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Abstract Quantum entanglement of weak interaction gauge
bosons produced at colliders can be explored by comput-
ing the corresponding polarization density matrix. To this
end, we consider the Higgs boson decays H → WW ∗ and
H → Z Z∗, in which W ∗ and Z∗ are off-shell states, and the
WW , WZ and Z Z di-boson production in proton collisions.
The polarization density matrix of the di-boson state is deter-
mined by the amplitude of the production process and can
be experimentally reconstructed from the angular distribu-
tion of the momenta of the final states into which the gauge
bosons decay. We show that a suitable instance of the Bell
inequality is violated in H → Z Z∗ to a degree that can be
tested at the LHC with future data. The same Bell inequality
is violated in the production of WW and Z Z boson pairs for
invariant masses above 900 GeV and scattering angles close
to π/2 in the center of mass frame. LHC data in this case are
not sufficient to establish the violation of the Bell inequality.
We also analyze the prospects for detecting Bell inequality
violations in di-boson final states at future e+e− and muon
colliders. A further observable that provides a lower bound
on the amount of polarization entanglement in the di-boson
system is computed for each of the examined processes. The
analytic expressions for the polarization density matrices are
presented in full in an Appendix. We also provide the unitary
matrices required in the optimization procedure necessary in
testing the Bell inequalities.

1 Introduction

The most natural way to generate entanglement [1] between
two quantum systems is through their mutual interaction;
any interaction dynamics involving the degrees of freedom
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of both systems is bound to create quantum correlations and
yield detectable effects measurable through suitable quantum
observables.

An instance of such an interaction is high-energy colli-
sions: they give rise to quantum entanglement among the ele-
mentary particles partaking in a scattering process – thereby
providing the possibility to study and test entanglement in
a novel setting. This opportunity has indeed recently drawn
some interest and has been explored in a series of papers [2–
17]. Most of these analyses have focused on distinguishing
quantum mechanics from alternative local and determinis-
tic theories through the exploration of Bell inequalities [18–
22] in the energy range probed at the Large Hadron Col-
lider (LHC). We continue these studies by analyzing possi-
ble quantum correlations in the polarization states of weak
interaction gauge bosons produced at colliders.

Massive gauge bosons act as their own polarimeters and
their spin polarizations can be reconstructed from the angu-
lar distribution of the final leptons or jets (when generated by
down-type quarks). We assume that the polarization density
matrix of the two bosons can be fully reconstructed (albeit
with limited efficiency) from the angular distributions of
their decays into final states. The actual uncertainty affecting
such a reconstruction – as well as the effect of backgrounds,
unfolding and of the detector – can only be estimated through
dedicated numerical simulations.

In the following, we analyze the production of gauge
bosons via the resonant Higgs boson decays H → WW ∗
and H → Z Z∗, where W ∗ and Z∗ denote off-shell states,
and study the WW , WZ and Z Z production proceeding
from proton–proton collisions in a manner reminiscent of the
Drell–Yan mechanism. The density matrix of the di-boson
state is determined analytically for each process from the
corresponding amplitudes and depends on the kinematic vari-
ables characterizing the scattering process. Once the density
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matrix is known, it is possible to test the (Collins–Gisin–
Linden–Massar–Popescu) CGLMP inequality [23,24] – a
Bell inequality optimized for three-level systems as those
describing the polarizations of massive spin-1 particles – on
the available kinematic configurations. We also compute an
observable used as proxy for the entanglement in processes
characterized by massive spin-1 final states. The correspond-
ing operator yields a lower bound for the entanglement of the
two boson system in each of the analyzed cases, thereby serv-
ing as a witness of the entanglement in their polarizations.

We find that the CGLMP inequality is violated in di-boson
Higgs decays and that such a violation in the case H → Z Z∗
case could be tested at the LHC with future data. For the
WW , WZ and Z Z production in proton collisions, instead,
the CGLMP inequality is violated only in the WW and Z Z
channels for invariant masses above 900 GeV and scattering
angles close to π/2 in the center of mass frame. Due to the
small number of events expected in this kinematic region,
it is difficult to assert the CGLMP inequality violation with
sufficient accuracy. A better significance will be achieved at
future lepton colliders, as we also show in the following.

The theoretical uncertainty of our results is at most of
order 10% in the continuum WW , WZ and Z Z Drell–Yan
processes, due to the implied QCD next-to-leading order
(NLO) contributions [25–29]. We checked that uncertain-
ties in the parton distribution functions (PDF) are negligible.
Smaller theoretical uncertainties of order of a few percent
are expected for the WW ∗ and Z Z∗ processes in the reso-
nant Higgs decay region, due to NLO EW corrections. [30]

We estimate the overall uncertainty in the event selection
by considering the efficiency in the identification of the lep-
ton final states and their momenta reconstruction – which
conservatively we take to be 70% for each lepton – and a dis-
tribution of the observables due to uncertainty in the off-shell
gauge boson mass. When W -bosons are in the final states, we
add a systematic error to take into account the intrinsic dif-
ficulty of the physical analysis that requires dedicated algo-
rithms to reconstruct the neutrino momenta. Though naive,
our estimates still indicate the most promising processes for
this kind of studies at the considered collider machines. It is
our hope that this preliminary study encourages the exper-
imental collaborations to assess the power of current and
future machine to probe quantum entanglement through full
simulations. Since our results are analytic and the related
uncertainties, as mentioned, only include a guess on the effi-
ciency of the reconstruction, these numerical simulations are
paramount for a realistic estimate of the uncertainty. Numer-
ical simulations were performed at the parton level in [5] and
[12], for the Higgs boson decays, and in [15] for the di-boson
production from quarks. We compare these numerical results
with ours when discussing our findings.

The polarization of weak gauge bosons has been studied
in the literature in terms of helicity amplitudes [31–39]. Our

approach differs in that we derive the full density matrix of
the di-boson system as required for studying the presence of
entanglement.

The paper is organized as follows. Section 2 introduces
the entanglement witness we utilize, the Bell and CGLMP
inequalities and shows how the polarization density matrix
of interest can be built from the amplitude of the underlying
scattering process. In Sect. 3 we apply our methodology to
two massive gauge bosons originated in a Higgs boson decay.
The entanglement of a di-boson system created at the LHC or
at future colliders is investigated in Sect. 4. We conclude in
Sect. 5 by briefly summarizing our findings. The correlation
coefficients of all the considered density matrices are listed
in Appendix C. These expressions can be useful for future
studies and, to the best of our knowledge, have not been
reported in the literature before.

2 Methods and tools

In this section we introduce the observables used in the
study of entanglement and violation of Bell inequalities. We
also briefly review the calculation of the polarization density
matrix for a system formed by one or two massive gauge
bosons, as well as the procedure to reconstruct it from the
momenta of the leptons emitted in their decay process.

2.1 Observables

We start by discussing quantum correlations in the context
of three-level systems – in short, qutrits – implemented,
for instance, by the possible polarizations of massive gauge
bosons. We use a specific Bell inequality optimized for this
system and a suitable measure of entanglement to probe the
correlations encoded in the polarization density matrix of the
two qutrits.

2.1.1 Entanglement

Quantifying the entanglement content of the state of a quan-
tum system is generally challenging as the complexity of the
problem increases with the system dimensionality [1]. For
pure states – systems described by a vector in the Hilbert
space, or equivalently, by a density matrices that is a pro-
jector – the problem can be addressed by considering their
Schmidt decomposition [1], but already for the simple case
of bipartite systems only partial answers are available. No
general rule is applicable to mixed states, in which case one
can only rely on so-called entanglement witnesses: quanti-
ties that give conditions sufficient to establish the presence of
entanglement in the system. A computable example of such a
witness is connected to concurrence, a reliable entanglement
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measure for bipartite two-level systems – that is, consisting
of two qubits [40,41].

Consider a bipartite quantum system comprising two sub-
systems of equal dimensionality, A and B, described by a
normalized pure state |Ψ 〉 and density matrix |Ψ 〉〈Ψ |. The
concurrence of the system is then defined as [42]

C[|Ψ 〉] =
√

2
(
1 − Tr

[
(ρr )2

])
, r = A or B , (2.1)

where ρr is the reduced density matrix obtained by tracing
over the degrees of freedom of either subsystem: e.g. for
r = A one has ρA = TrB

[|Ψ 〉〈Ψ |]. Any mixed state ρ of the
bipartite system can be decomposed into a set of pure states
{|Ψi 〉},

ρ =
∑
i

pi |Ψi 〉〈Ψi | , pi ≥ 0 ,
∑
i

pi = 1 (2.2)

its concurrence is then defined by means of the concurrence
of the pure states appearing in the decomposition through an
optimization process:

C[ρ] = inf{|Ψ 〉}
∑
i

pi C[|Ψi 〉] , (2.3)

where the infimum is taken over all the possible decomposi-
tions of ρ into pure states. Clearly, for a pure state (2.1) the
concurrence vanishes if and only if the state is separable, that
is: |Ψ 〉 = |ΨA〉 ⊗ |ΨB〉. As the same holds for mixed states
[43], the concurrence appears to be a good entanglement
detector. Unfortunately, the optimization problem appearing
in (2.3) makes the evaluation of the concurrence a very hard
mathematical task with a simple analytic solution only when
A and B are two-level systems. Any approximation or numer-
ical computation of C[ρ] only holds as an upper bound and
thus cannot serve to reliably distinguish between entangled
and separable states, or to give an estimate of a state entan-
glement content.

Lower bounds on C[ρ] for a generic density matrix ρ can
be analytically computed and, if non-vanishing, unequiv-
ocally signal the presence of entanglement. One of these
bounds is easily computable, yielding [44]

(C[ρ])2 ≥ C2[ρ] , (2.4)

where

C2[ρ] = 2 max
(

0, Tr [ρ2] − Tr [(ρA)2], Tr [ρ2] − Tr [(ρB)2]
)
,

(2.5)

with ρA = TrB[ρ] and ρB = TrA[ρ] being the reduced den-
sity matrices. A non-vanishing value of C2 then implies a

concurrence larger than zero, thus witnessing the entangle-
ment of the density matrix ρ.

