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The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the
properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses
but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly
powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize
with neutrinos via the inverse decay process, νν̄ → X, and suppress neutrino free streaming near
recombination – even for couplings as small as λν ∼ O(10−13). Here, we revisit CMB constraints on
such bosons, improving upon a number of approximations previously adopted in the literature and
generalizing the constraints to a broader class of models. This includes scenarios in which the boson
is either spin-0 or spin-1, the number of interacting neutrinos is either Nint = 1, 2 or 3, and the case
in which a primordial abundance of the species is present. We apply these bounds to well-motivated
models, such as the singlet majoron model or a light U(1)Lµ−Lτ gauge boson, and find that they
represent the leading constraints for masses mX ∼ 1 eV. Finally, we revisit the extent to which
neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in
the understanding of how such bosons damp neutrino free streaming reduces the previously found
success of this proposal.

I. INTRODUCTION

Neutrinos always comprise a sizable fraction of the
energy density in the Universe. In particular, prior to
matter-radiation equality they represent ∼ 40% of the
energy budget. Neutrinos are also the only species with
a sizable anisotropic stress – a consequence of their de-
coupling from the thermal plasma at T ∼ 2MeV. Col-
lectively, these facts imply that neutrino free streaming
plays an important role in the evolution of the grav-
itational potentials responsible for sourcing the CMB
anisotropies [1–3]. Current observations of the CMB by
the Planck satellite [4–6] are compatible with the stan-
dard picture in which neutrinos are free streaming at red-
shifts 2000 ≲ z ≲ 105 [7] (corresponding to temperatures
0.5 eV ≲ Tγ ≲ 25 eV), implying these observations can
be used to stringently constrain the existence of new light
particles coupled to the neutrino sector.

The impact of exotic neutrino interactions in cosmol-
ogy, and in particular in the CMB, have been studied in
various contexts, including scenarios in which: neutrinos
have self-interactions that arise from heavy mediators [8–
18], neutrinos annihilate into massless scalars [3, 19–24],
neutrinos decay into light particles [25–32], and neu-
trinos temporarily thermalize with eV−scale neutrino-
philic scalars [2, 33–35]. The latter scenario is particu-
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larly interesting, as particles at the eV mass-scale can
arise naturally in theories which explain the origin of
neutrino masses (e.g. the majoron model) [36–39] or
in weakly coupled realizations of spontaneously broken
gauge flavor symmetries [40–43]. Furthermore, it has
been shown that eV−scale neutrino-philic scalars like the
majoron could play an important role in helping to ame-
liorate the largest outstanding discrepancy in cosmology,
the Hubble tension [33–35] (see e.g. [44, 45] for recent
reviews on the Hubble tension and proposed solutions).
However, this scenario is challenging to model, as the
light bosons and neutrinos undergo an out-of-equilibrium
thermalization followed by an out-of-equilibrium decay,
leading to a non-trivial modification of the expansion his-
tory of the Universe.

The goal of this work is to perform a precision study
of the impact of eV−scale neutrino-philic bosons on the
CMB, improving upon previous analyses which relied on
numerous simplified approximations [33–35], and extend-
ing the results of these analyses to the more general class
of light neutrino-philic bosons. The primary improve-
ments of this work are three-fold. First, we have in-
corporated the background thermodynamic evolution of
neutrinos and the neutrino-philic bosons in the cosmo-
logical Boltzmann code CLASS [46, 47]. This allows us
to solve for the thermodynamics on the fly, with precision
and speed which allows a full Bayesian analysis of Planck
legacy data1. Next, we incorporated a refined computa-

1 Our modified version of CLASS is available on github §. The
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FIG. 1. Parameter space for neutrino interactions with a scalar (left panel) and vector (right panel) boson X with mass
mX . The bounds are interpreted within the singlet majoron model, where λν = mν/vL and for a light U(1)Lµ−Lτ gauge
boson, for which λν ≃ gµ−τ , respectively. An analysis of Planck legacy data excludes blue regions with 3σ confidence. Grey
regions represent current cosmological, astrophysical and laboratory constraints, see Section V for details. In pink we indicate
constraints coming from the out-of-equilibrium decay of the new X boson which apply if a primordial abundance was generated
before BBN. We also indicate the region of parameter space which will be tested by the Simons Observatory. In particular,
the region above the purple dashed-dotted line will be tested because the thermalization of the X boson leads to an observable
excess of ∆Neff ≥ 0.1. Finally, we also highlight in red the best fit region of parameter space for the scenario of the X boson
being of scalar type and interacting with one neutrino family, Nint = 1. This region is of particular interest because it indicates
that non-trivial neutrino interactions are statistically slightly preferred over ΛCDM.

tion of the collision term [30, 31] which damps the neu-
trino free streaming less efficiently than assumed in previ-
ous studies [33–35]. Finally, we generalize the analysis to
arbitrary number of interacting neutrino species, include
the possibility of both vector and scalar bosons and the
possibility of having a primordial abundance such bosons.

In general, we find that the CMB can robustly con-
strain the existence of eV−scale neutrino-philic bosons
with couplings on the order of λν ∼ O(10−13). The value
of this coupling roughly corresponds to the new bosonic
particles having a lifetime shorter than the age of the
Universe at recombination, ΓX ∼ λ2

νmX/(8π) ≲ H(zrec).
These bounds play an important role in testing a variety
of well-motivated high-energy theories, such as the sin-
glet majoron model (where these observations are testing
scales of lepton number breaking as high as∼ 1TeV), and
the U(1)Lµ−Lτ

extension of the Standard Model. The
main results of our study are highlighted in Figure 1,
which display the 3σ constraint on the coupling of the
majoron and U(1)Lµ−Lτ gauge boson, respectively. In
the case of the majoron, we also highlight a region of pa-
rameter space that is favoured by Planck legacy data at
the ∼ 1σ level.

The reminder of this work is structured as follows.
First, in Section II we briefly introduce and motivate the
particle physics models that we consider. In Section III,
we present the formalism behind our work. In particular,
we describe how we treat the thermodynamic evolution of

equations for the evolution of the temperature and chemical po-
tentials should be easily generalizable to other scenarios involving
Beyond the Standard Model (BSM) physics.

the Universe in the presence of eV−scale neutrino-philic
bosons, including how the dynamics are implemented at
the level of both the background and perturbations. In
Section IV we present the constraints we derive on the
couplings between neutrinos and eV−scale bosons. We
also include a quantitative discussion about the ability of
these models to solve or ameliorate the Hubble tension,
showing that the new collision term strongly suppresses
the previous success of this model identified in [33–35].
Finally, in Section VI we present a summary of our re-
sults and outline our conclusions. For completeness, we
provide in the appendices I and II further information on
the formalism and details on the modified cosmological
history.

