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Abstract: We revisit the effective field theory of the two Higgs doublet model at tree

level. The introduction of a novel basis in the UV theory allows us to derive matching

coefficients in the effective description that resum important contributions from the

Higgs vacuum expectation value. The new basis typically provides a significantly better

approximation of the full theory prediction than the traditional approach that utilizes

the Higgs basis, particularly for alignment away from the decoupling limit.ar
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1 Introduction

They say good things come in pairs. This is certainly true in the search for new

particles, where a second Higgs doublet has long been a quintessential candidate for

physics beyond the Standard Model (BSM). The resulting two Higgs doublet model

(2HDM) has been a subject of active study since its introduction in the 1970’s (the

original goal was to provide a model with spontaneous CP violation that could explain

the CKM phase) [1, 2]. Two Higgs doublet models arise in many motivated extensions

of the Standard Model and provide perhaps the simplest realization of a spin-0 sector

that matches the richness of the observed spin-1/2 and spin-1 sectors. Subsequent

exploration of the many facets of 2HDMs has given rise to a vast literature; see e.g. [3]

for a classic review.

The model predicts the addition of four new physical degrees of freedom to the

Standard Model. The existence of these BSM states may be inferred from both their

direct production and their indirect imprints on the couplings of the already observed

Higgs boson. Over time, dedicated searches for these experimental signatures have

been used to constrain the allowed parameter space. This has engendered the generic

expectation that the extra Higgs bosons in the 2HDM are likely to be at least several
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hundreds of GeV (barring a number of known loopholes in certain regions of parameter

space). If the new states in the 2HDM are heavy compared to the electroweak scale,

an Effective Field Theory (EFT) description becomes a useful way to characterize the

resulting deviations from the Standard Model at low energies.

Subtleties arise when matching a 2HDM onto an EFT with only one light Higgs

boson. Integrating out the BSM Higgs bosons generically leads to an EFT for the

observed Higgs boson h in which electroweak symmetry is nonlinearly realized, often

referred to as the Higgs EFT (HEFT). Alternately, integrating out an SU(2)L doublet

of approximate mass eigenstates can lead to an EFT for a Higgs doublet H in which

electroweak symmetry is linearly realized, often referred to as the Standard Model EFT

(SMEFT). In this case, the misalignment between the gauge and mass eigenstates is

encoded by irrelevant operators in the EFT. Whenever SMEFT is admissible, it is often

the preferred framework due to its compact parameterization and more transparent

power-counting.

In a general 2HDM, there is a global U(2) flavor symmetry acting on the two Higgs

doublets. Hence, there are infinitely many different basis choices one can specify in the

UV description from which an infinite number of EFTs can be derived by integrating out

one doublet. These EFTs are only formally equivalent when the full tower of effective

operators are included; different choices lead to different EFT Wilson coefficients and

potentially different linearly realized symmetries.

Given the freedom to choose a UV basis, what constitutes a good choice? Among

many possible criteria, two stand out. First, the relative advantages of SMEFT over

HEFT makes it preferable to choose a basis in which the low-energy theory is SMEFT,

provided such a basis exists. Second, a good basis should allow the resulting EFT to

accurately reproduce the effects of the full theory with as few operators as possible

(e.g. at low orders in the EFT expansion).

In previous literature [4–9], satisfying the first criterion has favored a particular

basis for constructing 2HDM EFTs. Integrating out a doublet that acquires a vacuum

expectation value implies that the low-energy theory does not in general contain an

electroweak symmetric point and thus requires HEFT instead of SMEFT. This fate

can be avoided by using the Higgs basis [10], for which the light doublet contains all

of the vacuum expectation value that breaks electroweak symmetry.1 Furthermore,

the Higgs basis and the mass eigenstate basis become approximately aligned in the

decoupling limit [11, 12] of CP-conserving 2HDMs, making the Higgs basis sensible for

constructing the 2HDM SMEFT in this limit. However, exclusive use of the Higgs basis

1As emphasized in [6], this definition of the Higgs basis leaves a U(1)PQ subgroup of the original
U(2) flavor symmetry intact, leading to a U(1) family of Higgs bases.
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to meet our first criterion often makes it hard to meet the second criterion. The Higgs

basis typically results in a poorly-convergent EFT expansion away from the decoupling

limit even when SMEFT is formally appropriate for describing the low-energy theory.

A more convergent EFT expansion can be obtained away from the decoupling limit by

integrating out heavy mass eigenstates, but this generically yields HEFT. This tension

has been a long-standing obstruction to the general EFT treatment of 2HDM.

For better insight, it helps to recognize that the two criteria involve different points

in field space. The origin in field space (where electroweak symmetry is restored) is

essential for determining whether SMEFT can describe the low-energy theory, while

our physical vacuum determines the composition of the mass eigenstates. It is therefore

useful to rethink the basis choice in terms of a trajectory in field space that connects the

origin, where electroweak symmetry is linearly realized, to the physical vacuum. This

motivates interpreting the field space of the theory in a geometric language where the

EFT defines a submanifold of the UV description, as detailed in [13]. The submanifold

picture presents a new perspective on matching calculations: instead of integrating out

approximate mass eigenstates or fields without vevs, one instead attempts to find a

basis in the full theory that yields a simple parameterization of the EFT submanifold.

In this paper, we follow this strategy and identify a new basis for the 2HDM that

simplifies integrating out the BSM states and matching to SMEFT (when possible)

while also vastly improving convergence away from the decoupling limit. The key

observation is that when there is a charge-preserving global minimum, there exists a

basis choice for which (the zero-derivative part of) the classical solution of the heavy

Higgs doublet is a linear function of the light Higgs doublet; this defines what we

call the “straight-line” (SL) basis.2 This basis — which can be defined in any 2HDM

with a charge-conserving global minimum — unsurprisingly simplifies the matching

calculation.

Whether the EFT that results from matching in the SL basis can be SMEFT-

like (linearly realizing electroweak symmetry) or must be HEFT-like depends on the

parameters of the 2HDM itself; the SL basis is useful in either case. Since the vev

of the heavy Higgs doublet vanishes at the same point as the vev of the light Higgs

doublet (preserving an electroweak symmetric point in the EFT even though the heavy

doublet acquires a vev elsewhere on the EFT submanifold), the SL basis satisfies our

first criterion by enabling matching onto a SMEFT-like EFT whenever the parameters

of the 2HDM admit it. This is not guaranteed in the Higgs basis, for which matching

may lead to a HEFT-like EFT even if the 2HDM admits a SMEFT-like description.

2While SL nominally denotes “straight-line,” four of the five authors would prefer to think of it as
standing for “SutherLand”, after its discoverer. The fifth author is too modest to contemplate naming
a basis after himself. We leave it to the reader to decide.
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As we will see, matching in the SL basis also satisfies our second criterion by resum-

ming the zero-derivative Higgs field dependence to all orders in the Wilson coefficients

of the EFT, similar to the so-called “vev-improved matching” prescription introduced

in [5]. When the 2HDM allows it, the resultant EFT is SMEFT-like in the sense that

it linearly realizes electroweak symmetry, but it has a power-counting expansion deter-

mined by counting derivatives and SM fermion fields.3 The resummation of Higgs field

dependence leads to improved convergence away from the decoupling limit. In the de-

coupling limit, one can of course expand the field dependence contained in these Wilson

coefficients, thereby obtaining a conventional SMEFT expansion (which is understood

to involve both linearly-realized electroweak symmetry and a power-counting expansion

in operator dimensions). We concretely demonstrate the advantages of the SL basis by

comparing the predictions for three pseudo-observables — the Higgs coupling to gauge

bosons, the Higgs self-coupling, and the Higgs coupling to fermions — between the full

theory and EFTs obtained from matching in the Higgs basis and the SL basis, finding

that the SL basis generically outperforms the Higgs basis by a significant margin away

from the decoupling limit.