Interestingly enough, an upper bound for C[ρ] has also
been obtained [45]; explicitly, one finds

(C[ρ])2 ≤ 2 min
(

1 − Tr [(ρA)2], 1 − Tr [(ρB)2]
)
. (2.6)

The maximum value for the concurrence is obtained for a
totally symmetric and maximally entangled pure state. For
two qutrits this is

|Ψ+〉 = 1√
3

3∑
i=1

|i〉 ⊗ |i〉 , (2.7)

with {|i〉} an orthonormal basis in the A- or B-Hilbert space,
resulting in C[|Ψ+〉] = 2/

√
3. Accordingly, C2 is at most

equal to 4/3.
The concurrence lower bound (2.5) will play the role of

entanglement witness in our study of the spin polarization
states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible
to quantify its entanglement by computing the entropy of
entanglement:

E [ρ] = −Tr [ρA log ρA] = −Tr [ρB log ρB], (2.8)

given by the von Neumann entropy [1] of either of the two
component subsystems A or B with reduced density matrix
ρA and ρB , respectively. Whereas the concurrence of a bipar-
tite pure state is only an entanglement monotone, the von
Neumann entropy is a true entanglement measure satisfying
0 ≤ E [ρ] ≤ ln d, where d = 3 for a two-qutrit system. The
first equality holds if and only if the bipartite state is sepa-
rable, the second inequality saturates if the bipartite state is
maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a phys-
ical system that match the results of quantum mechanics for
the averages of relevant system observables. Yet, in view of
the deterministic and locality assumptions, these stochastic
classical models are bound to satisfy a set of inequalities
known as Bell inequalities [18–22], which are instead vio-
lated by the statistical predictions of quantum mechanics.
An experimental determination of any Bell inequality is thus
able to discriminate between these classical local models and
quantum mechanics.

Whereas an essentially unique Bell inequality can be for-
mulated [46–48] in the case of a bipartite system made of
two qubits, different Bell inequalities can be found in the lit-
erature for systems of higher dimensionality. Among these,
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the CGLMP inequality [23,24] is an optimal generalization
of the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again
the two components A and B of the two qutrit system.
For the qutrit A, select two spin measurement settings, Â1

and Â2, which correspond to the projective measurement
of two spin-1 observables having each three possible out-
comes {0, 1, 2}. Similarly, the measurement settings and cor-
responding observables for the other qutrit B are B̂1 and B̂2.
Then, denote by P(Ai = Bj + k) the probability that the
outcome Ai for the measurement of Âi and Bj for the mea-
surement of B̂ j , with i , j either 1 or 2, differ by k modulo 3.
One can then construct the combination:

I3 = P(A1 = B1) + P(B1 = A2 + 1)

+P(A2 = B2) + P(B2 = A1)

−P(A1 = B1 − 1) − P(A1 = B2)

−P(A2 = B2 − 1) − P(B2 = A1 − 1). (2.9)

For deterministic local models, this quantity satisfies the
following generalized Bell inequality,

I3 ≤ 2 , (2.10)

which instead can be violated by computing the above joint
probabilities using the rules of quantum mechanics. Given
a state ρ of the two-qutrit system, the above probabilities
are computed in quantum mechanics as expectation values
of suitable projector operators; for instance, the probability
of the outcome A1 = B1 = 1, when measuring Â1 and B̂1,
is given by P(A1 = B1 = 1) = Tr[ρ (PA1=1 ⊗ PB1=1)],
where e.g.PA1=1 projects onto the subspace of the A-Hilbert
space where Â1 assumes the value 1. Therefore, in quantum
mechanics,I3 in (2.9) can be similarly expressed as an expec-

tation value of a suitable Bell operator B:

I3 = Tr
[
ρ B]. (2.11)

The explicit form of B depends on the choice of the four
measured operators Âi , B̂i , i ∈ {1, 2}. Hence, given the two-
qutrit state ρ, it is possible to enhance the violation of the
Bell inequality (2.10) through a specific choice of these oper-
ators. We remark that the numerical value of the observable
is bound to be less than or equal to 4.

For the case of the maximally entangled state in (2.7),
ρ = |Ψ+〉〈Ψ+|, the problem of finding an optimal choice
of measurements has been solved [23]. By working in the
single spin-1 basis formed by the eigenstates of the S3 spin
operator (A.2) with eigenvalues {1, 0,−1}, the Bell operator
takes the following explicit form (see [49], though there it is
written in the so-called computational basis):

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 0 0 − 2√
3

0 0 0 0 0

0 0 0 0 − 2√
3

0 2 0 0

0 − 2√
3

0 0 0 0 0 0 0

0 0 − 2√
3

0 0 0 − 2√
3

0 0

0 0 0 0 0 0 0 − 2√
3

0

0 0 2 0 − 2√
3

0 0 0 0

0 0 0 0 0 − 2√
3

0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.12)

It should be noticed that, perhaps surprisingly, the maxi-
mal violation of (2.10) obtained withB is for a density matrix
which is not maximally entangled [49], making it evident that
entanglement theory in higher dimensions is rather intricate.

Within the choice of measurements leading to the Bell
operator in (2.12), there is still the freedom of modifying the
measured observables through local unitary transformations,
which effectively corresponds to local changes of basis. Cor-
respondingly, the Bell operator undergoes the change:

B → (U ⊗ V )† · B · (U ⊗ V ) , (2.13)

where U and V are independent three-dimensional unitary
matrices. In the following we make use of this freedom to
maximize the value of I3 for any given density matrix ρ; as
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the gauge boson polarization states depend on the relevant
kinematic variables, this optimization procedure is to be per-
formed independently for each point in phase space. We give
the explicit forms of the matrices that maximize the observ-
able I3 for the processes analyzed as they can be useful in
future numerical simulations.

2.2 Density matrix for one spin-1 particle

Let us start by defining the reference frame we use to describe
the polarization of a spin-1 particle at rest. To this pur-
pose we introduce a set of three orthonormal (three-)vectors,{
n̂, r̂, k̂

}
, forming a right-handed system: n̂ = r̂ × k̂. The

normalized helicity eigenvectors ψ±,0 of the massive spin-1
particle of mass M , corresponding respectively to eigenval-
ues λ = ±1, 0, are

ψ± = − 1√
2

(±n̂ + i r̂
)

and ψ0 = k̂, (2.14)

having chosen the k̂ direction as the direction of quantization.
In order to describe the helicity of the spin-1 particle in

a more general reference frame and in a covariant manner,
we first promote the three basis vectors to four-vectors by
extending them with a null temporal component and then
perform a Lorentz boost along the −k̂ direction. As a result,
in the new frame the spin-1 particle acquires a velocity β =√

1 − M2/E2 along the positive k̂ direction and possesses a
4-momentum pμ = E(1, k̂β), where E is the particle energy
in this frame. By construction, the boosted basis vectors

nμ
1 = (

0, n̂
)
, nμ

2 = (
0, r̂

)
, nμ

3 = E

M
(β, k̂), (2.15)

are orthogonal to the four-vector nμ
0 = E/M(1, k̂β) (pro-

portional to the particle momentum) and with it form
an orthonormal vierbein nμ

m . The label m ∈ {0, 1, 2, 3}
indicates the vector: gμν n

μ
mnν

n = −δmn with gμν =
diag(1,−1,−1,−1) being the Minkowski metric.

The wave vector εμ(p, λ) of a spin-1 particle can then
be expressed in a covariant form as a linear combination of
the three reference vectors

(
nμ

1 , nμ
2 , nμ

3

)
orthogonal to the

particle momentum

εμ(p, λ) = − 1√
2
|λ| (λ nμ

1 + i nμ
2

) +
(

1 − |λ|
)
nμ

3 , (2.16)

giving the standard representation of the spin-1 wave vector
in the helicity λ basis. It can be easily checked that in the par-
ticle rest frame, where (β → 0), the equation above reduces
to Eq. (2.14).

From Eq. (2.16) we can construct the covariant helicity
projector operator of a spin-1 particle with four-momentum
p, mass M and polarization εμ(p, λ) [50,51]

Pμν

λλ′(p) = εμ(p, λ)�εν(p, λ′)

= 1

3

(
−gμν + pμ pν

M2

)
δλλ′

− i

2M
εμναβ pαni β (Si )λλ′ − 1

2
nμ
i n

ν
j

(
Si j

)
λλ′ ,

(2.17)

where Si , i ∈ {1, 2, 3}, are the spin-1 representations1 of the
SU (2) generators and εμναβ is the fully antisymmetric Levi-
Civita tensor with ε0123 = 1. The matrices Si j are defined
as

Si j = Si S j + S j Si − 4

3
1 δi j , (2.19)

with i, j ∈ {1, 2, 3} and 1 being the 3 × 3 unit matrix. The
covariant relation (2.17) can be verified by substituting the
expression for εμ(p, λ) in Eq. (2.16) with nμ

i given as in
Eq. (2.15) and the (Si )λλ′ and (Si j )λλ′ matrix elements as
provided in Appendix Appendix C.

Consider now the probability amplitude M for the pro-
duction of a massive spin-1 particle of momentum p and
helicity λ, given by

M(λ) = Mμεμ�(p, λ). (2.20)

Then, the polarization density matrix of a massive spin-1
particle can be written in the helicity basis as

ρ(λ, λ′) = M(λ)M†(λ′)
| M |2 (2.21)

where the | M |2 = ∑
λ M†(λ)M(λ) is the unpolarized

square amplitude (the sum in Eq. (2.21) over possible internal
degrees of freedom of initial state particles is understood).
By using the expression in Eq. (2.20) we have that

ρ(λ, λ′) = MμM†
ν P

μν

λλ′(p)

| M |2 (2.22)

where the expression for the covariant projector is given in
Eq. (2.17).

The relation above provides a simple way to compute the
polarization density matrix of one massive spin-1 particle
starting from the amplitudes M of the related production
process. As all 3 × 3 matrices, ρ can be decomposed on
the basis formed by the eight Gell–Mann matrices T a (see
Appendix Appendix A) and the unit matrix as follows

ρ(λ, λ′) =
(

1

3
1 +

8∑
a=1

vaT a

)

λλ′
(2.23)

1 Explicit matrix representations are given in Appendix Appendix A
on the basis where the eigenstates of S3 read

|+〉 =
⎛
⎝

1
0
0

⎞
⎠ , |0〉 =

⎛
⎝

0
1
0

⎞
⎠ , |−〉 =

⎛
⎝

0
0
1

⎞
⎠ , (2.18)

corresponding to the eigenvalues +1, 0 and −1, respectively.
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Fig. 1 Unit vectors and
momenta in the CM system for
the weak gauge bosons
production p p → V1V2 as
utilized in the text. Notice the
definition of the scattering angle
and the direction of the unit
vector p̂

where theT a satisfy the orthogonality condition Tr [T aT b] =
2 δab.