II. PARTICLE PHYSICS MODELS

Effective Interactions: We will consider an effective
coupling between neutrinos and a light bosonic mediator
X and we will study two cases, one where the media-
tor is a pseudoscalar X = ϕ and one where it is a vector
X = Z ′. We will work after electroweak symmetry break-
ing and in the active neutrino mass basis. The effective
Lagrangians describing these interactions are:

Lscalar = i
a

2

∑
ν

λν ν̄γ5ν X , (1)

Lvector =

√
3a

2

∑
ν

λν ν̄γ
µPLν Xµ , (2)

where λν are dimensionless coupling constants and where
a = 1 for Majorana neutrinos and a =

√
2 for Dirac
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neutrinos.

Given these interactions, the scalar and vector boson
partial decay rate into a pair of massive neutrinos are
given by:

Γ(X → ν̄ν)|scalar =
λ2
ν

16π
mX

√
1− 4m2

ν

m2
X

, (3)

Γ(X → ν̄ν)|vector =
λ2
ν

16π
mX

√
1− 4m2

ν

m2
X

[
1− m2

ν

m2
X

]2
, (4)

Mapping to concrete models: These effective La-
grangians have a direct interpretation in terms of well
motivated BSM scenarios. For example, Eq. (1) is the
effective interaction generated in the famous singlet ma-
joron model [36] with X = ϕ identified as the majoron
and with λν = mν/vL, where vL is the scale at which
the global U(1)L symmetry is spontaneously broken. In
particular, in this model the coupling between massive
neutrinos and the majoron is diagonal up to small cor-
rections [37]. The vector interactions in Eq. (2) also ef-
fectively describe new interactions of neutrinos in many
BSM constructions. Typically, in the vector case the in-
teraction arises by the gauging of lepton number family
symmetries, and as such, the interaction is non-diagonal
in the neutrino mass basis [40, 41]. However, in such
cases all massive neutrinos couple to the X boson, and
the couplings in the mass and flavor basis are simply re-
lated by a PMNS rotation. As an example, we can con-
sider the case of a light U(1)Lµ−Lτ

gauge boson; here,
the coupling λν is intimately related to the U(1)Lµ−Lτ

gauge coupling, λν ≃ gµ−τ – see Ref. [48] for the precise
mapping.

Scenarios Considered: We will consider several scenar-
ios that we expect to broadly cover the phenomenology of
the most well-motivated BSM models featuring new neu-
trino interactions below the MeV scale (these scenarios
are summarized in Table I).

All scenarios correspond to different combinations of i)
the number of interacting neutrino families, Nint, ii) the
internal degrees of freedom of the X particle, gX , and iii)
if the X species has a non-zero primordial abundance or
not, parametrized by ∆NBBN

eff . To be specific, we consider
the following:

• Case (a), with Nint = 3 and gX = 1, corre-
sponds to the singlet majoron model in which neu-
trinos are pseudo-degenerate (note that pseudo-
degenerate neutrinos imply a universal coupling
λν).

• Case (b), with Nint = 3 and gX = 3, corresponds
to the commonly studied model of a light Z ′ boson
coupled to a lepton number family symmetry. In
this model it is once again a good approximation
to consider a flavour universal coupling, since the
PMNS matrix does not show a hierarchical struc-
ture.

Scenario Specification

(a) Nint = 3, gX = 1
(b) Nint = 3, gX = 3
(c) Nint = 1, gX = 1
(d) Nint = 1, gX = 3

(e) Nint = 3, gX = 1, ∆NBBN
eff ̸= 0

(f) Nint = 3, gX = 3, ∆NBBN
eff ̸= 0

TABLE I. Summary of the different scenarios considered as
described in the text.

• Case (c), with Nint = 1 and gX = 1, corresponds
to the case of the singlet majoron model coupled
mainly to one neutrino. This can happen with
one approximate vanishing neutrino mass eigen-
state where the coupling is mostly to the heaviest
neutrino state or for 2mlightest

ν < mX < 0.1 eV ≃
2
√
|∆m2

atm| since the majoron in that case can only
kinematically couple to the lightest neutrino.

• Case (d) corresponds to a case where a vector bo-
son couples to a single neutrino mass eigenstate. As
in scenario (c), this option is relevant in particular
for 2mlightest

ν < mX < 0.1 eV. However, a con-
crete model realization for mX > 0.1 eV in which a
vector interacts only with one neutrino mass eigen-
state is challenging, and generically involves can-
cellations of different couplings in flavour space.

• The cases (e) and (f) correspond to the cases (a)
and (b), respectively, but allowing for a non-zero
primordial abundance of the X particle parame-
terized by ∆NBBN

eff . Such a primordial abundance
of X particles can arise e.g. due to the decay of
other, heavy particle species in the early Universe.
For instance, majorons can be produced from the
decays of GeV−scale sterile neutrinos [34], and the
U(1)Lµ−Lτ gauge boson can be produced via muon-
antimuon annihilations in the early Universe [43].

III. COSMOLOGICAL IMPLICATIONS AND
FORMALISM

Cosmological Implications: The cosmological implica-
tions of these light neutrino-philic bosons are governed by
their decay rate into neutrinos. In particular, the ratio
between the decay rate of X into neutrinos and the Hub-
ble parameter at T ≃ mX/3 determines whether or not
the X boson thermalizes in the early Universe. In a radi-
ation dominated Universe, this ratio can be parametrized
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by:

Keff ≡
(

λν

4× 10−12

)2 (
keV

mX

)
(5)

≃ 3 ⟨Γ(ν̄ν → X)⟩
H

∣∣∣∣
Tν=mX/3

,

where ⟨Γ(ν̄ν → X)⟩ is the thermally averaged inverse de-
cay rate. For Keff ≳ 1 the X boson thermalizes with the
neutrinos in the early Universe via decays and inverse
decays out of neutrinos2. Thermalization has two impor-
tant cosmological consequences:

1. Non-standard expansion at Tν ≲ mX – If the X
boson thermalizes with neutrinos it will represent
a non-negligible fraction of the energy density of the
Universe. In particular, the X boson will behave
as radiation until Tν ∼ mX but after it will start
redshifting like matter and decay. This leads to a
non-standard expansion history during this time,
and to an enhanced value of Neff at the time of re-
combination (provided that mX has decays before
recombination).

2. Suppression of neutrino free streaming – The new
interactions between neutrinos and the X particle
tend to homogenize the neutrino fluid, suppressing
neutrino free streaming. This has important con-
sequences for CMB observations as highlighted in
the introduction.