The rest of this paper is organized as follows. In Section 2 we begin by reviewing

the general 2HDM parameterization and conditions for charge conservation. We then

define the SL basis and the transformation relating it to the Higgs basis and explore

the circumstances under which each basis admits a SMEFT expansion. We carry out

tree-level matching in the SL basis using functional methods in Section 3. Matching

in the SL basis involves an expansion in powers of derivatives and fermions, which

we carry out up to six derivatives and/or fermions, and all orders in the light Higgs

doublet. Matching to all orders in the light Higgs doublet — a feat enabled by the

simplicity of the SL basis — effectively resums zero-derivative terms in the SMEFT

expansion associated with the physical masses of the heavy Higgs bosons. In Section

4 we compare numerical predictions for key Higgs pseudo-observables between the full

theory, the EFT obtained from matching in the Higgs basis, and the EFT obtained

from matching in the SL basis, demonstrating the improved precision of the SL basis.

We illustrate aspects of the mapping between EFTs obtained from the Higgs basis and

the SL basis in Appendices A and B.

3This combination of symmetries and power-counting is reminiscent of geoSMEFT [14], al-
though our matching procedure incorporates higher-derivative structures that lie outside the scope
of geoSMEFT (and Riemannian field-space geometry in general), and we do not organize the field
dependence of Wilson coefficients geometrically.
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2 More Higgses, More Bases

The goal of this section is to introduce the general 2HDM and to provide a discussion

of its vacuum structure. Many intricacies of the 2HDM stem from the ability to change

basis by mixing the two doublets with each other. This freedom allows us to define the

straight-line (SL) basis, for which (the zero-derivative part of) the classical solution of

the “heavy” Higgs doublet will be proportional to the “light” doublet. We will then

provide a map between the SL basis and the Higgs basis, which will facilitate a com-

parison between the convergence properties of the EFTs that result when integrating

out the BSM states for these two basis choices.

2.1 Defining the 2HDM

The 2HDM is defined as the most general renormalizable Lagrangian built out of the

Standard Model fermions and gauge bosons along with two SU(2)L doublet complex

scalar fields with U(1)Y hypercharge 1/2. We denote them by Φα
a , together with their

conjugate Φ†aα. There are two types of indices on the Higgs fields: a flavor index a = 1, 2

differentiates between the two doublets and the upper gauge index α transforms in the

fundamental representation of SU(2)L.

The Lagrangian comprises a set of kinetic terms (including the minimal coupling

to gauge bosons through the covariant derivative Dµ), the scalar potential, and Yukawa

couplings,

L = L2 + L0 + LJ , (2.1a)

L2 =
(
DµΦ†a

)(
DµΦa

)
, (2.1b)

−L0 = Yab
(
Φ†aΦb

)
+

1

2
Zabcd

(
Φ†aΦb

)(
Φ†cΦd

)
, (2.1c)

−LJ = YDijaQidjΦa + YU†ija ui(εQj)Φa + YEija LiejΦa + h.c.

≡ J†aΦa + h.c. , (2.1d)

where we have suppressed SU(2)L gauge indices and omitted terms that are indepen-

dent of the Φ fields for brevity. The Q, d, u, L, and e represent the three families

of Standard Model fermions. We have expressed the scalar potential in terms of the

mass-dimension-2 couplings Yab and dimensionless couplings Zabcd introduced in [15]

(see also [16, 17]), which satisfy

Yab = Y ∗ba , Zabcd = Zcdab = Z∗badc . (2.2)
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These can be related to the standard 2HDM notation,

(Y11, Y12, Y22) =
(
m2

1,−m2
12,m

2
2

)
, (2.3a)

(Z1111, Z1112, Z1122, Z1221, Z1212, Z1222, Z2222) = (λ1, λ6, λ3, λ4, λ5, λ7, λ2) . (2.3b)

The Yukawa matrices Y are a priori arbitrary complex matrices, and together with

the SM fermions they are subsumed into the SU(2)L doublet scalar currents Jαa , which

couple to the Higgs fields.

The kinetic term L2 is invariant under a U(2) flavor symmetry,

Φa → Uflavor
ab Φb , with Uflavor ∈ U(2) . (2.4)

Under this transformation, the couplings Yab, Zabcd, and Ya rotate accordingly. One

consequence of this freedom is that, starting from the 14 real parameters in the scalar

potential (of which 4 are phases), only 11 (of which 2 phases) are physical.4

Within the 11-dimensional physical parameter space of the scalar potential, one

can identify phenomenologically viable subspaces. Requiring explicit CP conservation

amounts to turning off the 2 physical phases, which is equivalent to demanding that

there exists a basis, accessed by flavor rotations, where all Yab and Zabcd parameters are

real [18]. If we further require explicit custodial symmetry conservation in the scalar

potential, then this is equivalent to further requiring Z1221 = Z1212 in the basis with

real valued Yab and Zabcd [19] (see also [20]). In spite of their explicit conservation, CP

and custodial symmetry may yet be spontaneously broken by the vacuum configuration

of the two Higgses.

Electric charge can be spontaneously broken by the vacuum configuration of the

2HDM with or without explicit CP conservation. It is understood that a vacuum

configuration conserves charge if and only if a unitary gauge rotation can be found to

simultaneously set the upper components of both Higgs vevs to zero [21, 22],

Φ1

∣∣
vev

=
1√
2

(
0

v1

)
, Φ2

∣∣
vev

=
1√
2

(
0

v2

)
. (2.5)

We introduce a complex number (assuming w.l.o.g. that v1 is real)

k ≡ v2

v1

∈ C , (2.6)

4Note that the central U(1) subgroup of the U(2), which just rephases both doublets equally, leaves
the parameters invariant.
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where |k| = tan β. This allows us to recast the above criterion in a general gauge basis

as the requirement that the two Higgs vevs are multiples of each other (i.e. aligned in

the gauge space),

Φα
2

∣∣
vev

= kΦα
1

∣∣
vev
. (2.7)

On phenomenological grounds, we work with the 2HDM parameter space for which

this criterion is satisfied. Note that if this criterion is satisfied in one flavor basis, it is

satisfied in any flavor basis, but the ratio k is different in different bases.

2.2 The Straight-line Basis

We assume that we are working in a region of parameter space where the BSM Higgs

states are sufficiently heavy for it to be useful to integrate them out. There then exists a

direction in flavor space such that the second Higgs doublet Φ2 is “heavy,” meaning that

its components are sufficiently well aligned with the larger eigendirections of the mass

matrix at the global minimum. Our goal is then to integrate out Φ2 in order to obtain

an EFT describing the low energy behavior of the “light” doublet Φ1. Here, we employ

the functional approach for matching onto the EFT by integrating out the heavy states

in the path integral in the semiclassical approximation (see [23, 24] for recent reviews

of functional matching and implementation). At tree level this amounts to finding

a classical solution to the equations of motion for the heavy doublet, Φ2,c[Φ1], and

substituting it back into the 2HDM action to yield the tree-level EFT. This generates

the EFT operators and their Wilson coefficients together and facilitates working to all

orders in the field Φ1.

Working order-by-order in powers of derivatives, we require that the zero-derivative

part of the classical solution,

Φ2,c[Φ1] = Φ
(0)
2,c(Φ1) +O

(
∂2
)
, (2.8)

solves the zero-derivative part of Φ2’s equation of motion, namely,

− ∂L0

∂Φ†2

∣∣∣∣
Φ2=Φ

(0)
2,c(Φ1)

= Y2bΦb

∣∣
Φ2=Φ

(0)
2,c(Φ1)

+ Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=Φ

(0)
2,c(Φ1)

= 0 . (2.9)

This is a cubic equation in Φ2; in a generic 2HDM basis it yields an EFT submanifold

curve Φ
(0)
2,c(Φ1) that is a complicated function. Now we will show that one can find a

special 2HDM basis in which the solution curve Φ
(0)
2,c(Φ1) is simply a straight line as

long as the 2HDM has a global minimum that preserves electric charge. We refer to

this basis as the SL basis.
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We begin by noting that Eq. (2.9) must be satisfied at the point corresponding to

the global minimum because by definition this is a point that minimizes the potential,

Y2bΦb

∣∣
vev

+ Z2bcdΦb

(
Φ†cΦd

)∣∣
vev

= 0 . (2.10)

Let us focus on the first term. The key observation is that it is the lower component

of the “vector”