The coefficients va , which depend on the kinematic vari-
ables of the process, are scalar quantities and can be easily
obtained by projecting the ρ matrix on the Gell–Mann basis:

va = 1

2
Tr

[
ρ T a] . (2.24)

Expressions for Si and Si j , i, j ∈ {1, 2, 3}, in terms of the
Gell–Mann matrices are given in Appendix Appendix A.

2.3 Density matrix for two spin-1 particles

We first analyze the case of a pair of spin-1 particles with
same mass M , and then generalize the kinematics to the case
of two particles with different masses.

Consider the production of a pair V1V2 via the Drell–Yan
topology initiated by quark–antiquark fusion

q̄(p1) q(p2) → V1(k1, λ1) V2(k2, λ2) (2.25)

where pi are the momenta of initial state quarks and ki and
λi (i ∈ {1, 2}) the four-momenta and helicities of V1 and V2,
respectively. For processes initiated in proton–proton colli-
sions we can assume massless quarks.

Without the loss of generality we choose to work in the
center of mass (CM) frame, where the orientation of the basis
unit vectors {n̂, r̂, k̂} relative to the quark beam is illustrated
in Fig. 1. In this frame, the k̂ direction is taken to coincide
with the axis defined by the three-momenta of the two spin-
one particles produced, with k1 indicating the positive verse.
Then, taking the 3-momentum of the antiquark along the p̂
direction, so that p1 = E(1, p̂) and the scattering angle Θ

matches the angle between the vectors p̂ and n̂. The remain-
ing unit vectors composing the orthogonal {n̂, r̂, k̂} system
are then given by

r̂ = 1

sin Θ

(
p̂ − cos Θk̂

)
, n̂ = 1

sin Θ

(
p̂ × k̂

)
. (2.26)

We define the spin eigenstates for each particle in its own
rest frame as in Eq. (2.14). The corresponding expressions
for the CM frame are then obtained via a Lorentz boost by
−β, for V1, and +β for V2, where β = √

1 − 4 M2/s and s
is the squared of the CM energy. We report below the form
taken in this frame by the initial and final states momenta

pμ
1 = E (1, p̂), pμ

2 = E (1, −p̂), kμ
1 = E (1, βk̂),

kμ
2 = E (1, −βk̂). (2.27)

Given the polarization vectors εμ(k1, λ1) and εν(k2, λ2),
associated respectively with V1 and V2, the correspond-
ing polarization bases nμ

i (1) and nμ
i (2) (i ∈ {1, 2, 3}, cf.

Eqs. (2.16)–(2.15)) are given by

nμ
1 (1) = nμ

1 (2) = (0, n̂), nμ
2 (1) = nμ

2 (2) = (0, r̂),

nμ
3 (1) = γ (β, k̂), nμ

3 (2) = γ (−β, k̂), (2.28)

where γ = 1/
√

1 − β2 is the Lorentz factor. The above vec-
tors satisfy the normalization conditions

nμ
i (1) n j (1)μ = nμ

i (2) n j (2)μ = −δi j ,

nμ
3 (1) n3μ(2) = −γ 2(β2 + 1),

nμ
1 (1) n2(2)μ = nμ

2 (1) n1(2)μ = 0. (2.29)

In case of production of two different gauge bosons, as
well as for the decay of the Higgs boson into a pair of weak
interaction gauge bosons (one necessarily off-shell2), the
above relations generalize as follows.

Let k be the common magnitude of the momenta of the
produced particles in the CM frame,

√
s = E1 + E2 the total

energy in the same frame, M the heaviest mass of the two
spin-1 particles and f M the lightest one, with 0 < f < 1.
The four-vectors k1 and k2 are then given by

kμ
1 = (E1, k k̂), kμ

2 = (E2, −k k̂), (2.30)

2 We model the off-shell particle as an on-shell gauge boson with a
reduced mass for the purpose of computing the amplitude of the process.
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where

k = 1

2
√
s

√
s2 − 2(1 + f 2)s M2 + (1 − f 2)2M4,

E1 =
√
s

2

[
1 + (1 − f 2)

M2

s

]
,

E2 =
√
s

2

[
1 − (1 − f 2)

M2

s

]
, (2.31)

with corresponding velocities β1,2 = k/E1,2. The expres-
sion of the vectors nμ

1,2(1) and nμ
1,2(2) remain the same as in

Eq. (2.28), while here

nμ
3 (1) = γ1 (β1, k̂), nμ

3 (2) = γ2 (−β2, k̂), (2.32)

where γ1,2 = 1/

√
1 − β2

1,2 are the corresponding Lorentz
factors. The normalization conditions remain the same as in
the degenerate case, Eq. (2.29), but with scalar product

nμ
3 (1) n3μ(2) = −γ1γ2 (β1β2 + 1) . (2.33)

Turning now to the computation of the polarization den-
sity matrix for two spin-1 bosons of arbitrary non vanishing
masses, the matrix element M(λ1, λ2) for the related pro-
duction amplitude can be written as

M(λ1, λ2) = Mμνε
μ�(k1, λ1)ε

ν�(k2, λ2). (2.34)

The polarization density matrix is accordingly defined as

ρ(λ1, λ
′
1, λ2, λ

′
2) = M(λ1, λ2)M†(λ′

1, λ
′
2)

| M |2 , (2.35)

where, as usual, | M |2 stands for the unpolarized square
amplitude and a sum over the possible internal degrees of
freedoms of initial state particles is understood.

By using the covariant expression for the spin-1 projectors
Pμν

λλ′(k) defined in Eq. (2.17), we can rewrite the the density
matrix in Eq. (2.35) as

ρ(λ1, λ
′
1, λ2, λ

′
2) =

MμνM†
μ′ν′P

μμ′
λ1λ

′
1
(k1)P

νν′
λ2λ

′
2
(k2)

| M |2 .

(2.36)

In the case at hand, ρ(λ1, λ
′
1, λ2, λ

′
2) can be decomposed

on the basis of the 9 × 9 matrices formed by the tensor prod-
ucts {1⊗1, 1⊗ T a, T a ⊗1, T a ⊗ T b}, with T a again the
3 × 3 Gell–Mann matrices. In particular, we have3

ρ(λ1, λ
′
1, λ2, λ

′
2) =

(1

9
[1 ⊗ 1] +

∑
a

fa
[
T a ⊗ 1

]

+
∑
a

ga
[
1 ⊗ T a] +

∑
ab

hab
[
T a ⊗ T b

] )
λ1λ

′
1λ2λ

′
2

.

(2.37)

3 We use the abbreviation: [A ⊗ B]i i ′ j j ′ = Aii ′ Bj j ′ .

The eight components of fa and ga , as well as the 64 ele-
ments of hab, can be obtained by projecting ρ on the desired
subspace basis via

fa = 1

6
Tr

[
ρ
(
T a ⊗ 1

)]
, ga = 1

6
Tr

[
ρ
(
1 ⊗ T a)] ,

hab = 1

4
Tr

[
ρ
(
T a ⊗ T b

)]
. (2.38)

All the terms computed via Eq. (2.38) are Lorentz scalars
which depend only on the energy E , the velocity β and the
scattering angle Θ in the CM frame.

It is possible to compute the observable quantifying the
entanglement in the gauge boson system once the coefficients
fa , ga and hab are known. The lower boundC2, introduced in
Sect. 2.1 as an entanglement witness, can be written in terms
of the coefficients in Eq. (2.38) as

C2 = 2 max
[

− 2

9
− 12

∑
a

f 2
a + 6

∑
a

g2
a + 4

∑
ab

h2
ab,

− 2

9
− 12

∑
a

g2
a + 6

∑
a

f 2
a + 4

∑
ab

h2
ab, 0

]
,

(2.39)

which is the expression we use throughout this work.
Likewise, the observable I3 can be written in terms of the

coefficients hab as

I3 = 4
(
h44 + h55

)
− 4

√
3

3

[
h61 + h66 + h72 + h77 + h11

+h16 + h22 + h27

]
. (2.40)

Eq. (2.40) is valid prior to performing the unitary rotation in
Eq. (2.13) of theB matrix that maximizes the value of the cor-
responding expectation value. Such a rotation might bring a
dependence also on the coefficients fa and ga , beside chang-
ing the number and the weights of the various coefficients
hab.

2.4 Reconstructing the correlation coefficients from the
data

The actual processes observed at colliders are

p p → V1 + V2 + X → �+�− �+�− (or �± js jc

+Emiss
T ) + jets, (2.41)

with missing energy Emiss
T due to the possible presence of

neutrinos in the final state. These processes include the pro-
duction of the gauge bosons through the resonant Higgs
boson channel, as well as via quark fusion, and include the
consequent decays into the final leptons (for the Zs) or the
jets of interest (for the W s) – plus the jets originating from
X spectator quarks.

The spin 1 gauge bosons act as their own polarimeters.
For instance, in the decay W+ → �+ν� the lepton �+ is
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produced in the positive helicity state while the neutrino ν�

in the negative helicity state. The polarization of the W+ is
therefore measured to be +1 in the direction of the lepton
�+. The opposite holds for the decay W− → �−ν̄� and the
polarization of the W− is therefore measured to be −1 in the
direction of the lepton �−. In both the cases, the momenta
of the final leptons (see Fig. 1) provide a measurement of
the gauge boson polarizations. The same is true for final jets
from d and s quarks. These momenta are the only information
that we need to extract from the numerical simulation or the
actual data.

How do we go about reconstructing the correlation coeffi-
cients hab, fa and ga of the density matrix starting from the
momenta of the final leptons? This problem has been recently
discussed in [15], which we mostly follow in the remainder
of this section.