Background Thermodynamics: The exact description
of the thermodynamic evolution of the Universe in the
presence of a light boson interacting with neutrinos can
be found by solving the Liouville equation for the distri-
bution function of neutrinos and the X boson. This is
numerically very costly, but Ref. [49] explicitly demon-
strated that for scenarios where the X boson interacts
efficiently with neutrinos, namely for Keff ≳ 10−3, the
thermodynamics can be accurately described by simple
ordinary differential equations tracking the temperature
and chemical potential of the neutrinos and the new
light boson. These equations are explicitly outlined in
Appendix I. In the left panel of Figure 2 we highlight
the thermally averaged inverse decay rate (⟨Γν̄ν→X⟩ =
δρX/δt|ν̄ν→X/ρν) normalized to the Hubble parameter
for a mX = 1 eV boson with gX = 1. We show the
evolution for several values of Keff = 100 , 1 , 10−2 rep-
resenting cases where thermal equilibrium is well estab-
lished, where thermal equilibrium is only slightly reached,
and where the X boson does not thermalize, respectively.
The energy density evolution for the X particle for each

2 Processes such as XX ↔ ν̄ν are only effective for λν ≳ 10−7

and as can be seen from Eq. (5) we will be interested in much
smaller couplings.

Model ∆NCMB
eff

Case (a), Nint = 3, gX = 1 0.12
Case (b), Nint = 3, gX = 3 0.24
Case (c), Nint = 1, gX = 1 0.08
Case (d), Nint = 1, gX = 3 0.15

TABLE II. Minimum contributions to ∆Neff at the time of
recombination resulting from the thermalization and subse-
quent decay of the X neutrino-philic boson. This corresponds
to Keff ≫ 1 and mX ≳ 10 eV.

of these cases is highlighted in the right panel of Figure 2.
From this figure we can clearly see that for Keff ≳ 1 the
X boson thermalizes with neutrinos and its thermody-
namic evolution is dictated by thermal equilibrium. On
the other hand, for Keff < 1 thermal equilibrium is not
established which leads to out of equilibrium decays. The
evolution at Tν ≲ mX/3 will lead in all cases to a non-
standard expansion history.

For Keff ≫ 1 and for mX ≳ 10 eV thermal equilibrium
dictates what is the value of the neutrino energy density
after the X particle has decayed away. By assuming ther-
mal equilibrium and tracking the number and entropy
densities of the neutrinos and X species (see [49]), we
can calculate the minimum values of ∆Neff at recombina-
tion for the scenarios (a)-(d). These results are outlined
in Table II. For X being a scalar mediator one expects
∆NCMB

eff = 0.08 − 0.12 and for the vector mediator case
∆NCMB

eff = 0.15 − 0.24. We note that these values are
similar to Planck’s 1σ sensitivity to Neff , and thus an
accurate treatment of this modified expansion history is
needed to analyze the latest data.

In the event that a primordial population of bosons al-
ready exists at the time of BBN, the process of thermal-
ization at late times, i.e. near recombination, can signif-
icantly increase ∆Neff . For this reason, we differentiate
the abundance of the new bosonic species at BBN and re-
combination using ∆NBBN

eff and ∆NCMB
eff . We illustrate

the evolution of ∆NCMB
eff assuming a primordial abun-

dance of ∆NBBN
eff = 0.4 in Figure 3. Two immediate con-

clusions can be drawn from this figure. Firstly, the shift
in ∆Neff between BBN and recombination can greatly
exceed the values outlined in Table II. Secondly, ∆Neff

increases dramatically for Keff ≲ 1. This is because the
X boson becomes non-relativistic and its delayed decay
leads to a significant increase of the relative energy stored
in this species. Consequently, scenarios with λν → 0 and
∆NBBN

eff ̸= 0 lead to a drastically distinct phenomenology
compared to ΛCDM. Although, the effect of neutrino-
free streaming suppression is negligible, these scenarios
will be tightly constrained from the increase in ∆Neff .
Cosmological Perturbations: In order to track the cos-
mological perturbations of the fluids describing neutri-
nos and the neutrino-philic boson X, we rely on several
approximations. First, we treat the two interacting flu-
ids as coupled, as done in past literature [30, 31]. This
implies that we can evolve the perturbations jointly. In
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creases and that for small Keff it increases significantly due
to very out of equilibrium decays of the X particle.

the limit that the interactions are sufficiently strong this
approximation is by definition valid. On the other hand,
in the weak interaction limit, we also expect the approx-
imation to be valid, because the perturbation equations
in this case are equivalent to two decoupled fluids.

The second approximation adopted here enters in the
collision term describing the 1 ↔ 2 interactions between
the neutrinos and the X boson. Following Ref. [31] we
assume: (1) Maxwell-Boltzmann statistics, (2) that the
background momentum dependence of the neutrino dis-
tribution is not strongly time dependent, and (3) that
the perturbation generated by gravity is universal to all
the species involved. We expect all these approximations
to hold in our scenario.

Finally, we treat neutrinos as being massless. This
assumption significantly simplifies the evolution of the
neutrino perturbations. Since current Planck data is con-

sistent with massless neutrinos, setting an upper limit
on the sum of neutrino masses at the level of

∑
mν <

0.12 eV [4], we believe this approximation does not signif-
icantly alter our results. Nevertheless, a more thorough
treatment including neutrino masses would be of interest,
and thus we leave this for future work.

Under the approximations listed above, the equa-
tions describing the joint neutrino+boson system in syn-
chronous gauge read [50]:

δ̇ = −(1 + w)

(
θ +

ḣ

2

)
−H

(
c2s − w

)
δ , (6a)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

c2s
1 + w

k2δ − k2σ , (6b)

Ḟ 2 = 2σ̇ =
8

15
θ − 3

5
kF3 +

4

15
ḣ+

8

5
η̇ − 2 aΓNF2 σ, (6c)

Ḟℓ =
k

2ℓ+ 1
[ℓ Fℓ−1 − (ℓ+ 1)Fℓ+1]− aΓNF ℓ Fℓ , for ℓ ≥ 3 .

(6d)

Here, derivatives are taken with respect to conformal
time, H is the conformal Hubble parameter, h and η
represent the metric perturbations, a is the scale fac-
tor, ω = p/ρ is the equation of state of the system,
c2s = dp/dρ is the sound speed squared, k defines the
given Fourier mode, δ and θ are the energy and velocity
perturbations respectively, Fℓ represents the ℓ moment
of the perturbed distribution function, and the neutrino
free streaming suppression rate is given by is [31]:

ΓNF ℓ = −αℓ
gX
4π2

mXT 3
ν

ρX + ρν
Γ(X → ν̄ν)

(mX

T

)4
F

(
mX

Tν

)
.