YabΦb

∣∣
vev
, (2.11)

which transforms in the fundamental representation of the flavor rotation group in

Eq. (2.4). Therefore, one can always find a flavor basis such that its lower component

vanishes,

Y2bΦb

∣∣
vev

= 0 (SL basis condition) . (2.12)

This defines our SL basis, in which the two terms in Eq. (2.10) both vanish indepen-

dently,

Y2bΦb

∣∣
vev

= Z2bcdΦb

(
Φ†cΦd

)∣∣
vev

= 0 . (2.13)

Note that if a homogeneous function of Φa vanishes at a certain charge-conserving

point (where their values are multiples of each other), then it vanishes on the whole

(charge-conserving) straight line that connects that point with the origin. Since the

two terms in Eq. (2.9) are both homogeneous functions of Φa, Eq. (2.13) implies that

they both also vanish on the straight line,

Y2bΦb

∣∣
Φ2=kΦ1

= Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=kΦ1

= 0 . (2.14)

Therefore, in the SL basis the EOM Eq. (2.9) has the straight line solution

Φ
(0)
2,c(Φ1) = kΦ1 , with k ≡ v2

v1

∈ C in the SL basis. (2.15)

Although in the SL basis Eq. (2.15) is always a solution to the EOM in Eq. (2.9),

this straight-line EFT submanifold can only correspond to a well-behaved SMEFT

when Y22 > 0 in the SL basis; see Sec. 2.4.

2.3 Mapping Between the Straight-line and Higgs Bases

Let us write the doublets in the SL basis as Φa (a = 1, 2), and the doublets in the Higgs

basis as Φȧ (ȧ = 1̇, 2̇), adopting a convention of dotting Higgs-basis indices. We seek

the unitary matrix Uȧb that relates the two,

Φȧ = UȧbΦb . (2.16)
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The vevs in the two bases are similarly related,

vȧ = Uȧbvb . (2.17)

As the vevs in the respective bases are defined as

vȧ =

(
v

0

)
, va =

(
v1

v2

)
=

v√
1 + |k|2

(
1

k

)
, (2.18)

where v2 = v2
1 + |v2|2, it follows that

Uȧb =
1√

1 + |k|2

(
1 k∗

−k 1

)
. (2.19)

Rearranging the definition of the SL basis in Eq. (2.12) allows us to define k in

terms of quadratic pieces of the SL basis potential,

k =
v2

v1

= −Y21

Y22

. (2.20)

As U relates the quadratic parameters in the SL and Higgs bases via

Yȧḃ = Uȧc Ycd U
†
dḃ
, (2.21)

k can also be written in terms of Higgs basis quantities,

− k =
Y2̇1̇

Y1̇1̇

=
Z2̇1̇1̇1̇

Z1̇1̇1̇1̇

. (2.22)

The last equality comes from the vev conditions in the Higgs basis, which relate

− v2 =
2Y1̇1̇

Z1̇1̇1̇1̇

=
2Y2̇1̇

Z2̇1̇1̇1̇

. (2.23)

The map between other SL and Higgs basis quantities that appear in the EFT matching

is provided in App. A.

We note that both the SL and the Higgs basis are actually a U(1) family of bases.

This corresponds to the freedom to rephase the second Higgs doublet, without affecting

the respective bases’ vev conditions of Eq. (2.12) and v2̇ = 0. The above procedure

details a one-to-one map between equivalent SL and Higgs bases. This means that real

scalar potential parameters unaffected by this rephasing — in the SL basis as in the
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Higgs basis — are physical.5

2.4 Matching Onto SMEFT or HEFT

As we emphasized in the introduction, SMEFT is the EFT extension of the Standard

Model that is expressed about the origin in field space where |Φ1| = 0 such that

electroweak symmetry can be linearly realized. For SMEFT to be well defined, the

EFT must be built from analytic functions of Φ1, which admit a convergent expansion

of local operators at this point. If it is not, then the UV theory must be matched onto

HEFT [13]. This invites the question: is it possible to determine which regions of the

2HDM parameter space can be matched onto SMEFT?

Fig. 1 visualizes the charge conserving solutions Φ
(0)
2,c(Φ1) of Φ2’s zero-derivative

EOM, Eq. (2.9), by plotting

Re
(

Φ†1Φ
(0)
2,c

)√
2

|Φ1| v
versus

|Φ1|
√

2

v
. (2.24)

In these coordinates, the global minimum lies at (cos β, sin β), and in the SL basis, one

of the solutions is a straight line of gradient Re k. Fig. 1 shows two different custodially

symmetric UV parameter points in both their respective Higgs and SL bases; custodial

symmetry guarantees that Im
(

Φ†1Φ
(0)
2,c

)
= 0 and Im k = 0. Black contours show the

2HDM potential in the space of Φ1 and Φ
(0)
2,c. The global minimum is shown by a black

dot. The potential contours and global minimum are rotated between the Higgs and

SL bases.

The multiple solutions for Φ
(0)
2,c are the paths that extremize the potential in the

vertical direction. The solutions shown in blue are stable — the mass matrix of the

Φ2 modes (Eq. (3.11)) about blue solutions is positive definite; those shown in orange

are not. Notably, the solutions Φ
(0)
2,c in the Higgs and SL basis EFTs are not simple

rotations of each other. Even when starting from the same UV parameter point, the

resulting Higgs and SL basis EFTs are generally different (truncated to zero derivative

order) and are not both guaranteed to admit a SMEFT expansion.

Following the treatment of [13], consider the behavior of the EFTs in the |Φ1| → 0

limit. We will first argue that Y22 < 0 is a sufficient criterion for a given basis’ EFT

not to match on to SMEFT. In the SL basis, Y22 < 0 leads to tachyonic modes in Φ2’s

mass matrix about the solution Φ
(0)
2,c, Eq. (3.11), in the |Φ1| → 0 limit. This EFT does

not have a region of small p2 where the effects of Φ2 are purely virtual. The sickness

is most apparent when matching at loop level: when |Φ1| → 0 the Lagrangian would

5We thank H. Haber for pointing this out.
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0 1

0

1

Higgs basis

0 1

SL basis

0 1

0

1

Higgs basis

0 1

SL basis

Figure 1. The Higgs and SL basis behavior for two example custodially symmetric 2HDM
models. Black contours show the potential, and a black dot shows the global minimum, which

has coordinates (cosβ, sinβ) on these axes. The zero-derivative solutions of Φ2’s EOM, Φ
(0)
2,c,

are shown in blue if the Φ2 mass matrix is positive definite and in orange otherwise. Top: an
example where Y22 < 0 in both bases, and neither matches onto SMEFT. Bottom: Y22 > 0
in the SL basis, whereas Y2̇2̇ < 0 in the Higgs basis.
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have an anti-Hermitian component corresponding to a rate for tunneling out of the

false vacuum Φ
(0)
2,c.

In the Higgs basis, Y2̇2̇ < 0 generally leads to Φ
(0)
2,c approaching a non-zero constant

as |Φ1| → 0. This does not yield a SMEFT, as can be verified by substituting Φ
(0)
2,c back

into the kinetic term Eq. (2.1b). As |Φ1| → 0, the W mass remains non-zero, which

cannot be reproduced using SMEFT operators.

Of course, whether Y22 < 0 can be a basis dependent statement. If both eigenvalues

of the matrix Yab are negative, then Y22 < 0 is guaranteed in both the Higgs and SL

bases, as is the case for the potential in the top half of Fig. 1. However, if only one

eigenvalue of Yab is negative, the sign of Y22 may vary among bases. In this case,

Eq. (A.1a) guarantees that in the SL basis,

Y22 =
1

1 + |k|2
detY

Y1̇1̇

> 0 , (2.25)

and the SL basis EFT formally admits a SMEFT expansion. (It is nonetheless possible

that the SMEFT expansion does not converge at the global minimum and therefore has

no predictive power for low energy observables we might measure. This will happen if

the inverse of the mass scale, defined in Eq. (3.29), when viewed as a function of v, has

a radius of convergence about v = 0 that is smaller than the true value of v = 246 GeV

[13].)