The cross section we are interested in can be written as
[52]

1

σ

dσ

dΩ+ dΩ− =
(

3

4π

)2

Tr
[
ρV1V2 (Π+ ⊗ Π−)

]
, (2.42)

in which the angular volumes dΩ± = sin θ±dθ± dφ± are
written in terms of the spherical coordinates (with indepen-
dent polar axes) for the momenta of the final charged lep-
tons in the respective rest frames of the decaying particles.
The dependence on the invariant mass mVV and scattering
angle Θ in Eq. (2.42) is implied. The density matrix ρV1V2

in Eq. (2.42) is that for the production of two gauge bosons
given in Eq. (2.37).

The density matrices Π± describe the polarization of the
decaying gauge bosons. The final leptons are taken to be
massless – for their masses are negligible with respect to that
of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These
matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the
z direction and are given, in the Gell–Mann basis, as

Π± = 1

3
1 +

8∑
i=1

qa± T a, (2.43)

where the functions qa± can be written in terms of the
respective spherical coordinates, as reported in Eq. (B.1) of
Appendix Appendix B, for the decay of W -bosons.4

We can define another set of functions

pn± =
∑
m

(m−1± )nm qm± (2.44)

4 The functions in Eq. (B.1), are the Wigner’s Q symbols for the case
of a spin 1 particle.

orthogonal to those in Eq. (B.1):

(
3

4 π

)∫
pn± qm± dΩ± = δnm . (2.45)

In Eq. (B.2), m−1 is the inverse of the matrix

(m±)nm =
(

3

8 π

)∫
qn± qm± dΩ±, (2.46)

which is assumed to exist. The explicit form of the functions
pn± are given in Appendix Appendix B Eq. (B.2).

The functions in Eq. (B.2) can be used to extract the corre-
lation coefficients hab from the bi-differential cross section
in Eq. (2.42) through the projection

hab = 1

σ

∫ ∫
dσ

dΩ+ dΩ− pa+ pb− dΩ+dΩ−. (2.47)

The correlation coefficients fa and ga can be obtained in
similar fashion by projecting the single differential cross sec-
tions:

fa = 1

σ

∫
dσ

dΩ+ pa+ dΩ+,

ga = 1

σ

∫
dσ

dΩ− pa− dΩ−. (2.48)

The density matrices Π± are not projectors in the case of
the Z -bosons because the coupling between Z -bosons and
leptons

L ⊃ −i
g

cos θW

[
gL(1 − γ 5)γμ+gR(1+γ 5)γμ

]
Zμ (2.49)

contains both right- and left-handed components, whose
strengths are controlled by the coefficients gL = −1/2 +
sin2 θW and gR = sin2 θW , where θW is the Weinberg angle.
In this case, one must introduce a generalized form of the
functions in Eq. (B.1) which is defined as the following lin-
ear combinations

q̃n = 1

g2
R + g2

L

[
g2
R q

n+ + g2
L q

n−
]
, (2.50)

and define from these the corresponding orthogonal functions
p̃n to be used in Eq. (2.38). They are the same for both the ±
coordinate sets and given by

p̃n =
∑
m

anmp
m+, (2.51)

where the matrixanm is given in Eq. (B.3) in Appendix Appendix
B. The Eqs. (2.47)–(2.48) can be used after replacing the
functions pm± with p̃n and including a symmetry factor of 1/2
for the fa and ga coefficients and 1/4 for the hab in the case
of identical final states, namely for the Z Z case.
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Equations (2.47)–(2.48) provide the means to reconstruct
the correlation functions of the density matrix from the dis-
tribution of the lepton momenta and thus allow to infer the
expectation values of the observablesI3 andC2 from the data.
In a numerical simulation, or working with actual events, one
extracts from each single event the coefficient of the combi-
nations of trigonometric functions indicated in Eq. (B.2) in
Appendix B; that coefficient is the corresponding entry of the
correlation matrix in Eqs. (2.47)–(2.48). Running this proce-
dure over all events gives an average value and its standard
deviation.

The analysis outlined in this section is experimentally
rather challenging because both the CM frame of the collision
and the rest frame of the gauge bosons must be determined as
precisely as possible to compute the correlation coefficients
hab, fa and ga with reasonable uncertainties.

2.5 Estimating the uncertainty

We model the uncertainty in the value of our observables as a
Gaussian dispersion – controlled by the number of events – in
the determination of the kinematical variables. The number
of events is modulated by the efficiency in the identification
of the final charged leptons or jets.

To this random error, we add, in the case of the WW final
states, a systematic error that takes into account the signif-
icant uncertainty in the reconstruction of the gauge boson
momentum from the missing momentum of the neutrinos.
This reconstruction comes from the kinematical constraints
together with dedicated algorithms. Estimates show that the
distribution of the differences between the true and the recon-
structed momentum over the true momentum has a standard
deviation ranging from 30%, for simple kinematical recon-
structions with smearing effects of the detector, to 3% in more
advanced machine learning algorithms (see, for instance,
[53–57]). We take for this uncertainty a conservative bench-
mark value of 30% (and show for the WW continuum how
the determination changes for a smaller value) and add it in
quadrature to the Gaussian error coming from the number of
available events.

We run from 1000 (Higgs decay) to 10,000 (Drell–Yan-
like production) pseudo experiments as we vary the kinemati-
cal variables and compute for each of these values the observ-
able I3. The distribution so obtained is skewed because the
observable is computed near its maximum value and the ran-
dom variation can only reduce this value.

The significance of the violation of the Bell inequality can
be defined as Z = Φ−1(1 − p) where

Φ(x) = 1

2

[
1 + erf

(
x√
2

)]
, (2.52)

and the p-value p refers to the null hypothesis that the Bell
inequality is not violated. The value of Z assigns a statistical
significance to the separation between the distribution we
obtain for the values of I3 and the value 2, above which the
Bell identity is violated.

Values of the significance larger than 5 requires a very
large number of pseudo experiments to be performed in order
to find the actual value. For this reason, when this is the case,
we do an extrapolation and quote a lower bound.

3 Di-boson production in Higgs boson decays

Consider the decay

H → V (k1, λ1) V
∗(k2, λ2), (3.1)

with V ∈ {W, Z}, and V ∗ regarded as an off-shell vector
boson. The corresponding Feynman diagrams are provided
in Fig. 2. In the following, we treat the latter as an on-shell
particle characterized by a mass

MV ∗ = f MV (3.2)

reduced by a factor 0 < f < 1 with respect to the original
mass MV . The amplitude of the Higgs boson decay (3.1) is
given by

MH (λ1, λ2) = g MV ξV gμνε
μ�(k1, λ1)ε

ν�(k2, λ2), (3.3)

where g is the weak coupling, ξW = 1, and ξZ = 1/(2cW ),
with cW = cos θW . From the amplitude in Eq. (3.3) we obtain

MH (λ1, λ2)MH (λ′
1, λ

′
2)

† = g2 M2
V ξ2

V gμνgμ′ν′

×Pμμ′
λ1λ

′
1
(k1)P

νν′
λ2λ

′
2
(k2). (3.4)

where Pμν

λλ′(k) is given in Eq. (2.17) with M = MV or
M = M∗

V for the on-shell and off-shell boson, respectively.
Following the procedure explained in Sect. 2.3 for a CM

energy
√
s = mH , we obtain the coefficients fa , ga , and hab

(a, b ∈ {1, . . . , 8}) reported below. There is no dependence
on the scattering angle Θ because we are considering the
decay of the Higgs boson at rest.

The non-vanishing fa elements are

f3 = 1

6

−m4
H + 2(1 + f 2)m2

HM2
V − (1 − f 2)2M4

V

m4
H − 2(1 + f 2)m2

HM2
V + (1 + 10 f 2 + f 4)M4

V

,

f8 = − 1√
3
f3, (3.5)

and we find ga = fa for a ∈ {1, . . . , 8}. The non-vanishing
hab elements are
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Fig. 2 Feynman diagrams for
the decay of the Higgs boson
into a pair of gauge bosons

h16 = h61 = h27 = h72

=
f M2

V

[
− m2

H + (1 + f 2)M2
V

]

m4
H − 2(1 + f 2)m2

H M2
V + (1 + 10 f 2 + f 4)M4

V

,

h33 = 1

4

[
m2

H − (1 + f 2)M2
V

]2

m4
H − 2(1 + f 2)m2

H M2
V + (1 + 10 f 2 + f 4)M4

V

,

h38 = h83 = − 1

4
√

3

h44 = h55 = 2 f 2M4
V

m4
H − 2(1 + f 2)m2

HM2
V + (1 + 10 f 2 + f 4)M4

V

,

h88 = 1

12

m4
H − 2(1 + f 2)m2

H M2
V + (1 − 14 f 2 + f 4)M4

V

m4
H − 2(1 + f 2)m2

HM2
V + (1 + 10 f 2 + f 4)M4

V

,

(3.6)

The unpolarized squared amplitude | M |2 of the process
instead reads

| M H |2 = g2ξ2
V

4 f 2M2
V

[
m4

H − 2(1 + f 2)m2
HM2

V

+(1 + 10 f 2 + f 4)M4
V

]
. (3.7)

The main theoretical uncertainty affecting the correlation
coefficients in Eq. (3.6) is due to higher order corrections
to the tree-level values. To estimate the size of these contri-
butions, we take as guidance the results in [30] – in which
the NLO EW corrections have been computed. According
to these results, we expect the error induced by these miss-
ing corrections yields at most a few percent of uncertainty
on the main entanglement observables, in the relevant kine-
matic regions in which one of the two EW gauge boson are
on-shell [30]. This expectation is based on the fact that these
corrections give a 1–2% effect on the total width [30].

We then compute through Eq. (2.37) the polarization den-
sity matrix ρH for the two vector bosons emitted in the decay
of the Higgs boson

ρH = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 h44 0 h16 0 h44 0
0 0 0 0 0 0 0 0 0
0 0 h16 0 2 h33 0 h16 0 0
0 0 0 0 0 0 0 0 0
0 0 h44 0 h16 0 h44 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.8)

with the condition Tr [ρH ] = 1 following from the relation
4(h33 + h44) = 1.

