CERN Accelerating science

Article
Report number arXiv:2302.02764
Title Machine Learning based tool for CMS RPC currents quality monitoring
Author(s) Shumka, E. (Sofiya U.) ; Samalan, A. (Gent U.) ; Tytgat, M. (Gent U.) ; Sawy, M. El (Brussels U.) ; Alves, G.A. (Rio de Janeiro, CBPF) ; Marujo, F. (Rio de Janeiro, CBPF) ; Coelho, E.A. (Rio de Janeiro, CBPF) ; Da Costa, E.M. (Rio de Janeiro State U.) ; Nogima, H. (Rio de Janeiro State U.) ; Santoro, A. (Rio de Janeiro State U.) ; De Souza, S. Fonseca (Rio de Janeiro State U.) ; De Jesus Damiao, D. (Rio de Janeiro State U.) ; Thiel, M. (Rio de Janeiro State U.) ; Mota Amarilo, K. (Rio de Janeiro State U.) ; Filho, M. Barroso Ferreira (Rio de Janeiro State U.) ; Aleksandrov, A. (Sofiya, Inst. Nucl. Res.) ; Hadjiiska, R. (Sofiya, Inst. Nucl. Res.) ; Iaydjiev, P. (Sofiya, Inst. Nucl. Res.) ; Rodozov, M. (Sofiya, Inst. Nucl. Res.) ; Shopova, M. (Sofiya, Inst. Nucl. Res.) ; Soultanov, G. (Sofiya, Inst. Nucl. Res.) ; Dimitrov, A. (Sofiya U.) ; Litov, L. (Sofiya U.) ; Pavlov, B. (Sofiya U.) ; Petkov, P. (Sofiya U.) ; Petrov, A. (Sofiya U.) ; Qian, S.J. (Peking U.) ; Kou, H. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Liu, Z.-A. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Zhao, J. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Song, J. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Hou, Q. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Diao, W. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Cao, P. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Avila, C. (Andes U., Bogota) ; Barbosa, D. (Andes U., Bogota) ; Cabrera, A. (Andes U., Bogota) ; Florez, A. (Andes U., Bogota) ; Fraga, J. (Andes U., Bogota) ; Reyes, J. (Andes U., Bogota) ; Assran, Y. (Egyptian Ctr. Theor. Phys., Cairo ; Suez Canal U.) ; Mahmoud, M.A. (Fayoum U.) ; Mohammed, Y. (Fayoum U.) ; Crotty, I. (Fayoum U.) ; Laktineh, I. (IP2I, Lyon) ; Grenier, G. (IP2I, Lyon) ; Gouzevitch, M. (IP2I, Lyon) ; Mirabito, L. (IP2I, Lyon) ; Shchablo, K. (IP2I, Lyon) ; Bagaturia, I. (GTU, Tbilisi) ; Lomidze, I. (GTU, Tbilisi) ; Tsamalaidze, Z. (GTU, Tbilisi) ; Amoozegar, V. (IPM, Tehran) ; Boghrati, B. (IPM, Tehran ; Damghan U.) ; Ebraimi, M. (IPM, Tehran) ; Mohammadi Najafabadi, M. (IPM, Tehran) ; Zareian, E. (IPM, Tehran) ; Abbrescia, M. (Bari U. ; INFN, Bari) ; Iaselli, G. (Bari U. ; INFN, Bari) ; Pugliese, G. (Bari U. ; INFN, Bari) ; Loddo, F. (Bari U. ; INFN, Bari) ; De Filippis, N. (Bari U. ; INFN, Bari) ; Aly, R. (Bari U. ; INFN, Bari) ; Ramos, D. (Bari U. ; INFN, Bari) ; Elmetenawee, W. (Bari U. ; INFN, Bari) ; Leszki, S. (Bari U. ; INFN, Bari) ; Margjeka, I. (Bari U. ; INFN, Bari) ; Paesani, D. (Bari U. ; INFN, Bari) ; Benussi, L. (Frascati) ; Bianco, S. (Frascati) ; Piccolo, D. (Frascati) ; Meola, S. (Frascati) ; Buontempo, S. (Guglielmo Marconi U. ; U. Rome 2, Tor Vergata (main) ; INFN, Naples) ; Carnevali, F. (Guglielmo Marconi U. ; U. Rome 2, Tor Vergata (main) ; INFN, Naples) ; Lista, L. (Guglielmo Marconi U. ; U. Rome 2, Tor Vergata (main) ; INFN, Naples) ; Paolucci, P. (Guglielmo Marconi U. ; U. Rome 2, Tor Vergata (main) ; INFN, Naples) ; Fienga, F. (Naples U.) ; Braghieri, A. (INFN, Pavia) ; Salvini, P. (INFN, Pavia) ; Montagna, P. (INFN, Pavia) ; Riccardi, C. (INFN, Pavia) ; Vitulo, P. (INFN, Pavia) ; Asilar, E. (Hanyang U.) ; Choi, J. (Hanyang U.) ; Kim, T.J. (Hanyang U.) ; Choi, S.Y. (Korea U.) ; Hong, B. (Korea U.) ; Lee, K.S. (Korea U.) ; Oh, H.Y. (Korea U.) ; Goh, J. (Kyung Hee U.) ; Yu, I. (Sungkyunkwan U.) ; Estrada, C. Uribe (Puebla U., Mexico) ; Pedraza, I. (Puebla U., Mexico) ; Castilla-Valdez, H. (CINVESTAV, IPN) ; Sanchez-Hernandez, A. (CINVESTAV, IPN) ; Fernandez, R.L. (CINVESTAV, IPN) ; Ramirez-Garcia, M. (Iberoamericana U.) ; Vazquez, E. (Iberoamericana U.) ; Shah, M.A. (Iberoamericana U.) ; Zaganidis, N. (Iberoamericana U.) ; Radi, A. (Sultan Qaboos U. ; Ain Shams U., Cairo) ; Hoorani, H. (NCP, Islamabad) ; Muhammad, S. (NCP, Islamabad) ; Ahmad, A. (NCP, Islamabad) ; Asghar, I. (NCP, Islamabad) ; Khan, W.A. (NCP, Islamabad) ; Eysermans, J. (MIT, Cambridge, CTP) ; Da Silva De Araujo, F. Torres (Aachen, Tech. Hochsch.)
Collaboration CMS Muon Group
Publication 2023-06-15
Imprint 2023-02-06
Number of pages 6
In: Nucl. Instrum. Methods Phys. Res., A 1054 (2023) 168449
In: 16th Workshop on Resistive Plate Chambers and Related Detectors (RPC 2022), CERN, Geneva, Switzerland, 26-30 Sep 2022, pp.168449
DOI 10.1016/j.nima.2023.168449 (publication)
Subject category hep-ex ; Particle Physics - Experiment ; physics.ins-det ; Detectors and Experimental Techniques
Accelerator/Facility, Experiment CERN LHC ; CMS
Abstract The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to $2\times 10^{34}$$\text{cm}^{-2}\text{s}^{-1}$ are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future.
Copyright/License preprint: (License: CC BY 4.0)
publication: © 2023-2024 The Author(s) (License: CC BY-NC 4.0)



Corresponding record in: Inspire


 Record creato 2023-04-20, modificato l'ultima volta il 2024-12-23


Testo completo:
2302.02764 - Scarica documentoPDF
Publication - Scarica documentoPDF