Even if Y22 > 0 in the SL basis, it is possible that, simultaneously, Y2̇2̇ < 0 in the

Higgs basis, as shown in the bottom example of Fig. 1. Thus, working in the SL basis

improves the chances of matching onto SMEFT as Y22 > 0 whenever possible. As we

will see in Sec. 4, working in the SL basis also improves the convergence of the resulting

EFT expansion.

3 Matching in the SL Basis

We will now use the classical solution to the equation of motion for the second Higgs

doublet in the SL basis to integrate out Φ2 at tree level. We will include terms in the

EFT up to six derivative and/or fermion order and to all orders in the light field Φ1.

3.1 Organizing the EFT Expansion

Since we need to derive terms involving as many as six derivatives and/or fermions

in the EFT, we begin by setting up the expansion of the UV action on the classical

equations of motion for the heavy doublet. We write the UV action derived using the

– 13 –



Lagrangian in Eqs. (2.1) as

SUV[Φ2] = S0[Φ2] + ε
(
S2[Φ2] + SJ [Φ2]

)
= S0[Φ2] + εSε[Φ2] , (3.1)

where Sε[Φ2] is implicitly defined here, S0[Φ2] contains the zero-derivative scalar terms,

S2[Φ2] contains the two-derivative scalar terms, SJ [Φ2] contains the Yukawa interac-

tions, and ε is an order parameter which we use to track the sum of the number of

fermions and derivatives,

2ε = # of derivatives + # of fermions . (3.2)

Ultimately, we will set ε = 1. Note that we are only writing the explicit functional

dependence on Φ2 here for brevity, but of course SUV also depends on the light Standard

Model fields.

We will denote the Higgs doublet we are integrating out at tree level as

Hx =

(
Φα

2 (x)

Φ†2α(x)

)
, (3.3)

where the x label simultaneously stands for 1) the spacetime coordinate, 2) the SU(2)L
index, and 3) the Higgs doublet versus its conjugate, as we need to vary with respect

to all of them. We want to find Hc,x, the classical solution to the equation of motion

for Hx, order-by-order in ε,

Hc,x =
∞∑
n=0

εnH(n)
c,x . (3.4)

This allows us to derive the EFT action as a semiclassical expansion,

Stree
EFT = SUV[Hc,x] . (3.5)

Substituting the expansion defined in Eq. (3.4) into Eq. (3.1), we find

Stree
EFT = ε0S0

+ ε1
[
Sε + (δS0)xH(1)

c,x

]
+ ε2

[
1

2
(δ2S0)xyH(1)

c,xH(1)
c,y + (δSε)xH(1)

c,x + (δS0)xH(2)
c,x

]
+ ε3

[
1

2
(δ2Sε)xyH(1)

c,xH(1)
c,y +

1

6
(δ3S0)xyzH(1)

c,xH(1)
c,yH(1)

c,z
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+ (δ2S0)xyH(1)
c,xH(2)

c,y + (δSε)xH(2)
c,x + (δS0)xH(3)

c,x

]
+O

(
ε4
)
. (3.6)

We use a bar to denote quantities evaluated on the zeroth-order classical solution H(0)
c,x,

and we have defined the shorthand

(δS)x ≡
δS

δHx

, (δ2S)xy ≡
δ2S

δHxδHy

, (δ3S)xyz ≡
δ3S

δHxδHyδHz

. (3.7)

Note that a repeated index implies an integral over the associated spacetime coordinate

as well as a sum over the components of the Higgs doublet and their conjugates.

To find Hc,x, we expand the equation of motion in powers of ε ,

0 =
δSUV

δHx

∣∣∣∣
Hx=Hc,x

= ε0 (δS0)x + ε1
[
(δSε)x + (δ2S0)xyH(1)

c,y

]
+ ε2

[
(δ2Sε)xyH(1)

c,y + (δ2S0)xyH(2)
c,y +

1

2
(δ3S0)xyzH(1)

c,yH(1)
c,z

]
+O

(
ε3
)
. (3.8)

Each order in ε must independently be zero. This gives

(δS0)x = 0 , (3.9a)

(δSε)x + (δ2S0)xyH(1)
c,y = 0 , (3.9b)

(δ2Sε)xyH(1)
c,y + (δ2S0)xyH(2)

c,y +
1

2
(δ3S0)xyzH(1)

c,yH(1)
c,z = 0 , (3.9c)

which can be solved to give Hc,x order-by-order in ε. Note that Eqs. (3.9) imply an

immediate simplification of Eq. (3.6),

Stree
EFT = ε0 S0 + ε1 Sε + ε2

[
− 1

2
(δ2S0)xyH(1)

c,xH(1)
c,y

]
+ ε3

[
1

2
(δ2Sε)xyH(1)

c,xH(1)
c,y +

1

6
(δ3S0)xyzH(1)

c,xH(1)
c,yH(1)

c,z

]
. (3.10)

We thus only need to compute H(1)
c,x, which amounts to solving Eq. (3.9b). This requires

inverting the mass matrix (δ2S0)xy, as described in the next section.
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3.2 Inverting the Mass Matrix

The general expansion derived in the preceding subsection is valid in a general flavor

basis. As mentioned above, deriving the EFT to the desired order requires solving

Eq. (3.9b). We therefore must invert the mass matrix. To do so, we now specialize to

the SL basis as defined in Eq. (2.15), for which

(δ2S0)xy =−δ(4)(x− y)

(
Z1Φ†1αΦ†1β (Y22 + Z2|Φ1|2)δβα + Z3Φ†1αΦβ

1

(Y22 + Z2|Φ1|2)δαβ + Z3Φ†1βΦα
1 Z∗1Φα

1 Φβ
1

)
,

(3.11)

where

Z1 = Z1212 + 2k∗Z1222 + (k∗)2Z2222 =
(
1 k∗

)(Z1212 Z1222

Z1222 Z2222

)(
1

k∗

)
, (3.12a)

Z2 = Z1122 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)(Z1122 Z1222

Z2122 Z2222

)(
1

k

)
, (3.12b)

Z3 = Z1221 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)(Z1221 Z1222

Z2122 Z2222

)(
1

k

)
. (3.12c)

Note that Z2 and Z3 are real valued. Consistency with the SU(2)L structure implies

an ansatz for the inverse,

(δ2S0)−1
yz = −δ(4)(y − z)

(
AΦβ

1 Φγ
1 B δβγ + C Φ†1γΦ

β
1

B δγβ + C Φ†1βΦγ
1 A∗Φ†1βΦ†1γ

)
, (3.13)

with B = B∗ and C = C∗. The solution is given by

A = − Z∗1[
Y22 + (Z2 + Z3)|Φ1|2

]2 − |Z1|2|Φ1|4
, (3.14a)

B =
1

Y22 + Z2|Φ1|2
, (3.14b)

C = − 1

Y22 + Z2|Φ1|2
Z3

[
Y22 + (Z2 + Z3)|Φ1|2

]
− |Z1|2|Φ1|2[

Y22 + (Z2 + Z3)|Φ1|2
]2 − |Z1|2|Φ1|4

, (3.14c)
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as can be checked by explicit matrix multiplication. With the result in Eq. (3.13), we

obtain an O(ε) solution to the EOM,

Φ
(1)
2,c = −

[
A
(

Φ†1R
)∗

+ C
(

Φ†1R
)]

Φ1 −BR , with R ≡ kD2Φ1 + J2 . (3.15)

These results simplify in the custodial limit, for which, without loss of generality,

all potential parameters and therefore k are real, and Z1221 = Z1212 [19] (implying

Z1 = Z3). The coefficients of the inverse mass matrix defined in Eqs. (3.14) therefore

simplify to

A = C = − Z1

(Y22 + Z2|Φ1|2) [Y22 + (Z2 + 2Z1)|Φ1|2]
, (3.16a)

B =
1

Y22 + Z2|Φ1|2
, (3.16b)

when the UV 2HDM respects custodial symmetry.

3.3 The EFT Result

We now have everything we need to determine an EFT action for the light doublet Φ1.