We remark that although some fa and ga are non vanish-
ing, the dependence of ρH on these quantities cancels in the
final expression. Furthermore, due to the following identity
among the correlation coefficients

h44 = 2
(
h2

16 + 2h2
44

)
, (3.9)

the above polarization density matrix is idempotent

ρ2
H = ρH , (3.10)

signaling that the final VV ∗ state is a pure state. The density
matrix in Eq. (3.8) can then be written [12]

ρH = |ΨH 〉〈ΨH |, (3.11)

where (in the basis |λ λ′〉 = |λ〉⊗|λ′〉 with λ, λ′ ∈ {+, 0,−})

|ΨH 〉 = 1√
2 + �2

[|+−〉 − � |0 0〉 + |−+〉] (3.12)

with

� = 1 + m2
H − (1 + f )2M2

V

2 f M2
V

(3.13)

and � = 1 corresponding to the production of two gauge
bosons at rest.

Because the di-boson system is described by a pure state,
we can measure its entanglement through the entropy of
entanglement defined in Eq. (2.8). This quantity is plotted
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Fig. 3 The entropy of entanglement (left plot for H → WW ∗ and right plot for H → Z Z∗) as functions of the virtual mass of one of the two
weak gauge bosons. The dashed line marks the maximum value log 3

Fig. 4 The observables I3 (left plot) and C2 (right plot) for the pair
production of W bosons in Higgs boson decays as functions of the vir-
tual W ∗ mass in the range 0 < MW ∗ < 40 GeV. The dashed horizontal

line in the left-hand side plot marks the Bell-inequality violation con-
dition I3 > 2. The dashed line in the right-hand side plot illustrates for
the maximum value 4/3 corresponding to a pure state

in Fig. 3 as a function of the of the mass of virtual W or
Z boson and reaches the theoretical maximum at the kine-
matic threshold, signaling a maximally entangled state. The
dependence of the polarization entanglement on the mass of
the virtual state is due the contribution of the longitudinal
polarization, the coefficient � in Eq. (3.12): it starts out big-
ger and decreases to 1 at the threshold. The value of 1 yields
a singlet state and the maximum in the entanglement of the
state.

In Figs. 4 and 5 we show the results for the main observ-
ables targeting quantum entanglement, I3 (left panel) and
C2 (right panel), in the H → WW ∗ and H → Z Z∗ decays.
The plots are for different values of the virtual gauge boson
masses MW ∗ and MZ∗ , respectively.

The maximization of the I3 observable, which depends
in this case only on the M∗

V mass, is obtained through the
rotation

B → (UV ⊗ VV )† · B · (UV ⊗ VV ), (3.14)

by unitary matrices UV , VV (with index V ∈ {W, Z}), as
defined in Sect. 2.1. The maximization must be performed
point by point as the density matrix varies with M∗

V .
We provide in Eqs. (3.15)–(3.16) the expressions for the

unitary matricesU andV that maximizes theI3 observable in
the last bins (in which MW ∗ = 40 GeV and MZ∗ = 32 GeV)
for the H → WW ∗ and H → Z Z∗ decays, respectively.
For the WW channel, we find

UW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4

11
+ i

14

1

6
+ 9i

13

3

5
+ i

14

−1

9
− 6i

7
0

1

10
+ i

2

4

11
+ i

12
−1

7
− 7i

10

3

5
+ i

10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Fig. 5 The observables I3 (left plot) and C2 (right plot) for the pair
production of Z bosons in Higgs boson decays as functions of the vir-
tual Z∗ mass in the range 0 < MZ∗ < 32 GeV. The dashed horizontal

line in the left plot stands for the Bell-inequality violation condition
I3 > 2. The dashed line in the right plot denotes the maximum value
4/3 corresponding to a pure state

VW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

7
− 7i

12
− 7

10
− i

10
−1

9
− 6i

17

11

21
+ i

17
0 −6

7
− i

26

−1

8
− 3i

5

7

10
+ i

8
− 1

10
− 5i

14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.15)

while for the Z Z channel

UZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

2
+ 3i

11

7

13
+ 5i

11

4

13
− 3i

10

−1

2
+ 3i

8
0 −15

31
+ 5i

8

−1

5
+ 10i

19
−5

7
+ 1

22
− 3i

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

VZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

7
+ 5i

12

7

11
+ 2i

7

1

25
− 5i

9

2

11
+ 10i

13
0

2

7
+ 6i

11

1

6
+ 2i

5
−11

16
+ i

5
−1

3
− 4i

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.16)

The matrices in Eqs. (3.15) and (3.16) are given in terms of
rational numbers which approximate the corresponding real
values with a 1% precision. The unitary condition is satisfied
barring O(10−2) factors. These matrices cannot be directly
compared with the similar expressions given in [12] because
of the different assumptions in the utilized optimization pro-
cedure.

TheC2 observable admits here a simple analytical expres-
sion

Table 1 Number of expected events for the Higgs boson decays into
WW ∗ and Z Z∗ assuming a luminosity L = 140 fb−1 for the run2 at
the LHC. The cut in invariant mass is at 30 and 40 GeV respectively for
the WW and Z Z channels. A benchmark efficiency of 70% is assumed
in the identification of each charged lepton

�+ν� js jc �−�+�−�+

LHC run2 (L = 140 fb−1) 3718 28

Hi-Lumi (L = 3 ab−1) 8.0 × 104 589

C2 =
32 f 2M4

V

[
m4

H−2(1+ f 2)m2
HM2

V+(1+4 f 2+ f 4)M4
V

]

[
m4

H−2(1+ f 2)m2
HM2

V+(1 + 10 f 2 + f 4)M4
V

]2 .

(3.17)

The plots on the right-hand side in Figs. 4 and 5 nicely show
that the value of C2 decreases as the pure state in Eq. (3.8)
becomes less and less entangled, for decreasing values of
M∗

V .

3.1 Events and sensitivity

In order to evaluate the sensitivity of current experiments to
the observablesI3 andC2, we estimate the number of suitable
events available. These are given in Table 1 for the run2 at
the LHC.

The cross sections for p p → H → W+�−ν̄� and p p →
H → Z�+�− utilized in the estimates are computed with
MADGRAPH5 [58] at the LO and then corrected by the κ-
factor given at the N3LO+N3LL [59].

Even the definition of the rest frame of one decaying
W -boson introduces an essential uncertainty because of the
ambiguity in the reconstruction of the longitudinal momen-
tum of the neutrino and the possibility of misidentifications
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(and other errors) in the identification of the missing momen-
tum. There is no such a problem in the case of the Z -boson
decay which may though suffer of other generic inefficien-
cies. In the case of the Higgs boson decay into twoW -bosons,
the problem is exacerbated: the full reconstruction is not pos-
sible even in principle because there are more variables than
constraints (since one of the masses of the gauge bosons is
necessarily off-shell and the missing transverse momentum
includes both neutrinos).

The problem of actually estimating the size of these uncer-
tainties (for a given choice of an algorithm for the neutrino
momenta reconstruction) is the central problem of any phys-
ical analysis from the actual or simulated data of the process
and cannot be resolved here.

We take into account the problem of these irreducible
uncertainties in the evaluation of the operators in the decays
of the WW ∗ by introducing a systematic error that mimics
the significant uncertainty in the reconstruction of the neu-
trino momenta, which has to come from a dedicated algo-
rithm (see, for instance, [53,54,56,57]). Since the uncertainty
would be dominated by the error in the reconstruction of
the two neutrino momenta, it is better to consider the semi-
leptonic decay H → j j�ν� and use the momentum from the
s-quark jet (s-jet)–identified via the c-tagging of the com-
panion jet–to measure the polarization of one of the two W -
bosons. It has been shown that the efficiency of the jet tagging
and the decreased uncertainty in the single neutrino momen-
tum may improve the polarization reconstruction [60]. In this
case, we take a conservative benchmark value of 0.3 for the
systematic error in the single neutrino momentum and an
overall efficiency of 40% in the c-jet tagging and the identi-
fication of the momentum associated to the s-jet that carries
(by the same degree as the charged lepton in leptonic decays)
the polarization of the W .

In addition we include an efficiency factor of 70% in the
identification of each charged lepton [61].

The irreducible background for the H → W+�−ν̄� sig-
nal comes from the continuum electroweak production of
W+W− pairs. It can be reduced by considering the charac-
teristic distribution of the kinematical variables to a man-
ageable size [60,62,63]. In addition, one has to remove the
reducible background events from t t̄ and Wt production.
The irreducible background for the H → Z�+�− signal
is rather small and dominated by the electroweak process
pp → Z Z/Zγ → 4�, which is about 4 times smaller at
the Higgs peak [64,65]. We neglect all backgrounds in our
assessment of the significance even though they will have
to be included in the actual analysis from the data and will
affect the uncertainty.

To show the impact of possible irreducible backgrounds
we show in Fig. 6 the values for I3 and C2 found as a generic
factorizable density matrix is added with weight (1 − α)

to that of the H → WW ∗ process, which is accordingly

multiplied by a factor α (with α between 0 and 1). For the
case shown in Fig. 6, for values of α smaller than 0.7, the
uncertainty substantially reduce the possibility of assessing
the Bell inequality violation.

We run 1000 pseudo experiments as we vary the invariant
mass of the off-shell gauge boson around the mean value with
a dispersion given by the (statistical and systematic) uncer-
tainty as discussed above, and compute the observable I3.
Figures 7 and 8 show the distributions which are obtained
for, respectively, LHC run 2 and Hi-Lumi. The distributions
are skewed because the observable is computed near its max-
imum value and the random variation can only reduce this
value .

Figure 6 shows that, at the LHC run 2, the significance for
rejecting the null hypothesis I3 ≤ 2 is 1 for the WW ∗ case
and 1.3 for the Z Z∗ case. Figure 8 shows that, at the LHC
Hi-Lumi, the significance for rejecting the null hypothesis
I3 ≤ 2 remains 1 for the WW ∗ case, since the uncertainty
is dominated by the statistical error, while it reaches 5.6 for
the Z Z∗ case. These significances are likely to decrease in a
more complete analysis based on a full simulation because of
the reconstruction from the final lepton angular distributions
and the systematic uncertainties of the unfolding, which is
particular severe for the W+W− case due to the presence of
neutrinos and background events.

Our results confirm the numerical simulations presented in
[5] for the H → WW ∗ process and in [12] for the H → Z Z∗
case. These works estimate the uncertainties from a parton-
level reconstruction of the final lepton angular distributions.
Yet, a fully realistic estimate of the uncertainty is still missing
as uncertainties due to detector unfolding and background
have not been modeled.