(7)

In this expression we neglect the chemical potentials,
which we explicitly checked to have negligible impact on
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observables. The coefficients are given by [31]

αℓ ≡ (3ℓ4 + 2ℓ3 − 11ℓ2 + 6ℓ)/32 , (8)

F (x) ≡ 1

2
e−x

(
−1 + x− ex(x2 − 2)Γ(0, x)

)
, (9)

where Γ(0, x) is the incomplete gamma function. At high
temperatures ΓNF ∼ (mX/Tν)

5 Γ(X → ν̄ν) and at very
small temperatures ΓNF ∼ e−mX/TνΓ(X → ν̄ν). This
neutrino free streaming rate is shown as a function of
temperature in dashed lines in the the left panel of Fig-
ure 2. We can clearly see that at high temperatures the
scaling of ΓNF is different to the background evolution.
Moreover at Tν ∼ mX/3, where the rate is maximal, it
is a factor of ∼ 1/10 smaller than the background equiv-
alent. It is actually easy to see that for ΓNF/H > 1,
Fℓ → 0 exponentially fast, which strongly reduces neu-
trino free streaming.

Numerical Implementation in CLASS: We track the
impact of the neutrino-X interactions on the CMB power
spectrum by modifying the cosmological Boltzmann code

CLASS [46, 47]. The code is available on github §. It
can also help to study the thermodynamic evolution of
different BSM scenarios.

In the left panel of Figure 4 we show the evolution of
the neutrino anisotropic stress associated with a mode
of k = 0.1Mpc−1 as a function of redshift. We choose
k = 0.1Mpc−1 because it is the largest wave number
well probed by CMB observations. The evolution for
different, smaller wave numbers are shown in Figure S8
of the appendix. From Figure 4 we can clearly see how
the decays and inverse decays of X reduce the neutrino
anisotropic stress. In the right panel of the same figure we
also show the relative impact on the temperature power
spectrum CTT

ℓ compared to ΛCDM. The impact on the
observable CTT

ℓ spectrum can go well above the level of
the 1σ relative error bars, as indicated by the grey band.

In Figure 5 we show the CMB temperature power spec-
trum for different values of mX , taking Nint = 3, gX = 1,
and fixing Keff = 104. This corresponds to a scenario
where theX particle interacts very efficiently with neutri-
nos, and thermal equilibrium is reached at T ∼ 30×mX .
From this plot we can appreciate a number of interesting
features: firstly, we notice that for mX ≲ 0.1eV the im-
pact on the CMB power spectrum is not significant. This
is because the non-standard expansion history occurs af-
ter recombination, and owing to the high temperature
suppression in the collision term, neutrino free stream-
ing is not significantly altered before recombination. We
notice that the most significant effect is for bosons with
1 eV ≲ mX ≲ 100 eV. This is because the interaction
rate of these bosons is maximal during the window of red-
shift to which the CMB is sensitive, i.e. 2000 ≲ z ≲ 105.
Finally, for the case with heavy mediator, mX = 10 keV,
the boson can not alter late-time free streaming, since it
will have decayed already at higher redshift. This means
that the observed effect purely corresponds to a shift in
Neff of 0.12 (see Table II).

IV. CMB DATA ANALYSIS AND RESULTS

Cosmological Data and Analysis: We perform MCMC
analyses with MontePython [51, 52] on each of the mod-
els listed in Table I. For the likelihood we use data
from Planck2018+BAO data [4, 53]. In particular, this
includes the temperature and polarization power spec-
tra, as well as the lensing likelihood, from Planck [53],
and the 6DF galaxy survey [54], the MGS galaxy sam-
ple of SDSS [55], and the CMASS and LOWZ galaxy
samples of BOSS DR12 [56–59]. In order to investi-
gate the extent to which these scenarios could explain
or ameliorate the Hubble tension we perform additional
MCMC analyses including a Gaussian likelihood onH0 =
73.30 ± 1.04 km/s/Mpc [60]. These results are used to
replicate the three statistical criteria (described in detail
below) introduced in the ‘H0 Olympics’ [44]. This com-
parison allows to establish the relative success and failure
of the models of Table I in relation to other proposed so-
lutions.

For the standard cosmological parameters and the nui-
sance parameters of the Planck likelihood we use the
same priors as the Planck collaboration. For the mass
and coupling of the neutrino-philic bosons we adopt log
priors over the range:

log10(λν) ∈ [−15,−6] (10)

log10(mX/eV) ∈ [−1.0, 3.5] . (11)

The lower bound on mX corresponds to twice the min-

imum mass of the heaviest neutrino, 2
√

|∆m2
atm| ≃

0.1 eV. For the case of the X boson interacting with
Nint < 3 neutrino families, the prior range is extended to
log10(mX/eV) ∈ [−4, 3.5] as one of the neutrinos could
be much lighter and thus open up parameter space for
lighter X bosons. The lower limit in this case is chosen to
be sufficiently small such that the interaction rate is never
effective to thermalize the X boson. We also introduce
a specific upper limit on λν = 10−6. This is because at
larger couplings two-to-two processes (XX ↔ νν̄), which
are not captured by our treatment, begin to become rel-
evant. On the other hand, the lower limit in the coupling
is chosen to be sufficiently small that the X boson is ef-
fectively fully decoupled from the neutrino sector. In this
limit, λν → 0, ΛCDM is recovered. At sufficiently large
masses, the X boson decays at high redshift, producing a
shift in ∆Neff without altering neutrino free streaming –
our upper bound on the mass is set by the fact that this
effect is the same formX ≳ 1 keV (assuming a sufficiently
large coupling such that the bosons thermalize). Finally,
in some of the scenarios we also allow for a non-zero ini-
tial abundance of the X particle. We parameterize it by
∆NBBN

eff and adopt a flat, linear prior over the range

∆NBBN
eff ∈ [0, 0.7] . (12)

Performing the MCMC analysis with the likelihoods
and priors as described above leads to the result of Fig-
ure 1 which combines cases (a)-(d) of Table I. These

https://github.com/stefanmarinus/CLASS_neutrinophilic
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FIG. 4. Left panel: Evolution of the neutrino anisotropic stress for a mode of k = 0.1Mpc−1 for ΛCDM and an scenario with
Nint = 3 neutrinos interacting with a scalar with different coupling strengths. Right panel: Relative difference of the TT power
spectrum in a majoron cosmology with respect to ΛCDM as a function of multipole ℓ. We show for reference the size of the
Planck error bars. The comparison has been made with fixed standard cosmological parameters. We can clearly appreciate
how the strong damping of the neutrino anisitropic stress on the left hand side is strongly related with a strong change on the
power spectra.
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FIG. 5. Fractional difference on the TT power spectrum with
respect to ΛCDM for the case of a scalar particle interacting
efficiently with neutrinos, Keff = 104, see Eq. (5). We show
the results for different values of mX .