Combining Eq. (3.10) with Eqs. (2.15) and (3.15), we have

LEFT = −
(
1 + |k|2

)
m2

eff |Φ1|2 −
1

2

(
1 + |k|2

)2
λeff |Φ1|4

+
(
1 + |k|2

)
|DµΦ1|2 −

[(
J†1 + kJ†2

)
Φ1 + h.c.

]
+B |R|2 + C

∣∣Φ†1R∣∣2 +
1

2

[
A∗
(

Φ†1R
)2

+ h.c.

]
+
∣∣∣DµΦ

(1)
2,c

∣∣∣2
−
[
Z4

(
Φ†1Φ

(1)
2,c

) ∣∣∣Φ(1)
2,c

∣∣∣2 + h.c.

]
, (3.17)

where A,B,C are given in Eqs. (3.14); Φ
(1)
2,c and R are given in Eq. (3.15). We have

also introduced the notation m2
eff and λeff,

(
1 + |k|2

)
m2

eff = Yab

(
1

k∗

)
a

(
1

k

)
b

, (3.18a)

(
1 + |k|2

)2
λeff = Zabcd

(
1

k∗

)
a

(
1

k

)
b

(
1

k∗

)
c

(
1

k

)
d

, (3.18b)
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as well as Z4, which populates the elements of (δ3S0)xyz,

Z4 = Z1222 + k∗Z2222 =
(
1 k∗

)(Z1222

Z2222

)
. (3.19)

3.4 EFT Predictions for Benchmark Pseudo-observables

We will use the matching result Eq. (3.17) to compute three pseudo-observables: the

shift in the hW+W− coupling relative to the Standard Model κV , the shift in the Higgs

self-coupling h3 relative to the Standard Model κλ, and the shift in the hf̄f coupling

relative to the Standard Model κf . We will compute all of these to leading non-trivial

order.

We can drop the last line of Eq. (3.17) — which originates from the second O
(
ε3
)

term in Eq. (3.10) — because it does not contribute to our pseudo-observables at the

truncation order imposed in this section. Note also that the kinetic term for Φ1 is not

canonically normalized. Rewriting with the normalized field,

H ≡
(
1 + |k|2

)1/2
Φ1 , (3.20)

we get

LEFT ⊃ |DµH|2 −m2
eff |H|

2 − 1

2
λeff |H|4 −

(
1 + |k|2

)−1
[(
Ĵ†1 + kĴ†2

)
H + h.c.

]
+ B̂

∣∣R̂∣∣2 + Ĉ
∣∣H†R̂∣∣2 +

1

2

[
Â∗
(
H†R̂

)2
+ h.c.

]
+
(
1 + |k|2

) ∣∣∣DµΦ̂
(1)
2,c

∣∣∣2 , (3.21)

with a variety of rescaled quantities,

Ŷ22 ≡
(
1 + |k|2

)
Y22 , (3.22a)

Ĵi ≡
(
1 + |k|2

)1/2
Ji , (3.22b)

Â ≡
(
1 + |k|2

)−2
A = − Z∗1[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (3.22c)

B̂ ≡
(
1 + |k|2

)−1
B =

1

Ŷ22 + Z2|H|2
, (3.22d)

Ĉ ≡
(
1 + |k|2

)−2
C = − 1

Ŷ22 + Z2|H|2
Z3

[
Ŷ22 + (Z2 + Z3)|H|2

]
− |Z1|2|H|2[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (3.22e)

– 18 –



R̂ ≡
(
1 + |k|2

)1/2
R = kD2H + Ĵ2 , (3.22f)

Φ̂
(1)
2,c ≡

(
1 + |k|2

)−1/2
Φ

(1)
2,c = −

[
Â
(
H†R̂

)∗
+ Ĉ

(
H†R̂

)]
H − B̂R̂ . (3.22g)

We see that when restricted to two-derivative/fermion order, i.e., the first line of

Eq. (3.21), the matching result is the Standard Model as expected. Therefore, correc-

tions to the pseudo-observables come from terms at the four- and six-derivative/fermion

orders presented in the second line of Eq. (3.21). To compute these corrections, we will

take Eq. (3.21) and expand around the physical vacuum where H has a non-zero vev.

We will only keep terms that are relevant for κV (to six-derivative/fermion order), κf
(to potentially six-derivative/fermion order), and κλ (to four-derivative/fermion order).

We also need the propagator residue factors for all the external legs of these amplitudes.

It is clear that the four- and six-derivative/fermion terms in Eq. (3.21) do not yield

nontrivial corrections to the propagator residues of the gauge bosons or the fermions,

but they do modify the Higgs propagator residue factor Zh.

In summary, when we expand Eq. (3.21), we would like to keep all the terms of the

forms

h2 ∂n , h3 ∂n , W+
µ W

−
ν h ∂

n , ĵi h ∂
n , (3.23)

where ∂n denotes an arbitrary power of derivatives (up to our truncation order) and ĵi
are the neutral components of Ĵi,

Ĵi ⊃
(

0

ĵi

)
. (3.24)

Note that all the four- and six-derivative/fermion terms in Eq. (3.21) are quadratic in

R̂. For finding the terms listed in Eq. (3.23), it is therefore sufficient to keep only part

of R̂ ,

R̂ = kD2H + Ĵ2 ⊃

(
0

k√
2

[
(∂2h)− 1

2
g2

2vW
+
µ W

−µ]+ ĵ2

)
, (3.25)

and make the replacement

H → 1√
2

(
0

v + h

)
, (3.26)

for all the other factors of H fields in the four- and six-derivative/fermion terms in

Eq. (3.21) (including the implicit ones in Â, B̂, Ĉ). Performing these substitutions, we
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obtain

LEFT ⊃
1

2
(∂h)2 − 1

2
m2h2 − m2

2v
h3 +

1

2
g2

2vW
+
µ W

−µh− 1√
2

v + h

1 + |k|2
(
ĵ1 + k∗ĵ2 + h.c.

)
+ b4

1

2
(∂2h)

[
(∂2h)− g2

2vW
+
µ W

−µ
]

+

[
f4√
2k∗

ĵ∗2 (∂2h) + h.c.

]
+
λ4

2
h
(
∂2h
)2

+ b6
1

2
(∂µ∂

2h)
[
(∂µ∂2h)− g2

2v ∂
µ(W+

ν W
−ν)
]
−
[

f6√
2k∗

ĵ∗2 (∂4h) + h.c.

]
, (3.27)

where the coefficients are

m2 = λeff v
2 = −2m2

eff , (3.28a)

b4 =
1

M4
SL

{
|k|2

[
Ŷ22 + (Z2 + Z3)

v2

2

]
− Re

(
k2Z1

v2

2

)}
, (3.28b)

Re f4 = b4 , (3.28c)

Im f4 =
1

M4
SL

Im

(
k2Z1

v2

2

)
, (3.28d)

λ4 =
∂

∂v
b4 , (3.28e)

b6 =
1

M8
SL

(
1 + |k|2

) ∣∣∣∣k [Ŷ22 + (Z2 + Z3)
v2

2

]
− k∗Z∗1

v2

2

∣∣∣∣2 , (3.28f)

Re f6 = b6 , (3.28g)

Im f6 =
1

M8
SL

(
1 + |k|2

) [
Ŷ22 + (Z2 + Z3)

v2

2

]
Im
(
k2Z1v

2
)
. (3.28h)

Note the appearance of the mass scale

M4
SL =

[
Ŷ22 + (Z2 + Z3)

v2

2

]2

− |Z1|2
v4

4
, (3.29)

which is closely related to the determinant of the mass matrix for the heavy Higgs

doublet. (The only difference is the factor of (1 + |k|2) in Ŷ22, which comes from

canonically normalizing Φ1 to H using Eq. (3.20).) MSL includes both the explicit mass

parameter Y22 and the vev-dependent contributions to the mass through the quartic

couplings.
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From Eq. (3.27), the terms that are quadratic in h with no other fields determine

that the dispersion relation for h is

−m2 + p2 + b4p
4 + b6p

6 +O
(
p8
)

= 0 , (3.30)

which implies that the pole mass m2
h can be determined by solving

m2 = m2
h + b4m

4
h + b6m

6
h +O

(
p8
)
, (3.31)

and that the residue is

Z−1
h =

∂

∂p2

(
−m2 + p2 + b4p

4 + b6p
6 +O

(
p8
)) ∣∣∣

p2=m2
h

= 1 + 2b4m
2
h + 3b6m

4
h +O

(
p6
)
. (3.32)

Note that by including higher order momentum terms in the dispersion relation, we

are effectively resumming a class of EFT corrections into the propagator. This is one

of the systematic improvements that is facilitated by working in the SL basis. Using

Eq. (3.27), we have

κV = Z
1/2
h (1 + b4m

2
h + b6m

4
h) +O

(
m6
h

)
= 1− 1

2
m4
h

(
b6 − b2

4

)
+O

(
m6
h

)
, (3.33)

and

κλ = 1− 2m2
h

∂

∂v2

(
v2b4

)
+O

(
m4
h

)
. (3.34)

In particular, we note that the quantity appearing in κV is non-negative,

b6 − b2
4 =

1

M8
SL

{∣∣∣∣k [Ŷ22 + (Z2 + Z3)
v2

2

]
− v2

2
k∗Z∗1

∣∣∣∣2 +

[
v2

2
Im(k2Z1)

]2
}
≥ 0 , (3.35)

which guarantees that the correction κV − 1 ≤ 0 has the correct sign.