4 Di-boson production via quark fusion

Final WW , Z Z , and WZ states can be produced via elec-
troweak processes in a continuous range of di-boson invariant
masses. We show in the following how the polarization den-
sity matrix of the di-boson system can be computed starting
from the density matrices obtained for the involved parton
contributions, presented in Fig. 9 for the processes at hand.
For the sake of simplicity, when possible we leave implicit
the dependence of the correlation coefficients hab(mVV ,Θ),
ga(mVV ,Θ) and fa(mVV ,Θ) on the scattering angle Θ in the
CM frame and on the invariant mass of the bosons mVV .

The polarization density matrix ρ for two bosons produced
in proton collisions is given by the convex combination of
the density matrices of the involved parton contributions.
Given initial state quarks q1 and q̄2, we compute through
Eq. (2.37) the polarization density matrix ρq1q̄2 of the parton
contribution, from the scattering amplitude of the process
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Fig. 6 Distribution of the events at the LHC run 2 for the H → W+�−ν̄� and H → Z�+�− processes.The set of events for WW ∗ has mean value
I3 = 2.4, that for Z Z∗ has mean value I3 = 2.5. The threshold value of 2 for Bell inequality violation is shown as a dashed red line

Fig. 7 Distribution of the events at the LHC Hi-Lumi for the H → W+�−ν̄� and H → Z�+�− processes. The set of events for WW ∗ has mean
value I3 = 2.5, that for Z Z∗ has mean value I3 = 2.9. The threshold value of 2 for Bell inequality violation is shown as a dashed red line

Fig. 8 Effect of the background events on I3 and C2 the signal H → WW ∗. For α = 1 the background-free result is reproduced. For values
α < 0.7 the mixing of the background to the signal decreases the entanglement beyond the possibility of assessing Bell inequality violation
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Fig. 9 Feynman diagrams for the processes p p → W+W− (first
row), p p → Z Z (second row) and p p → W+Z (third row) at the
parton level for the first quark generation. We neglect diagrams medi-

ated by the Higgs boson considering the limit of massless quarks. The
arrows on the fermion lines indicate the momentum flow

123



  823 Page 16 of 37 Eur. Phys. J. C           (2023) 83:823 

Fig. 10 Parton luminosity functions as functions of the invariant mass

q1 q̄2 → V1V2, V1, V2 ∈ {W, Z}. Then,

ρ =
∑

{q1q̄2}
wq1q̄2 ρq1q̄2 (4.1)

where the sum runs over all the allowed initial states,
including both the configurations where the anti-quark orig-
inates from either proton.5 The coefficients wq1q̄2 , satisfying∑

{q1,q̄2} wq1q̄2 = 1, are given by

wq1q̄2 = Lq1q̄1 | M q1q̄2
V1V2

|2
∑

{q1q̄2} Lq1q̄1 | M q1q̄2
V1V2

|2
(4.3)

and depend on the unpolarized squared amplitude of the par-

ton process, | M q1,q̄2
V1V2

|2, as well as on the parton luminosity
of the initial q1q̄2 state

Lq1q̄1(τ ) = 4τ√
s

1/τ∫

τ

dz

z
qq1(τ z) qq̄2

(
τ

z

)
. (4.4)

In the formula above q j (x) is the parton distribution func-
tion (PDF) of the parton j and τ = mVV/

√
s. We utilized

the numerical values provided by the recent (PDF4LHC21)
release [66] for

√
s = 13 TeV and factorization scale mVV

(see Fig. 10).
As an example, for the W boson pair production we find

hab[mVV ,Θ]

=
∑

q=u,d,s L
qq̄(τ )

(
h̃qq̄ab [mVV ,Θ]+h̃qq̄ab [mVV ,Θ+π ]

)

∑
q=u,d,s L

qq̄(τ )
(
Aqq̄ [mVV ,Θ]+Aqq̄ [mVV ,Θ+π ]

)

(4.5)

5 The kinematics of di-boson production is such that for each pair of
these ‘specular’ configurations it holds

ρq̄2q1 (Θ) = ρq1q̄2 (Θ + π), (4.2)

where the ordering of the quark fields symbolically tracks the proton
of origin.

where we introduced the abbreviations Aqq̄ = | M qq̄
WW |2

and h̃ab = Aqq̄hab. Similar results hold for the remain-
ing correlation coefficients fa and ga , a ∈ {1, . . . , 8}. The
explicit expressions of h̃ab, f̃a = Aqq̄ fa , g̃a = Aqq̄ ga for all
the analyzed processes are collected in Appendix C.

The main source of theoretical uncertainty in the deter-
mination of the correlation coefficients comes from higher
order QCD corrections. Taking as a guidance the results in
[25–29], we assume that the error induced by these miss-
ing corrections yields approximately a 10% uncertainty on
the main entanglement observables in the relevant kinematic
regions. The theoretical uncertainties coming from the PDFs
and the top-quark mass are negligible: by comparing results
obtained with two different set of PDFs, we estimate the
related uncertainty to be of the order of per mille. This is due
to the fact that only ratios of PDFs enter in Eq. (4.5) for the
hab coefficients, and analogously for the ga and fa ones, and
therefore most of the PDF uncertainty cancels out.

This is of the same order as the uncertainty due to the
top-quark mass, obtained by varying the parameter around
its experimental value at most by two standard deviations.

In the following, we present our results for the entangle-
ment observables for the WW , WZ and Z Z cases separately.

Our results differ from those presented in [15], obtained
through a parton-level numerical simulation. In particular,
we find substantially lower values for the observable I3 in
the W+Z process, larger for the W+W− and Z Z , and a
general reduction of all C2 values. Since the results in [15]
come without an estimate of the uncertainty, the comparison
is not straightforward;6 dedicated work is needed to fully
understand the origin of these discrepancies.

4.1 p p → W+W−

The tree-level Feynman diagrams contributing to the process

q̄(p1)q(p2) → W+(k1, λ1)W
−(k2, λ2), (4.6)

at the parton level are shown in the top part of Fig. 9.
The polarization vectors of W+ and W− are εμ(k1, λ1) and
εν(k2, λ2), respectively.

The polarized amplitude for the process in Eq. (4.6), for
u and ū initial states, is given by

Muū
WW (λ1, λ2) = −ie2

[
v̄(p1)Γ

WW
μν u(p2)

]
εμ(k1, λ1)

�

×εν(k2, λ2)
�, (4.7)

where the effective vertex Γ WW
αβ is

6 A revised version of [15] has since appeared and it now agrees with
our estimates.
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Γ WW
μν = 1

s

(
γ α ḡqV − γ αγ5ḡ

q
A

)
Vανμ(q,−k2,−k1)

+ 1

4ts2
W

γν

(
/p2 − /k1

)
γμ(1 − γ5), (4.8)

with sW = sin θW and e being the unit of electric charge. The
effective couplings ḡqV,A are given by

ḡqV = Qq + gqVχ

s2
W

, ḡqA = gqAχ

s2
W

, χ = s

2(s − M2
Z )

, (4.9)

where gqV = T q
3 − 2Qqs2

W , gqA = T q
3 and T q

3 and Qq are
the isospin and electric charge (in unit of e) of the quark q.
The χ term in Eq. (4.9), which weights the contribution of
the virtual Z channel, is real since we neglect the Z width
contribution. The function Vανμ(k1, k2, k3) is the Feynman
rule of the trilinear vertex Vα(k1) W+

ν (k2) W−
μ (k3), V ∈

{γ, Z}, given by

Vανμ(k1, k2, k3) = (k1 − k2)μgαν + (k2 − k3)αgμν

+(k3 − k1)νgαμ, (4.10)

for incoming momenta (k1 + k2 + k3 = 0). The Mandelstam
variables are defined as

s = (p1 + p2)
2, t = (p2 − k1)

2, u = (p1 − k2)
2.

(4.11)

From the amplitude in Eq. (4.7), summing over the spin
of quarks we obtain

Muū
WW (λ1, λ2)

[
Muū

WW (λ′
1, λ

′
2)
]†

= Tr
[
Γ̄ WW

μν /p1 Γ WW
μ′ν′ /p2

]
Pμμ′

λ1λ
′
1
(k1)P

νν′
λ2λ

′
2
(k2), (4.12)

where Γ̄μν = γ0(Γμν)
†γ0 and the projector Pμν

λλ′(k) is given
in Eq. (2.17) with M = MW .

The unpolarized square amplitude for the process u ū →
W+W− is given by

∣∣∣ M uū
WW

∣∣∣
2 = 4 fWW

(1 − β2
W )2DWW

{
4 + 16cΘβW + β2

W

[
9

+11c2
Θ + 4βWcΘ(1 − c2

Θ)

−4β3
WcΘ(3 + c2

Θ) + β4
W (1 − 5c2

Θ) − 2β2
W

×(5 + 3c2
Θ + 2c4

Θ)
] + 2βW (1 + β2

W + 2βWcΘ)

×
[

− 8cΘ + βW

[ − 19 + 3c2
Θ + 2β2

W (9 − c2
Θ)

+3β4
W (c2

Θ − 1) + 2βWcΘ(c2
Θ − 1)

+2β3
WcΘ(3 + c2

Θ)
]](

ḡuA + ḡuV
)
s2
W

+2β2
W (1 + β2

W + 2βWcΘ)2[19 − 3c2
Θ + 2β2

W

×(c2
Θ − 9) + 3β4

W (1 − c2
Θ)

](
ḡu2
A + ḡu2

V

)
s4
W

]}

(4.13)

with

fWW = 4π2α2Nc

s4
WDWW

, and DWW = 1 + β2
W + 2βWcΘ,

(4.14)

where Nc = 3, cΘ = cos Θ , βW =
√

1 − 4M2
W /m2

WW , mWW

is the invariant mass of the W pair and we chose Θ as the
angle between the anti-quark and W+ momenta in the CM
frame. Our convention for the polarization density matrix is
that the W+ momentum defines the k̂ unit vector of the basis
in Eq. (2.26).

The result for the dd̄ → W+W− process follows from
Eqs. (4.12)–(4.13) through the substitutions

ḡuV → −ḡdV , ḡuA → −ḡdA, βW → −βW , (4.15)

with the angle Θ being defined as before by the anti-quark
and W+ momenta. The contribution of strange quark initial
states equals that of d quarks in the considered massless limit.