runs contain a total of N ∼ 2 × 106 samples. The 3σ
exclusion region is obtained by binning the points in
log10(mX/eV), and in each bin determining the coupling
λν for which 99.7% of the samples have λν ≤ λlimit. A
particularly interesting result is obtained for the scenario
(c), i.e. the scalar boson X which interacts with Nint = 1
neutrino family. In this scenario, we find a slight statisti-
cal preference for non-zero neutrino interactions; we note,
however, that the ΛCDM limit is also favored at the 1σ
level, implying the statistical preference for this best-fit
region is not remarkably significant. This region can be
seen more clearly in Figure S10, where the MonteCarlo
samples are explicitly shown. This best fit region of pa-
rameter space roughly corresponds to:

ΓNF/H(z) = 1 at z = 1100− 3500 , (13)

namely, this preferred region of parameter space cor-

responds to scenarios where the neutrino anisotropic
stress starts to be damped right before recombination,
1100 ≲ z ≲ 3500. This is highlighted by the red region
labelled ‘best fit region’ in Figure 1.

We note that we do not find such a preferred region of
parameter space for scenario (d) with a gauge boson in-
teracting with a single neutrino species. The suppression
of neutrino free-streaming is very similar to the case of
a scalar, and thus we attribute the lack of preference for
parameter space to the fact that the vector boson leads
to a substantially enhanced expansion history for which
Planck is sensitive to, see the lower row of Table II.

Implications for the Hubble Tension

It has been shown in [33–35] that models with neutrino
X-boson interactions can have the potential to signifi-
cantly ameliorate the Hubble tension for two main rea-
sons: 1) the X-neutrino interactions can lead to a non-
trivial enhancement of the expansion history near recom-
bination, 2) there exists a level of degeneracy between the
impact of the damping of neutrino free streaming and an
enhanced value of Neff which allows for additional radi-
ation without spoiling the fit to the data from Planck.
In particular, the detailed statistical analysis of the ‘H0

Olympics’ [44] awarded the model with a silver medal.
However, as mentioned above, the original implementa-
tion of this model relied on numerous approximations.
For this reason, we revisit the three ‘H0 Olympics’ cri-
teria using the improved analysis developed here. These
criteria include:

1. The Gaussian Tension, given by

H0C −H0SH0ES√
σ2
C + σ2

SH0ES

, (14)
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Model/Metric Gaussian Tension QDMAP ∆AIK

Nint = 3, scalar 3.71 3.20 0.67
Nint = 1, scalar 3.73 4.10 2.22
Nint = 3, vector 3.72 3.71 2.44
Dark Radiation 3.76 3.96 -1.0

ΛCDM 4.55 4.56 0

TABLE III. Comparison of tension metrics for three different
models, a simple model with free streaming dark radiation
and ΛCDM. Note that the tension is slightly below 5σ in
ΛCDM because we are considering purely massless neutrinos
for simplicity.

where H0i and σi are the central value and the
uncertainty on the inferred value H0. The index
i = {C,SH0ES} refers to the cosmologically inferred
value (using Planck and BAO) or the value mea-
sured by SH0ES, H0 = 73.3± 1.04 km/s/Mpc.

2. The QDMAP (difference of the maximum a posteri-
ori), given by√

χ2
min,C+SH0ES − χ2

min,C , (15)

where the minimum χ2 is evaluated using a likeli-
hood that does (C + SH0ES) and does not contain
(C) the SH0ES likelihood.

3. Akaike Information Criterium (AIC), given by

∆AIC = χ2
min,M−χ2

min,ΛCDM+2(NM−NΛCDM ) , (16)

where M refers to the model under consideration
and N corresponds to the number of free parame-
ters of that model. Here, the χ2

min values are ob-
tained using a likelihood that includes the Gaussian
contribution from SH0ES.

Each criteria is intended to address a slightly different
question – we refer the interested reader to [44] for a
broader overview of the benefits and drawbacks of each.
The results of each model are summarized in Table III.
There we also show for comparison the ΛCDM result
and the simple scenario containing free streaming dark
radiation as parameterized by ∆Neff . Interestingly, none
of the models investigated show a significant reduction
in the cosmological tension, with the most successful of
them only reducing it to the 3.2σ level (in comparison
with 4.5σ for ΛCDM). This result obtained here rep-
resents a degradation compared to what was found in
previous works [33–35]. The main reason for this devi-
ation is due to the refined collision term included here,
see Eq. (7), which reduces the damping of neutrino free
streaming with respect to the approximation of [33–35]
at T ≫ mX . In particular, the full collision term helps
to break the partial degeneracy between the damping of
the neutrino free streaming at high redshift and the en-
hancement of ∆Neff .

V. ADDITIONAL CONSTRAINTS

The models we have discussed in the main text are sub-
ject to additional constraints coming from other cosmo-
logical probes, emission from astrophysical objects, and
laboratory searches. In this section we briefly highlight
the origin of each constraint shown in Figure 1.

Laboratory Constraints: In the two benchmark par-
ticle physics models we consider, see Eqns. (1)-(2), the
coupling of the new boson to neutrinos is constrained
by a different set of laboratory constraints. In the case
of X being identified as a light scalar, its coupling to
neutrinos can give rise to double beta decay along the
emission of a scalar. The latest constraints on λν from
the non-observation of such a process from the EXO-200
experiment reads: λν < 0.9× 10−5 [61]. In the case of X
being a light U(1)Lµ−Lτ

gauge boson, we adopt a nom-
inal value of kinetic mixing induced at 1-loop by muons
and taus, ϵ ≃ −gµ−τ/70 [62]. The presence of this mixing
can in turn change the scattering rate of neutrinos and
electrons, which has been precisely measured by Borex-
ino [63]. For mX ≲ MeV, the coupling is constrained
to be gµ−τ < 4 × 10−5 [64–66]. Both the EXO-200 and
Borexino bounds are shown in Figure 1.

Supernova Bounds: Despite being very weakly cou-
pled, the neutrino-philic bosons considered in this work
can be copiously produced in extreme astrophysical en-
vironments such as supernovae. If so, these particles can
modify the energy and temporal distributions of the neu-
trino flux arriving on Earth. In particular, in the majoron
model the neutrino coalescence ν̄ν → ϕ can produce a
delayed high-energy neutrino signal [67–70]. The non-
observation of such a signature in the measured neutrino
flux from SN1987A [71–73] leads to the following con-
straint [67]:

5× 10−10 < λν
mX

MeV

√
gX < 1.3× 10−7 , (17)

for 10 keV ≲ mX ≲ 1MeV.