Determining κf is complicated by the fact that there are different possibilities for

the fermion couplings to the two doublets. It is most transparent to write the couplings

to fermions in the Higgs basis, for which the neutral components of the currents are

J1̇ =

(
0

j1̇

)
, J2̇ =

(
0

j2̇

)
. (3.36)
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Using the mappings given in App. A, the SL basis currents are then

Ja =
1√

1 + |k|2

(
1 −k∗
k 1

)
aḃ

Jḃ . (3.37)

This implies

ĵ1 = j1̇ − k∗j2̇ , (3.38a)

ĵ2 = kj1̇ + j2̇ . (3.38b)

The part of Eq. (3.27) containing fermions can be expressed in terms of Higgs basis

currents as

Leff ⊃ −
1√
2
j1̇

(
v + h− f ∗4∂2h+ f ∗6∂

4h
)
− 1√

2

j2̇

k

(
−f ∗4∂2h+ f ∗6∂

4h
)

+ h.c. . (3.39)

We see that matching the fermion masses determines j1̇ and places no constraint on

j2̇; this is why it is useful to write the Lagrangian in terms of these quantities. The

amplitude for a Higgs to decay to a particular chirality of fermions is then proportional

to the matrix element of the unconjugated currents,

Ah→f̄LfR = −〈j1̇〉√
2
Z

1/2
h

(
1 + f ∗4m

2
h + f ∗6m

4
h

)
− 〈j2̇〉
k
√

2
Z

1/2
h

(
f ∗4m

2
h + f ∗6m

4
h

)
+O

(
m6
h

)
= −〈j1̇〉√

2

[
1− 1

2

(
b6 − b2

4

)
m4
h

]
+ i
〈j1̇〉√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]
− 〈j2̇〉
k
√

2

[
b4m

2
h +

(
b6 − b2

4

)
m4
h

]
+ i
〈j2̇〉
k
√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]
+O

(
m6
h

)
, (3.40)

where we are using a shorthand 〈j〉 =
〈
f̄LfR|j|0

〉
.

To calculate κf , we then need to specify j2̇. There are a wide variety of possibilities

with rich phenomenological implications, including conventional choices satisfying the

Glashow-Weinberg condition [25]. In this work, we consider two specific choices. For

both, we require the UV 2HDM potential to be CP-preserving; this means Im f4 =

Im f6 = 0. For our first example, we set j2̇ = 0, such that the fermion currents only
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couple to the linear combination of Higgses that gets a vev. In this case,

κf = 1− 1

2

(
b6 − b2

4

)
m4
h = κV . (3.41)

In other words, to this order in the EFT expansion there is simply a universal rescaling

of all Higgs couplings for this scenario. This is the unique choice for which κf does

not receive a contribution at leading order. For our second example, we set j2̇ = j1̇, in

which case,

κf = 1 +
b4

k
m2
h , (3.42)

where we have truncated to the leading order correction. Note that both of the possi-

bilities we consider automatically ensure that there are no FCNC’s at tree level.

4 Numerical Comparison

We will now provide the results of a scan in the 2HDM parameter space in order to

compare the efficacy of the SL basis EFT with the Higgs basis EFT. We will provide

results for the three pseudo-observables derived in the previous section: the shift in

the hW+W− coupling κV , the shift in the h3 coupling κλ, and the shift in the hf̄f

coupling κf . For κf , we consider specifically the case when the Yukawa couplings of

both doublets are the same in the Higgs basis; see Eq. (3.42). We will present the

results in terms of the fractional error of the EFT prediction as compared to the UV

prediction,

δκi,EFT ≡
κi,EFT − κi,UV

κi,UV − 1
, (4.1)

where κi,UV use the couplings computed in the full 2HDM; both the UV and the Higgs

basis EFT results are taken from [6].

To make this comparison, we reduce the general 2HDM down to a four-parameter

space of models. We first impose custodial symmetry and work in the resulting Higgs

basis for which all parameters are real and Z1̇2̇1̇2̇ = Z1̇2̇2̇1̇. We then scan over the 4

parameters

Y1̇2̇ , Y2̇2̇ , Z1̇1̇1̇1̇ , Z1̇1̇2̇2̇ . (4.2)

Of the remaining parameters, Y1̇1̇ and Z1̇1̇1̇2̇ are fixed by the Higgs basis vev conditions

Eq. (2.23); the others we fix to satisfy

Z1̇2̇2̇2̇ = Z1̇2̇1̇2̇ = 0 ; Z2̇2̇2̇2̇ = Z1̇1̇1̇1̇ , (4.3)
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for simplicity. Note that it is important that Y1̇2̇ 6= 0 for the Higgs and SL bases to be

distinct.

The four free parameters, Eq. (4.2), are scanned in units of v = 246 GeV via

a Markov Chain Monte Carlo (MCMC) method, which samples from the Gaussian

likelihood of approximate current experimental constraints on mh and κV ≡ sin(β − α).

Here α is the familiar Higgs mixing angle and sin(β − α)→ 1 is known as the alignment

limit. Explicitly, we take

m2
h

v2
= 0.2587± 0.0007 , (4.4a)

κV = 1.0± 0.1 . (4.4b)

The MCMC is seeded on a grid of inert 2HDMs, where

Y1̇2̇ = 0 , (4.5a)

Y2̇2̇ = m2
H(1− f) , (4.5b)

Z1̇1̇1̇1̇ = 0.2587 , (4.5c)

Z1̇1̇2̇2̇ = 2f
m2
H

v2
, (4.5d)

where m2
H is the heavy Higgs mass at the global minimum and f is the fraction of it

which comes through the cross quartic interaction 1
2
Z1̇1̇2̇2̇v

2. We sample m2
H and f from

the discrete sets

m2
H

GeV
= {400, 500, 600, 700, 800} , (4.6a)

f = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . (4.6b)

Discarding all models with unbounded potentials, we are left with ∼ 7000 2HDM model

points in the following analysis.

The performance of the SL basis EFT can be understood primarily by looking at

two parameters: the alignment of the 2HDM and the mass scale from the mass matrix

of the heavy doublet, MSL, defined in Eq. (3.29). Recall from Sec. 3.1 that the SL basis

EFT is an expansion in powers of derivatives (and fermions). We thus expect the nth

order corrections to our pseudo-observables to scale as(
D2
)n ∼ m2n

h ∼ v2n . (4.7)
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Figure 2. This figure shows for which models the SL basis EFT makes an accurate estimate
of κV . Blue points are those for which δκV,SL < 0.1 and orange points (shown on top of the
blue points) are those for which δκV,SL > 0.1.

By dimensional analysis, the nth order corrections must also scale as some mass scale

to the power of −2n. From Eqs. (3.9), these powers of mass dimension come from

the inverse of the mass matrix for the heavy doublet; the nth order corrections to our

pseudo-observables thus scale as M−2n
SL . The corrections therefore scale as

SL basis power counting ∼
(

v

MSL

)2n

, (4.8)

and we expect that the SL EFT expansion will provide a good approximation when

MSL is large.

