any losses or transients;
what we did was to select, at (19)» a pure forward travelling wave; we could 
perfectly well have taken a standing wave, a backward travelling wave, or any 
mixture; and obtained, instead of the expression (26), respectively zero, minus (26), 
or any value between -(26) and +(26) . One can of course say that we were 
interested in the energy velocity for the pure forward travelling wave, so that 
is what we calculated, but one can also link up this choice with the physical 
situation. The pure forward-travelling-wave situation can be realised physically 
in three ways:

(1) At some moment t = o we start launching a wave at one end of 
the structure. We make the structure sufficiently long, and examine the situation 
at a time sufficiently soon after t = o , that the reflected wave has not yet 
arrived back from the far end. It does not seem too artificial to describe this 
situation as one which is "100 o/o transient",

(2) We introduce loss into the structure, keeping this loss small 
enough that it has negligible effect on the properties of any moderate length of 
structure, and then we take the structure very, very, long, so that the Wave 
reflected from the far end is of negligible amplitude compared with ,the forward 
one. This is a situation of "100 0/0 loss".

(?) The far end of the structure is terminated by a matebed load. 
A matched load is one which absorbs the forward wave without producing a reflected 
one; i.e., it absorbs 100 0/0 of the incident power, so again we have a situation 
of "100 0/0 loss".
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Thus our derivation of (26) has some concealed implications aoub 
about the situation with respect to losses or transients, and gives a maximal value 
of energy velocity, associated with "100 0/0 loss" or "100 0/0 transient" 
situations.

These easy methods of setting up a "100 0/0 loss" or "100 0/0 
transient" situation are not available at w = w , because there the structure o
does not propagate travelling waves, so we are forced to look at somewhat more 
complicated situations.
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Appendix III

Distributed losses

We introduce distributed losses corresponding to a certain value of
Q by replacing jaiL in our structure, and in the wave equation (2), by

(65)

and giving R the value oj^L/q , (66)

It is true that the skin-effect does not produce a purely resistive 
term, nor one which is independent of frequency, but if we confine ourselves to 
frequencies near we have in (65) and (66) an adequate model for the distributed 
losses. Making the corresponding change in the second-order wave equation (j), and 
putting oj = ojq, we get

Note the pure imaginary coefficient, which gives wavenumbers k with equal real
and imaginary parts. The solution appropriate to a metallic wall boundary
condition at the far end, x = 0, of the tank is

PS/4742

where
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If the tank is not too long we may expand the exponentials to obtain

and in a tank of length C this gives just half the phase-shift given by (41).
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Appendix IV.

Energy flow and phase-gradient

The tine-averaged energy flow is given by “ I V, and energy
density, if one is close enough to cut-off to put

1 2transverse electric energy, is given by — L I
w = w and to neglect the 
; see (23) and (24). Thus

We use this to eliminate V in the wave-equation (2b), and obtain

in agreement with (63).
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which, if gives