On the other hand, the high densities present at su-
pernovae induce flavour and helicity dependent effective
neutrino masses. Therefore, for masses mX ≲ 10 keV,
the process ν̄ → νX in kinematically allowed [74, 75]. In-
cluding these processes one finds constraints at the level
of

5× 10−7 ≲ λν ≲ 3× 10−5 . (18)

The SN1987A bound for a U(1)Lµ−Lτ gauge boson
were derived in [43, 76]. The emission of gauge bosons
of mZ′ < MeV is dominated by semi-Compton processes
µγ → µZ ′ and the constraint imposed by the observation
of the SN1987A signal is at the level of gµ−τ ≲ 10−9 [76].

Star Cooling: A light U(1)Lµ−Lτ
gauge boson with the

canonical kinetic mixing interacts with charged matter,
and thus can be produced in stars. Should these particles
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be produced, they can free stream out of the star, car-
rying away a sizeable amount of energy. Consequently,
strong constraints can be derived by requiring that the
stellar cooling rate is not significantly altered. Recasting
the limits derived in [77] (see also [78] and [79]) using the
nominal kinetic mixing ϵ = −gµ−τ/70 yields the bound
in Figure 1, labelled ‘Stars’.

BBN Bounds: The production of new relativistic parti-
cles prior to BBN will enhance the value of ∆Neff . This
modifies the expansion rate and in turn the prediction
of the primordial element abundances. Current observa-
tions of the primordial abundances are consistent with
∆Neff ∼ 0. In particular, ∆NBBN

eff ≤ 0.41 at 2σ [80, 81],
and thus large deviations from this can yield strong con-
straints on the interactions with new particles.

Limits were recently derived on the majoron by iden-
tifying the couplings for which ν̄ν → ϕ lead to a shift
in ∆Neff at the level of 0.5 [33]. Comparable constraints
were derived on the µ− τ gauge boson from the produc-
tion of a primordial population via µ+µ− → Z ′γ pro-
cesses [43]. These constraints are shown in Figure 1 with
the label ‘BBN’.

CMB bounds on out of equilibrium decays: The ther-
modynamic treatment of the neutrino-philic bosons used
in this study is only capable of accounting for moder-
ate departures of thermal equilibrium, namely for Keff ≳
10−3 [49]. In the absence of a primordial abundance,
the region of parameter space with Keff ≲ 10−3 is ir-
relevant as Keff controls the production of X particles
and for such small Keff the energy density of X particles
is negligible. However, even a small primordial abun-
dance in the weakly coupled limit can yield strong ob-
servable consequences. The reason is that the primor-
dial species can become non-relativistic prior to matter-
radiation equality, dramatically increasing the relative
energy density stored in this species before it under-
goes an out-of-equilibrium decay into neutrinos. The de-
tailed treatment of this scenario is rather intricate (see
e.g. [82, 83]), and a full parameter space exploration is
still lacking. In order to illustrate where these constraints
would lie, we assume a primordial abundance at BBN of
∆Neff |BBN = gX × 0.027 (corresponding to the minimal
value predicted for a boson that was in thermal equilib-
rium at temperatures above the electroweak phase tran-
sition) and derive an approximate constraint by requiring
that Neff < 4 at recombination. We did this by tracking
the evolution of the X boson energy density allowing for
out of equilibrium decays and neglecting inverse decays
(which are highly inefficient in this region of parame-
ter space). In Figure 1 this constraint is indicated by
the pink region labelled ‘out of equilibrium decay’ (and
would exclude couplings below this line).

VI. SUMMARY, CONCLUSIONS AND
OUTLOOK

In this work, we have presented an improved treatment
of the cosmological evolution of weakly coupled neutrino-
philic bosons with masses in the O(eV) range. This
work represents a significant improvement upon previ-
ously analyses [33, 34], which focused exclusively on the
singlet majoron model and relied on a number of simpli-
fied approximations. Specifically, in this manuscript we
present three updates:

1. We have incorporated the thermodynamic evolu-
tion tracing the out-of-equilibrium thermalization
of the neutrino-philic bosons directly in the Boltz-
mann solver CLASS. This allows for a more ac-
curate and careful treatment of the neutrino-boson
interactions across a wide array of parameter space.

The developed code is made public on github §.

2. We have incorporated a recently derived colli-
sion term [30, 31], which captures the impact of
these interactions on the damping of the neutrino
anisotropic stress.

3. We generalize this analysis to include: interactions
with one, two, or three neutrino species, and both
vector and scalar bosons. Our fiducial limits are
recasted in the terms of the singlet majoron model
and the U(1)Lµ−Lτ gauge boson, but these limits
can be easily interpreted in the context of many
other neutrino-philic boson models.

As shown in Figure 1, the limits derived using a com-
bination of CMB and BAO data provide the strongest
constraints to date across a range of masses near the
O(eV) scale. We have also revisited the extent to which
neutrino-philic bosons can resolve the Hubble tension.
We show that the improved collision term, which is
strongly suppressed in comparison to the previous ap-
proximations at T ≫ mX , significantly degrades the ex-
tent to which neutrino-philic bosons can ameliorate the
tension.

In the case of the majoron singlet model, there ex-
ists a slight preference in the data for non-zero majoron-
neutrino interactions (at the ∼ 1σ level). This region
of parameter space is expected to be fully probed in the
near future by LiteBIRD [84] thanks to a cosmic vari-
ance limited measurement of the large scale EE polariza-
tion power spectrum. Upcoming observations from the
Simons Observatory [85] are expected to measure Neff

with a 1σ precision of 0.05. This will be an improve-
ment by a factor of 4 as compared with Planck and will
significantly improve sensitivity for bosons with masses
1 eV ≲ mX ≲ 1MeV that thermalize in the early Uni-
verse with neutrinos. Both of these experiments are fully
funded and expected to probe these regions of parameter
space within a decade.

https://github.com/stefanmarinus/CLASS_neutrinophilic
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Supplementary Material for Precision CMB constraints on eV-scale bosons coupled to neutrinos

In the supplementary material we provide additional information on the equations governing the evolution of the
number density and energy density in the neutrino and bosonic fluids, and discuss the modifications made to CLASS.
We also provide additional plots to illustrate the evolution of the background, the effect of the damping of neutrino
free-streaming on the perturbations, and the impact of varying the mass and coupling on the temperature and
polarization power spectra.