We plot our pseudo-observables in the cos(α− β) versus MSL plane in Figs. 2 to 4,

where α is the Higgs mixing angle, β = arctan(v2/v1), and the combination cos(α− β)

is a measure of the alignment limit for the 2HDM. In the figures, we separate the points

into those for which the fractional error is above or below 10% to provide a proxy for

when the SL basis EFT prediction is accurate. As expected, we find better performance

for larger values of MSL. In addition, κV and κf are highly correlated with the measure

of alignment; this is because κV,UV and κf,UV depend only on the alignment of the

2HDM (and, for κf , the Yukawa couplings of the Higgs doublets, which we have fixed).

For κλ, the behavior is more complicated as a larger number of parameters affect the
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Figure 3. This figure shows for which models the SL basis EFT makes an accurate estimate
of κλ. Blue points are those for which δκλ,SL < 0.1 and orange points (shown on top of the
blue points) are those for which δκλ,SL > 0.1.
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Figure 4. This figure shows for which models the SL basis EFT makes an accurate estimate
of κf . We have taken the Yukawa couplings to the two Higgs doublets to be equal. Blue
points are those for which δκf,SL < 0.1 and orange points (shown on top of the blue points)
are those for which δκf,SL > 0.1. If the Yukawa couplings of the heavy doublet are instead
set to zero, κf = κV .
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Figure 5. This figure shows the accuracy in computing κV for each of the EFTs. The straight
orange line denotes equality between the accuracy of the two EFTs, with points above the
line being those for which the SL basis EFT performs better than the Higgs basis EFT.

value of κλ.

A comparison of the performance for the SL basis EFT against the Higgs basis

EFT is given in Figs. 5 to 7. The SL basis EFT typically outperforms the Higgs basis

EFT by a significant margin (around 1-2 orders of magnitude smaller fractional error)

for all three pseudo-observables; this is the case whether the SL basis EFT performs

relatively well or relatively poorly. We do find parameter points for which the Higgs

basis EFT outperforms the SL basis EFT, so the SL basis EFT is not universally better.

In addition, for a significant minority of points the Higgs basis EFT catastrophically

fails with a fractional error of several orders of magnitude; these catastrophic failures

include many points on which the SL basis EFT performs quite well. By contrast,

while points exist for which the SL basis EFT performs poorly, the Higgs basis tends to

perform poorly as well, and none of the points included in our scan show a catastrophic

failure of the SL basis.

The difference in performance of the two EFTs can be understood by looking at

the mass scales involved in the power counting. As we saw in Eq. (4.8), higher-order

corrections in the SL basis EFT are suppressed by powers of MSL; this mass scale is

comparable to the physical mass of the second Higgs doublet, so the EFT produces

reliable results when the second Higgs doublet is heavy. The higher-order corrections
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Figure 6. This figure shows the accuracy in computing κλ for each of the EFTs. The straight
orange line denotes equality between the accuracy of the two EFTs, with points above the
line being those for which the SL basis EFT performs better than the Higgs basis EFT.
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Figure 7. This figure shows the accuracy in computing κf . We have taken the Yukawa
couplings to the two Higgs doublets to be equal. The straight orange line denotes equality
between the accuracy of the two EFTs, with points above the line being those for which the
SL basis EFT performs better than the Higgs basis EFT. If the Yukawa couplings of the
heavy doublet are instead set to zero, κf = κV .
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Figure 8. This figure shows how the performance of the SL basis EFT and the Higgs basis
EFT prediction for κV depends on the ratio of the mass scales in the two EFTs.
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Figure 9. This figure shows how the performance of the SL basis EFT and the Higgs basis
EFT prediction for κλ depends on the ratio of the mass scales in the two EFTs.
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in the Higgs basis EFT are suppressed by powers of Y2̇2̇. If the second Higgs doublet

receives a large contribution to its mass from the vev, then Y2̇2̇ can be significantly

smaller than the mass of the second Higgs. We show how the relative performance of

the two EFTs depends on the ratio of their respective mass scales in Figs. 8 to 10.

We indeed see that when the mass scale of the Higgs basis EFT is significantly smaller

than that of the SL basis EFT, the Higgs basis EFT is significantly less accurate. In

addition, for all those points on which the Higgs basis EFT is more accurate than the

SL basis EFT, the mass scales of the two EFTs are comparable, as expected.
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Figure 10. This figure shows how the performance of the SL basis EFT and the Higgs basis
EFT prediction for κf depends on the ratio of the mass scales in the two EFTs. We have
taken the Yukawa couplings to the two Higgs doublets to be equal. If the Yukawa couplings
of the heavy doublet are instead set to zero, κf = κV .

5 Conclusions

In this paper, we have derived the tree-level matching coefficients by integrating out

the BSM states in the 2HDM. The novel aspect of this work is the introduction of the

SL basis, which is an optimal choice for performing the matching calculation. Working

with the SL basis allows us to match a far broader parameter space of 2HDM models

onto SMEFT and to resum all orders of the light Higgs field into the EFT Wilson

coefficients in a systematic way. This leads to significantly improved predictions when

compared to the computation performed using the Higgs basis in the UV across most of

the 2HDM parameter space. This demonstrates the utility of the EFT derived using the

SL basis. In particular, this is the basis to use if one is interested in exploring the EFT

predictions for the 2HDM for models that have alignment away from the decoupling

limit. This brings the 2HDM fully into the EFT fold, extending the validity of EFT

interpretations of Higgs coupling measurements across a wider range of 2HDMs.

There are many future directions to explore. As we have worked strictly at tree

level, extending the SL basis EFT matching calculation to loop level (potentially with

functional matching techniques) is a natural next step. Although we have focused our

numerical studies on CP-conserving 2HDM, the SL basis is applicable in the fully gen-

eral CP-violating 2HDMs, where further numerical studies are likely to be informative.
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It would also be instructive to extend the SL basis to models with extra scalar fields

beyond the 2HDM.

There are also more phenomenological studies that could be done. Our expressions

shed light on the physical combinations of parameters that can appear in the low energy

virtual effects of the heavy doublet. However, since we only explored the properties of

pseudo-observables here, it would be important to compute a set of full LHC observables

which would serve as inputs to provide constraints on the 2HDM parameter space. It

is possible that one could then identify novel indirect searches that could be performed

which would be particularly sensitive to the effects of the 2HDM. And in the event that

an indirect signal of BSM physics would be discovered, the results here would facilitate

our ability to interpret such a signal in terms of the 2HDM parameter space.
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Appendices

A Mapping EFT Quantities from SL to Higgs Basis

Using Eqs. (2.19), (2.20) and (2.22), quantities appearing in the EFT derived using the

SL basis can be written in terms of Higgs basis parameters as

Ŷ22 = (1 + |k|2)Y22 = Y2̇2̇ + k∗Y2̇1̇ + kY1̇2̇ + |k|2Y1̇1̇

= Y2̇2̇ −
|Y1̇2̇|

2

Y1̇1̇

= Y2̇2̇ − |k|
2Y1̇1̇ , (A.1a)

Z1 = (1 + |k|2)Z1̇21̇2
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= Z1̇2̇1̇2̇ −
Z2

1̇1̇1̇2̇

Z1̇1̇1̇1̇

= Z1̇2̇1̇2̇ − (k∗)2Z1̇1̇1̇1̇ , (A.1b)

Z2 = (1 + |k|2)Z1̇1̇22

= Z1̇1̇2̇2̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇

= Z1̇1̇2̇2̇ − |k|
2Z1̇1̇1̇1̇ , (A.1c)

Z3 = (1 + |k|2)Z1̇221̇

= Z1̇2̇2̇1̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇

= Z1̇2̇2̇1̇ − |k|
2Z1̇1̇1̇1̇ , (A.1d)

Z4 =

√
1 + |k|2Z1̇222

=
2|k|2Z1̇1̇1̇2̇ + k∗Z1̇2̇2̇1̇ + k∗Z1̇1̇2̇2̇ + kZ1̇2̇1̇2̇ + Z1̇2̇2̇2̇

1 + |k|2
, (A.1e)

m2
eff = Y1̇1̇ , (A.1f)