The Eq. (4.12) (together with the corresponding ones for
dd̄ and ss̄ processes) makes it possible to compute the unnor-
malized correlation coefficients f̃a , g̃a , and h̃ab of the density
matrix for the process at hand (given in Appendix Appendix
C) and consequently, the value of the operators I3 and C2.
As explained in Sect. 2.1, for the observable I3 we find at
each point in the kinematic space the unitary matrices U and
V that maximize the violation of Bell inequalities.

The results obtained for the two observables of interest
are shown in Fig. 11, as functions of the kinematic variables.
We observe that the violation of the Bell inequalities takes
place only in a limited range of the kinematic variables. The
bin in which I3 > 2 is indicated by the hatched area in first
plot of Fig. 11. The matrices maximizing the Bell observable
are given by

UW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

50
− 5i

9
−1

6
+ 3i

7
− 1

13
+ 9i

13

1

4
− 4i

7

2

9
− 5i

7

1

5
+ i

12

2

5
− 2i

5
−1

9
+ 4i

9

1

3
− 3i

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

VW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1

16
− 4i

7
− 2

11
+ 3i

7
−1

8
+ 2i

3

− 2

13
+ 3i

5
− 3

11
+ 5i

7
−1

5
− i

13

1

3
− 4i

9
−1

8
+ 3i

7

3

8
− 3i

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.16)

with a precision of 1% with respect to the numerical solutions
we found. Accordingly, unitarity is satisfied barring O(10−2)
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Fig. 11 The observables I3 (left plot) and C2 (right plot) for the process p p → W+W− as functions of the invariant mass and scattering angle.
The hatched area in the plot on the left represents the bin used as reference for our estimate of the significance

terms. These expressions might be useful in a future simula-
tion of the process.

The observable C2 follows roughly the pattern of I3 and
reaches the largest values in the upper-left quadrant, thus
witnessing the presence of states more entangled than in the
rest of the kinematic space. This feature can be made manifest
by considering the density matrix of the process. For instance,
at mWW = 900 GeV and cos Θ = 0, the polarization density
matrix for theW+W− states can be approximated up to terms
O(10−3) by the following combination of pure state density
matrices

ρ = α |Ψ+−〉〈Ψ+−| + β |Ψ+− 0〉〈Ψ+− 0| + γ |00〉〈00|
+δ |Ψ0 −〉〈Ψ0 −| (4.17)

with decreasing weights: α  0.72, β  0.18, γ  0.07 and
δ  0.02; the normalization condition α + β + γ + δ = 1
is satisfied within the adopted approximation. The involved
pure states are

|Ψ+−〉 = 1√
2

(| + +〉 − | − −〉)

|Ψ0 −〉 = 1√
2

(|0 −〉 + | − 0〉)

|Ψ+− 0〉 = 1√
3

(| + +〉 − | − −〉 + |0 0〉) (4.18)

where |a b〉 = |a〉⊗ |b〉 with a, b ∈ {+, 0, −} are the polar-
ization states of the two W gauge bosons at rest in the sin-
gle spin-1 basis. Though the dominant contribution in (4.17)
comes from the entangled pure state |Ψ+−〉 – a result that
justifies the high value of C2 – the actual density matrix ρ

Table 2 Number of expected events in the kinematic region mWW >

500 GeV and cos Θ < 0.25 at the LHC with
√
s = 13 TeV and lumi-

nosity L =140 fb−1 (run2) and luminosity L = 3 ab−1 (Hi-lumi). A
benchmark efficiency of 0.70 is assumed for the identification of each
lepton

(Run2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 288 6145

describes a mixture, even more so if the discarded O(10−3)

terms were included. This feature explains why the corre-
sponding value of C2, in this corner of the kinematic space,
is large but far from maximal.

4.1.1 Events and sensitivity

Having identified the best region to test the data, we estimate
the corresponding number of events expected at the LHC.
This is given in Table 2, where the cross sections needed for
the estimates were computed with MADGRAPH5 [58] at the
LO and then correcting by the κ-factor given at the NNLO
[67,68]. This is a good approximation, since there is little
variation in the k-factors in the range of WW , Z Z , WZ
invariant masses between 200 and 800 GeV [67,68] – which
is the one we consider. We reduce the number of events thus
found by the efficiency in the identification of the final lep-
tons – which we take conservatively to be 70% for each lepton
[61]. We consider semi-leptonic decays of the W and proceed
as explained in Sect. 3.

Though there are irreducible background events from the
H → W+W− decay, they are few in the cos Θ ≤ 0.25
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Fig. 12 Distribution of the events of the W+W− process at the LHC run 2 (left) and Hi-lumi (right). The events have mean value I3 = 2.1 in both
instances. The threshold value of 2 for Bell inequality violation is shown as a dashed red line

Fig. 13 Distribution of the events of the W+W− process at the LHC
run 2 for a systematic uncertainty of 0.1. The events have mean value
I3 = 2.23. The threshold value of 2 for Bell inequality violation is
shown as a dashed red line

bin where the observable is to be estimated. Events of the
reducible background, coming from t t̄ and Wt production,
must be selected out.

We run 104 pseudo experiments as we vary the invari-
ant mass and the scattering angle around the mean value
with a dispersion given by the (statistical and systematic)
uncertainty as discussed in the previous section, and compute
the observable I3. Figure 12 shows the distribution which is
obtained for LHC run2 and Hi-Lumi. The distributions are
skewed because the observable is computed near its maxi-
mum value and the random variation can only reduce this
value.

We find that run2 yields a significance of 0.8 for reject-
ing the null hypothesis I3 ≤ 2 (see Fig. 12) which remains
about the same at Hi-Lumi because the uncertainty is domi-
nated by the systematic error. Figure 13 shows how the dis-
tribution of the pseudo-experiment changes as the systematic
error is decreased to 0.1. In the latter case, the significance
grows and reaches the value 6. Not surprisingly, the better

the reconstruction of the neutrino momenta, the higher the
significance of the violation of Bell inequality.

The significances we quote are bound to decrease in a full
simulation because of other systematic uncertainties and the
smearing of the events in the detector.

4.2 p p → Z Z

The tree-level Feynman diagrams contributing to the process

q̄(p1)q(p2) → Z(k1, λ1)Z(k2, λ2), (4.19)

at the parton level are shown in the middle row of Fig. 9. We
indicate the polarization vectors of the two Z bosons with
εμ(k1, λ1) and εν(k2, λ2).

The polarized amplitude for the process in Eq. (4.19) is
given by

Mqq̄
Z Z (λ1, λ2) = − ie2

4c2
Ws

2
W

[
v̄(p1)Γ

Z Z
μν u(p2)

]
εμ(k1, λ1)

�

×εν(k2, λ2)
�, (4.20)

where

Γ Z Z
μν = V q

μ

(/k1 − /p1)

u
V q

ν + V q
ν

(/k1 − /p2)

t
V q

μ . (4.21)

The Mandelstam variables u and t are defined as

u = (k1 − p1)
2, t = (k1 − p2)

2, (4.22)

and

Vq
μ = gqV γμ − gqAγμγ5 (4.23)

with the gqV,A couplings defined as in Eq. (4.9).
Summing over the quark polarizations and colors we then

obtain
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Fig. 14 The observables I3 (left plot) and C2 (right plot) for the process p p → Z Z as functions of the invariant mass and scattering angle in the
CM frame. The hatched area in the plot on the left indicates the bin in which the observable is to be evaluated

Mqq̄
Z Z (λ1, λ2)

[
Mqq̄

Z Z (λ′
1, λ

′
2)
]† = Tr

[
Γ̄ Z Z

μν p̂1 Γ Z Z
μ′ν′ /p2

]

×Pμμ′
λ1λ

′
1
(k1)P

νν′
λ2λ

′
2
(k2), (4.24)

where Pμν

λλ′(k) is given in Eq. (2.17) with M = MZ .
The corresponding unpolarized square amplitude is then

obtained by summing over the polarizations of the two Z
bosons

| M qq̄
Z Z |2 = 8 fZZ (g

q4
A + 6gq2

A gq2
V + gq4

V )

DZZ

×
{

2 − β2
Z

[
β4

Z + (9 − 10β2
Z + β4

Z )c
2
Θ

+4β2
Z c

4
Θ − 3

]}
, (4.25)

where

fZZ = 8α2π2Nc

DZZc4
Ws

4
W

, and DZZ = 1 + β4
Z + 2β2

Z (1 − 2c2
Θ),

(4.26)

with βZ =
√

1 − 4M2
Z/m2

ZZ . The angle Θ is here defined as
the angle between the anti-quark momentum and k1 in the
CM frame. The orientation of the latter coincides with that
of the k̂ unit vector of the basis in Eq. (2.26).

The Eq. (4.24) makes it possible through Eq. (2.38) to
compute the unnormalized correlation coefficients f̃a , g̃a ,
and h̃ab (given in Appendix Appendix C) of the density
matrix for the process at hand and consequently, the value of
the operators I3 and C2.

Table 3 Number of expected events in the kinematic region mZZ >

500 GeV and cos Θ < 0.25 at the LHC with
√
s = 13 TeV and lumi-

nosities L =140 fb−1, run2, and L = 3 ab−1 for Hi-lumi. A benchmark
efficiency of 70% is assumed in the identification of each charged lepton

(Run2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 4 77

In Fig. 14 we present our results for the entanglement
observables. The violation of the Bell inequalities takes place
only in a limited range of the kinematic variables. The bin in
which I3 > 2 is shown as a hatched area in the left panel.

The observable C2 follows the pattern of I3 – as it does in
the case of the W+W− final states – and reaches the largest
values in the upper-left quadrant. In this region it witnesses
the presence of states more entangled than in the rest of the
kinematic space.

4.2.1 Events and sensitivity

The number of expected events at the LHC is given in Table 3.
As before, the relevant cross sections were computed with
MADGRAPH5 [58] at the LO and then corrected by the κ-
factor given at the NNLO [67,68]. We reduce the number of
events thus found by the efficiency in the identification of the
final leptons – which we take conservatively to be 70% for
each of the identified leptons [61]. We consider semi-leptonic
decays of the W and proceed as explained in Sect. 3.
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Fig. 15 Distribution of the events of the Z Z process at the LHC run 2 (left) and Hi-lumi (right). The events have mean value I3 = 1.9 and 2.2,
respectively. The threshold value of 2 for Bell inequality violation is shown as a dashed red line

Though there are irreducible background events from the
H → Z Z decay, they are negligible in the kinematic bin
where the observables are to be estimated.