I. EVOLUTION OF THE BACKGROUND

We use the formalism developed in [49, 86] to trace the evolution of the background, which assumes that the
distribution functions for all relevant species can be characterized by their temperature Ti and chemical potential µi.
The time evolution equations for these quantities reads

dTν

dt
=

1
∂nν

∂µν

∂ρν

∂Tν
− ∂nν

∂Tν

∂ρν

∂µν

[
−3H

(
(pν + ρν)

∂nν

∂µν
− nν

∂ρν
∂µν

)
+

∂nν

∂µν

δρν
δt

− ∂ρν
∂µν

δnν

δt

]
, (S1a)

dµν

dt
=

−1
∂nν

∂µν

∂ρν

∂Tν
− ∂nν

∂Tν

∂ρν

∂µν

[
−3H

(
(pν + ρν)

∂nν

∂Tν
− nν

∂ρν
∂Tν

)
+

∂nν

∂Tν

δρν
δt

− ∂ρν
∂Tν

δnν

δt

]
, (S1b)

dTX

dt
=

1
∂nX

∂µX

∂ρX

∂TX
− ∂nX

∂TX

∂ρX

∂µX

[
−3H

(
(pX + ρX)
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− nX

∂ρX
∂µX

)
+
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δρX
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]
, (S1c)

dµX
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=

−1
∂nX
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[
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(
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)
+

∂nX
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δρX
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∂TX
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]
, (S1d)

where in these expressions ρi, ni, and pi are the energy density, number density, and pressure of the given species i.
The change in number and energy density of X bosons per unit time, δnX/δt and δρX/δt, are given by

δnX

δt
= Nint Γ(X → ν̄ν)

m2
X

2π2
×
[
Tνe

2µν
Tν K1

(
mX

Tν

)
− TXe

µX
TX K1

(
mX

TX

)]
, (S2a)

δρX
δt

= Nint Γ(X → ν̄ν)
m3

X

2π2
×
[
Tνe

2µν
Tν K2

(
mX

Tν

)
− TXe

µX
TX K2

(
mX

TX

)]
. (S2b)

Here we have used the Maxwell-Boltzmann approximation, and introduced the Bessel functions Ki. Since the process
we are considering is 1 → 2, the transfer rate for neutrinos are related to these shown here via: δρν/δt = −δρX/δt
and δnν/δt = −2δnX/δt. For photons and neutrinos which are not coupled to the light neutrino-philic boson, one
simply has dT

dt = −H T .

The evolution equations shown above, along with the modified perturbation equations outlined in Eqns. (6a)-(6d),
are implemented into the publicly available cosmological Boltzmann solver CLASS [47]. The incorporation of the
new interactions into CLASS follows the standard methodology and is done in three steps. First, the input module is
modified to read the new model parameters, including the coupling constant λν , the mass of the new boson mX , and
its primordial abundance parametrized via ∆NBBN

eff . A list with a detailed description of all readable parameters can

be found in the file majoron.ini in the github § repository of our code. The background evolution of the system as
governed by Eq. (S1) is implemented into the function int background derivs within the background module. Its
initial conditions are defined in the function int background initial conditions. Because the differential equations
governing the background evolution are generally stiff, we explicitly implement a reduction of the step size when the
energy density in the new species is non-negligble – specifically, we take this range to be 0.65 < Tν/mX < 10. The
step size can be controlled in the .ini file via the parameter fine steps maj and is typically O(10−5). The evolution
of all relevant background quantities can be accessed by different modules through the pointer pba→. This is of
particular importance to calculate the perturbations in the perturbations module. By accessing the background
evolution, it is then straightforward to implement Eqns. (6a) - (6d) into the function int perturb derivs.

https://github.com/stefanmarinus/CLASS_neutrinophilic
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II. IMPACT ON COSMOLOGY

Here, we take the opportunity to provide a more detailed picture of how neutrino-philic bosons alter the temperature
and polarization power spectrum. We begin by showing the evolution of the energy density stored in both neutrinos
and the X boson for scenarios with different number of interacting neutrino species, Nint, scalar or vector X-bosons,
and with and without primordial X abundance. We then discuss the impact on the cosmological perturbations. In
particular, we show the evolution of the speed of sound c2s, equation of state ω, the neutrino density contrast in
the synchronous gauge δν , and the neutrino anisotropic stress σν , and finally the impact on the temperature and
polarization power spectra CTT

ℓ and CEE
ℓ .

In figure S6 we show the evolution of the energy density of the neutrino and X boson for various boson masses
and interaction strengths, varying the primordial abundances, the number of interacting neutrinos, and the spin of
the neutrino-philic boson. The general shape of the energy density evolution of the X boson is the same as long as
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FIG. S6. Evolution of the energy density of the neutrino-philic boson X as well as the neutrinos for a variation of different
cases as specified in the plot labels.
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∆NBBN
eff = 0. This can be seen from the left column of Figure S6. The only difference between the cases with different

number of interacting neutrino families and X being a scalar or vector boson is the peak density the X boson reaches
(while keeping the other model parameters fixed). In general, the more neutrino families interact with the X particles,
the more the X particle will be populated in the thermal plasma. The same holds for the vector versus scalar case,
i.e. ρvectorX > ρscalarX at the peak of its thermalization history. Additionally, in the bottom right panel of Figure S6
we show the evolution of the X particle density for fixed Keff = 1 with varying mass mX . We see that max(ρX) is
approximately the same for all depicted masses. On the other hand, if e.g. ∆NBBN

eff = 0.1, the relative change of
the energy density between its initial value and its maximal value is relatively small. However, the striking feature is
that for Keff ≪ 1 the boson energy density, ρX , reaches larger values at lower temperature compared to the Keff ≫ 1
scenario. This is contrary to the case of vanishing primordial X particle abundance. The reason is, as outlined in
Section III, that the X boson becomes non-relativistic and its small coupling leads to a delayed out-of-equilibrium
decay. Lastly, in the top right panel of Figure S6 we also show a exemplary evolution of the neutrino energy density
ρν for the case of X being of scalar type with vanishing primordial abundance and interacting with all three neutrino
families. We choose to fix mX = 1 eV and vary Keff . This makes it evident that the energy density stored in the
neutrinos is enhanced for Keff ≳ 1 compared to weakly and non-interacting neutrino scenarios. On the other hand,
ρν(Tν → 0) also saturates to a maximal value and becomes independent of Keff as long as Keff ≳ 1. We can also
translate the evolution of these energy densities into Neff , see Figure 3, via

Neff ≡ 8

7

(
11

3

)4/3(
ρrad − ργ

ργ

)
, (S3)

where ρrad is the total energy density stored in radiation. This directly relates the late time enhancement of the
energy density in the neutrinos and X boson to the observable measured by Planck.

The solutions derived from solving Eq. S1 also allow to compute the sound speed, c2s, and the equation of state,
ω, of the joint fluid. The solution for two different masses of the neutrino-philic boson and different interactions
strengths are shown in figure S7. We see that the maximal deviation from the relativistic approximation c2s = ω = 1/3
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FIG. S7. Speed of sound and equation of state of the joint neutrino+X boson system. A fully relativistic fluid will have
c2s = ω = 1/3.

is reached for Keff = 1, independent of the mass of the X particle mX . In particular, we can appreciate that also for
mX ≪ 1 eV the evolution significantly deviates from the relativistic approximation. Although differences of O(4%)
can arise with respect to the relativistic approximation, we explicitly checked that this leads to a negligible effect on
all observables. This approximation typically induces an error in the TT power spectrum at the level of O(0.01%) in
all relevant regions of parameter space and is therefore well below Planck sensitivity.