λeff = Z1̇1̇1̇1̇ . (A.1g)

In terms of the more conventional 2HDM parameters in Higgs basis (see Eq. (2.3)), the

map is given by

k = −λ
∗
6

λ1

, (A.2a)

Ŷ22 = m2
2 − |k|

2m2
1 , (A.2b)

Z1 = λ5 − (k∗)2λ1 , (A.2c)

Z2 = λ3 − |k|2λ1 , (A.2d)

Z3 = λ4 − |k|2λ1 , (A.2e)

Z4 =
2|k|2λ6 + k∗λ3 + k∗λ4 + kλ5 + λ7

1 + |k|2
(A.2f)

m2
eff = m2

1 , (A.2g)

λeff = λ1 . (A.2h)

Armed with these expressions, we can expand our expressions for our pseudo-observables

in the SL basis EFT and check that they agree with the Higgs basis EFT. The Higgs
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basis EFT is an expansion in inverse powers of m2
2; from Eq. (A.2b), we see that this

is equivalent to an expansion in inverse powers of Ŷ22 (to leading order), so we should

expand our expressions for κV , κλ, κf in the SL basis EFT to leading order in Ŷ22 and

then convert to Higgs basis quantities. We have

b4 '
1

Ŷ22

|k|2 , (A.3)

b6 '
1

Ŷ 2
22

|k|2(1 + |k|2) , (A.4)

λ4 ' −v
1

Ŷ 2
22

[
|k|2(Z2 + Z3) + Re

(
k2Z1

) ]
, (A.5)

which gives

κV,SL = 1− 1

2

(
b6 − b2

4

)
m4
h ' 1− 1

2

|k|2λ2
eff v

4

Ŷ 2
22

' 1− 1

2

|λ6|2v4

m4
2

, (A.6)

κf,SL = 1 +
b4

k
m2
h ' 1 +

k∗

Ŷ22

λeff v
2 ' 1− λ6v

2

m2
2

, (A.7)

κλ,SL = 1− 2b4m
2
h − λ4vm

2
h ' 1− 2

|k|2λeff v
2

Ŷ22

= 1− 2
|k|2λ2

eff v
4

Ŷ22m2
h

' 1− 2
|λ6|2v4

m2
2m

2
h

,

(A.8)

all of which agree with the corresponding Higgs basis EFT expressions in Ref. [6].

B Equivalence of Decoupling-Limit SL and Higgs Basis EFTs

The SL basis and Higgs basis EFTs are generally two different EFTs, equipped with

their own power counting, and regimes of validity. However, in the decoupling limit,

we can expand in inverse powers of large Y2̇2̇ ≡ m2
2 to reproduce the same effects.

At the Lagrangian level this manifests as a field redefinition equivalence between

the two EFTs. Whereas the two bases are related by a simple non-derivative field

redefinition in the UV, in the EFT this requires a more complicated field redefinition

with derivatives [26]. Here, we show the equivalence explicitly within the scalar parts

of the two EFTs, working in the custodial limit and up to dimension 8 order, i.e.,

O(1/m4
2).
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Expanding the SL Basis EFT Eq. (3.21) in the custodial limit, we find

L =−H†D2H −m2
1|H|

2 − 1

2
λ1|H|4 +

(
k2

m2
2

+
k4m2

1

m4
2

) ∣∣D2H
∣∣2 − k2Z2

m4
2

|H|2
∣∣D2H

∣∣2
− k2Z1

2m4
2

(
H†D2H + h.c.

)2 − k2(1 + k2)

m4
2

(
D2H†

) (
D4H

)
. (B.1)

We have used Eq. (A.2) to convert the Wilson coefficients to Higgs basis parameters.

Under the substitution

H → H +

{
−k

2λ1

2m2
2

+
k2m2

1

4m4
2

[
4Z1 + 2Z2 − (4− k2)λ1

]}
|H|2H

+
k2λ1

8m4
2

[
8Z1 + 4Z2 − (4− 9k2)λ1

]
|H|4H

+

[
k2

2m2
2

+
k2(1 + k2)m2

1

2m4
2

]
(D2H)− k2

4m4
2

[
2Z2 − (2− k2)λ1

]
|H|2(D2H)

+
k2(4Z1 + k2λ1)

4m4
2

|DµH|2H −
k2

4m4
2

[
2Z1 − (2− k2)λ1

] (
D2|H|2

)
H

+
k2λ1(4− k2)

4m4
2

(
Dµ|H|2

)
(DµH)− k2(4 + k2)

8m4
2

(D4H) , (B.2)

and with the use of the identity

2|DµH|2 = D2|H|2 −
(
H†D2H + h.c.

)
, (B.3)

and the integration-by-parts relations

−2 |H|2
(
Dµ|H|2

) (
Dµ|H|2

)
= |H|4

(
D2|H|2

)
, (B.4a)

2 |H|2H†D2
(
|H|2H

)
= |H|4

(
H†D2H + h.c.

)
+ |H|4

(
D2|H|2

)
, (B.4b)(

Dµ|H|2
) [

(DµH)†
(
D2H

)
+ h.c.

]
= −2|H|2

∣∣D2H
∣∣2

− |H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]
, (B.4c)(

D2|H|2
) (
H†D2H + h.c.

)
= 2|H|2

∣∣D2H
∣∣2

+ 2|H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]
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+ |H|2
(
H†D4H + h.c.

)
, (B.4d)

together with the subsequent rescaling

H → H

[
1− k2m2

1

2m2
2

− k2m4
1(4 + k2)

8m4
2

]
, (B.5)

the expanded SL Basis EFT in Eq. (B.1) can be reduced to

L = −H†D2H − k2λ2
1

2m4
2

|H|4
(
D2|H|2

)
−
(
m2

1 − k2m
4
1

m2
2

− k2m
6
1

m4
2

)
|H|2

− 1

2

[
λ1 − 4k2λ1

m2
1

m2
2

+ 2k2m
4
1

m4
2

(2λ4 + λ3 − 3λ1)

]
|H|4

+

[
k2 λ

2
1

m2
2

− k2λ1
m2

1

m4
2

(4λ4 + 2λ3 − 3λ1)

]
|H|6 − k2 λ

2
1

m4
2

(2λ4 + λ3 − λ1) |H|8 . (B.6)

We have used Eq. (A.2) again to write Z1 = Z3 = λ4− k2λ1 and Z2 = λ3− k2λ1 in the

custodial limit.

We can compare Eq. (B.6) to known results in the Higgs basis EFT. Assuming

custodial symmetry, the scalar sector of the general results in [6] reduce to

L =

(
1 +

m4
12

m4
2

)
|DµH|2 +

2m2
12λ6

m4
2

[
1

2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]
+
λ2

6

m4
2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]
−
(
m2

1 −
m4

12

m2
2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− 2(λ3 + 2λ4)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4)λ2

6

m4
2

|H|8 . (B.7)

This can be canonically normalized to O (1/m4
2) to give

L = |DµH|2 +
2m2

12λ6

m4
2

[
1

2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]
+
λ2

6

m4
2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]
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−
(
m2

1 −
m4

12

m2
2

− m4
12m

2
1

m4
2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4 − λ1)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− 2(λ3 + 2λ4)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4)λ2

6

m4
2

|H|8 . (B.8)

Using IBPs and the field redefinition

H → H − m2
12λ6

m4
2

|H|2H − λ2
6

2m4
2

|H|4H , (B.9)

we obtain

L = |DµH|2 −
λ2

6

2m4
2

|H|4
(
D2|H|2

)
−
(
m2

1 −
m4

12

m2
2

− m4
12m

2
1

m4
2

)
|H|2

− 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4 − 3λ1)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− (2λ3 + 4λ4 − 3λ1)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4 − λ1)λ2

6

m4
2

|H|8 , (B.10)

where we have used m2
1λ6 = m2

12λ1 (a consequence of the vev condition in the Higgs

basis). As both kλ1 = −λ6 and km2
1 = −m2

12 (in the custodial limit), we see Eq. (B.10)

and Eq. (B.6) are equivalent.
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