We also show the evolution of the density contrast δν and the neutrino anisotropic stress (shear) σν for two
different wavelengths in Figure S8. For reference, the black dotted lines indicate the ΛCDM expectation. The
neutrino interactions lead to a significant reduction of the neutrino anisotropic stress at the time of recombination
z ∼ 103, see also Figure 4. On the other hand, the very same interaction leads to a significant enhancement of the
density contrast at the same time.

Finally, we show the variation of the temperature fluctuation CTT
ℓ and polarization CEE

ℓ spectrum in the left and
right panel of Figure S9. The temperature polarization spectrum shown here is complementary to the one in Figure 5
of the main text, in which we show the variation for fixed interactions strength and different masses mX . Here, we fix
the mass to be mX = 1 eV and vary the interactions strength Keff . As expected, interactions with strength Keff ≫ 1
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FIG. S8. Density contrast δν and the neutrino anisotropic stress (shear) σν in synchronous gauge for fixed mass mX = 1 eV,
but different wavelengths k and interaction strengths λν .
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FIG. S9. Fractional difference on the TT (EE) power spectrum with respect to ΛCDM for the case of a scalar particle
interacting with neutrinos in the left (right) panel. We show the results for fixed mass mX = 1 eV and different values of Keff ,
see Eq. (5).

lead to a significant perturbation of both spectra, CTT
ℓ and CEE

ℓ , which can exceed the 1σ error bars of the Planck
mission shown in grey. In particular, the interactions induce a periodic perturbation spectrum with strong damping
for the high-ℓ multipole moments as dictated by Eq. (7).

Having implemented the background and perturbation differential equations for the joined neutrino-X fluid, see
Section I for details, an accurate parameter space scan can be done via a MCMC analysis. We chose to implement
our code into the publicly available software MontePython [51, 52]. The full analysis then leads to the main result
as shown in Figure 1. Here, we would like to give more specific details on two important aspects – i) how we have
identified the exclusion region and the best-fit region, and ii) the correlation of neutrino interactions with different
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FIG. S10. Results of a MCMC analysis against the Planck legacy data. Black scattered points correspond N ∼ 2× 106 Monte
Carlo samples in the analysis. We find that 99.7% of all points are below the blue line, labeled as 3σ exclusion. In the left
(right) panel we show the results for a scalar particle interacting with Nint = 1 (Nint = 3) neutrino families. Interestingly, for
the Nint = 1 case the MCMC analysis identifies a 1σ preferred region, as can be seen by the red region. This corresponds to a
non-trivial clustering of points which furthermore exhibit significant neutrino-philic interactions. In addition, for reference, we
show in purple dashed the isocontours of fixed Keff .

cosmological parameters. Let us start with point i). After removing the non-markovian points as well as the burn-in
points of each chain, the raw points projected onto the parameter space of (mX , λν) can be visualized as in Figure S10.
For clarity we choose to only depict the case of X being a scalar mediator, but the same arguments also hold for the
vector scenario. The exclusion region is simply found by demanding that within a given mass bin 99.7% of all points
are below a given value of λν,i. We chose a bin size of ∆ log10(mX/eV) = 0.2. On the other hand, the best fit region
can be obtained by evaluating the cluster density of sampled points. The same preferred region can also be found by
running MCMC analysis softwares as e.g. GetDist [87]. This brings us to point ii) – the triangle plots of different
MCMC runs. We analyze the chains with the publicly available GetDist software. Of all the MCMC analysis done,
we select a representative set of results.

• Comparison between the case of X being of scalar or vector type with fixed ∆NBBN
eff = 0 and Nint = 3. The

likelihood to be tested against is the full Planck + BAO set. The result is shown in Figure S11. The lower
bound on the mass of mX is set by the requirement of mX > 2 × mν,i. We can see that for the X vector
case globally slightly lower couplings λν are allowed compared to the X scalar case. Interestingly, the analysis
indicates that the X vector case is compatible with slightly larger values of H0 and is compatible with H0 > 70
at the 2σ level for the region of high masses and low coupling. This is due to the contribution of the X particle
to Neff as explained above and in the main text.

• The scenario of X being of scalar boson with ∆NBBN
eff = 0 and Nint = 1. The likelihoods are the same as before.

The result of the analysis is shown in Figure S12. It clearly highlights the non-trivial 1σ preferred region in the
plane (mX , λν). In particular, this region indicates a slight preference for neutrino-X interactions such that the
X boson starts reducing neutrino free-streaming by redshift z ∼ 1000− 3500, see Eq. (13).

• The result for the scenario which allows a primordial abundance of the X scalar boson and Nint = 1 is shown
in Figure S13. Different combinations of ∆NBBN

eff ≥ 0, gX = (1, 3) and Nint = (1, 2, 3) lead to qualitative same
results with only slight quantitative differences, as can be seen from Figure S6. The likelihoods are the same as
before but now include also a) the Pantheon data set and b) the Pantheon data set together with the SH0ES
prior. Contrary to what was found in Ref. [33], our refined analysis shows that even in the case b), see Table I,
the H0 value predicted by the model can not be increase to the 1σ SH0ES measured value. We find no significant
increment in the prediction of the H0 parameter. More details on the quantification of the H0-tension can be
found in Section IV of the main text.

• For the case of a scalar interacting with Nint = 3 neutrinos and with ∆NBBN
eff = 0, we show in Figure S14 the

full correlation of the standard cosmological parameters. The result is compared to ΛCDM in the same figure.
We see that both cosmologies lead to similar correlations in these parameters modulo a small shift on H0 and
a multimodal posterior in the H0-ωCDM plane.



17

0 1 2 3

log10(mX/eV)

67

68

69

70

H
0

−12

−10

−8

lo
g 1

0
λ
ν

−13 −10 −7

log10 λν

67 68 69 70

H0

X scalar, Nint = 3, ∆NBBN
eff = 0

X vector, Nint = 3, ∆NBBN
eff = 0
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eff = 0. The case of X being a scalar boson is

shown in blue and the vector case is shown in red. The model is tested against the likelihood of the full Planck18+BAO data
set.
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FIG. S12. 1σ and 2σ posterior probabilities for the scenario of Nint = 1, ∆NBBN
eff = 0 and X being of scalar type. The model

is tested against the likelihood of the full Planck18+BAO data set.
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