We run 104 pseudo experiments as we vary the invari-
ant mass and the scattering angle around the mean value
with a dispersion given by the (statistical and systematic)
uncertainty as discussed in the previous section, and compute
the observable I3. Figure 15 shows the distribution which is
obtained for LHC run2 and Hi-Lumi. The distributions are
skewed because the observable is computed near its maxi-
mum value and the random variation can only reduce this
value.

We find that run2 yields an average value of I3 ≤ 2 that
is below the threshold for Bell violation. At Hi-Lumi the
significance for rejecting the null hypothesis I3 ≤ 2 (see
Fig. 12) is more than 2.

The significance we quote is bound to decrease in a full
simulation because of the reconstruction from the final lepton
angular distributions and the systematic uncertainties of the
unfolding.

4.3 p p → WZ

Let us consider the tree-level Feynman diagrams contributing
to the process

d̄(p1)u(p2) → W+(k1, λ1)Z(k2, λ2), (4.27)

at the partonic level, shown in the last row of Fig. 9. We indi-
cate the polarization vectors of theW+ and Z with εμ(k1, λ1)

and εν(k2, λ2), respectively. The polarized amplitude of the
process is

Mud̄
W Z (λ1, λ2) = − ie2

√
2s2

W

[
v̄(p1)Γ

WZ
μν u(p2)

]

×εμ(k1, λ1)
�εν(k2, λ2)

�, (4.28)

where

Γ WZ
μν = γ α(1 − γ5)

s − M2
W

Vναμ(−k2, q,−k1)cW + γμ(1 − γ5)

×/k1 − /p1

2t cW
V u

ν + V d
ν

/k1 − /p2

2u cW
γμ(1 − γ5),

with Mandelstam variables s = (p1 + p2)
2, t = (k1 − p1)

2,
u = (k1 − p2)

2, the vertex Vq
μ (q ∈ {u, d}) being defined in

Eq. (4.23) and the vertex function Vναμ defined in Eq. (4.10).
We neglected up-strange quark transitions by setting cos θc =
1, with θc the Cabibbo angle.

Summing over the internal degrees of freedom of the ini-
tial state quarks gives

Mud̄
W Z (λ1, λ2)

[
Mud̄

W Z (λ′
1, λ

′
2)
]† = Tr

[
Γ̄ WZ

μν p̂1 Γ WZ
μ′ν′ /p2

]

×Pμμ′
λ1λ

′
1
(k1, MW )Pνν′

λ2λ
′
2
(k2, MZ ). (4.29)

where Pμν

λλ′(k, MV ) is defined as in Eq. (2.17) with V ∈
{W, Z}.

The following expressions approximate the quantity above
in the limit MW  MZ = MV

| M ud̄
W Z |2 = 4 fWZ

DWZ

{
2(3 + β2

V )2
[
β2
V

(
β4
V + (9 − 10β2

V

+β4
V )c2

Θ + 4β2
V c

4
Θ − 3

)
− 2

]

−4(3 + β2
V )
[
(1 + β2

V )2(−6 + β2
V + β4

V )

+24βV (−1 − 2β2
V + β6

V )cΘ

+β2
V (27 − 21β2

V − 7β4
V + β6

V )c2
Θ − 120β3

V (−1

+β2
V )c3

Θ + 4β4
V (3 + β2

V )c4
Θ + 48β5

V c
5
Θ

]
c2
W

−
[
(1 + β2

V )2(36 + 177β2
V − 170β4

V + 25β6
V )

+96βV (1 + β2
V )(3 + β2

V )(1 + β2
V − β4

V )cΘ

+β2
V (243 + 756β2

V + 498β4
V − 748β6

V − 29β8
V )c2

Θ

+480β3
V (−3 + 2β2

V + β4
V )c3

Θ
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Fig. 16 The observables I3 (left plot) and C2 (right plot) for the process p p → W+Z as a function of the invariant mass and scattering angle in
the CM frame

+8β4
V (−333 + 336β2

V + 35β4
V )c4

Θ − 192β5
V

×(3 + β2
V )c5

Θ − 1296β6
V c

6
Θ

]
c4
W

}
, (4.30)

where

fWZ = 8α2π2Nc

9(3 + β2
V )2DWZc2

Ws
4
W

, DWZ = 1 + β4
V + 2β2

V (1 − 2c2
Θ),

(4.31)

with βV =
√

1 − 4M2
V /mVV . The angle Θ is here implied by

the momenta of anti-down quark and W in the CM frame. As
before, our convention for the polarization density matrix for
the WZ production is that the momentum of W is along k̂,
cf. Eq. (2.26). Analogous results hold for the process p p →
W−Z initiated by the ūd quarks.

We compute the unnormalized correlation coefficients f̃a ,
g̃a , and h̃ab (given explicitly in Appendix Appendix C) of the
density matrix by using Eqs. (4.29)–(2.38). Figure 16 shows
the values obtained for the observables I3 (left panel) and
C2 (right panel) for the process p p → WZ . By inspection,
the observable I3 is less than 2 regardless of the value of the
kinematic variables. The final states are less entangled than
in the case of the weak gauge boson pairs and the observable
C2 presents low values everywhere.

4.4 Lepton colliders

We consider now the charged di-boson production at e+e−
and muon colliders, proceeding from the process

�+(p1)�
−(p2) → W+(k1, λ1)W

−(k2, λ2), (4.32)

where � ∈ {e, μ}. We neglect the contribution of an interme-
diate Higgs boson regarding the leptons as massless.

The analytical results for the amplitude and the polariza-
tion density matrix coefficients can be obtained from those
given in Sect. 4.1 and Appendix Appendix C through the
replacements ḡdV,A → ḡ�

V,A. Because the initial state is
unique, the total density matrix comprises only one contri-
bution. For the correlation coefficients hab, fa , ga we then
find

hab[mWW ,Θ] = h̃��̄
ab[mWW ,Θ]
A��̄[mWW ,Θ] ,

fa[mWW ,Θ] = f̃ ��̄
a [mWW ,Θ]
A��̄[mWW ,Θ] ,

ga[mWW ,Θ] = g̃��̄
a [mWW ,Θ]

A��̄[mWW ,Θ] , (4.33)

where the scattering angle Θ is defined as the angle between
the anti-lepton and W+ momenta.

The results for the entanglement observables are shown in
Fig. 17. The violation of the Bell inequalities takes place in
a range of the kinematic variables broader than in the LHC
case and it is larger. The theoretical uncertainty of the result is
negligible. The same results for the Z Z di-bosons are shown
in Fig. 18. The violation of the Bell inequalities in this case
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Fig. 17 The observables I3 and C2 for the process �+�− → W+W− as functions of the invariant mass and scattering angle in the CM frame. The
hatched area in the plot on the left represents the bin in which the observable I3 is to be evaluated

Fig. 18 The observables I3 and C2 for the process �+�− → Z Z as functions of the invariant mass and scattering angle in the CM frame. The
hatched area in the plot on the left represents the bin in which the observable I3 is to be evaluated

takes place in a range of the kinematic variables more or less
equivalent to that at the LHC

In this instance, as for the WZ process, the process is
generated by only one kind of diagram (see bottom diagrams
of Fig. 9) and the PDF dependence exactly cancels out in
the hab coefficients in Eq. (4.5), as well as in the fa, ga
ones. This PDF factorization in the density matrix for the
WZ production at the LHC takes always place at the lepton
colliders, where no dependence on the PDF appears.

4.4.1 Events and sensitivity

The bin in which I3 > 2 for lepton colliders is shown as
a hatched area in Fig. 17. Having identified the best region
to confront the data, we can estimate the number of events
expected at a muon collider working at an energy of

√
s =

1 TeV and at the future circular collider (FCC) working at
an energy of

√
s = 368 GeV. These numbers are given in

Table 4, where the relevant cross sections were computed
with MADGRAPH5 [58] at the LO. We reduce the number of
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Table 4 Number of expected events in the kinematic region mWW >

200 GeV and cos Θ < 0.25 for a muon collider with
√
s = 1 TeV

and luminosity L =1 ab−1 and FCC with
√
s = 364 GeV and lumi-

nosity L = 1.5 ab−1. A benchmark efficiency of 70% is assumed in the
identification of each charged lepton

�+ν� j j �−�+�−�+

Muon (L = 1 ab−1) 5.7 × 103 44

FCC (L = 1.5 ab−1) 9.2 × 104 748

events thus found by the efficiency in the identification of
the final leptons – which we take conservatively to be 70%
per lepton as we did for the LHC. We consider semi-leptonic
decays of the W and proceed as explained in Sect. 3.

It is premature to discuss any background – except for
stressing that at

√
s = 1 TeV the leptons initiated production

is 10 times that of vector boson fusion (see, for example,
[69]).

In the case of WW di-bosons, both the future muon col-
lider and the FCC can provide a significance equal to 2 for

rejecting the null hypothesis I3 ≤ 2 (see Fig. 19). In the case
of Z Z di-bosons, the future muon collider can provide a sig-
nificance equal to 2 for rejecting the null hypothesis I3 ≤ 2,
the FCC – which is expected to produce many more events
– a significance of more than 4 (see Fig. 20).

A more realistic estimate of these numbers can only be
provided by a full numerical simulation. In particular, the
systematic uncertainties of the unfolding because of the pres-
ence of the neutrinos, and the background events may further
decrease these significances.

5 Summary

We have computed the value of two observables – C2 and I3,
linked respectively to quantum entanglement and violation of
Bell inequalities – in processes yielding two weak interaction
gauge bosons in the final state. These particles, being spin-1
and massive, are qutrit states and, as such, more complicated

Fig. 19 Distribution of the events (muon collider, left, FCC, right) in the W+W− process. The events have mean value I3 = 2.6. The threshold
value of 2 for Bell inequality violation is shown as a dashed red line

Fig. 20 Distribution of the events (muon collider, left, FCC, right) in the Z Z process. The events have mean value I3 = 2.17. The threshold value
of 2 for Bell inequality violation is shown as a dashed red line
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to treat than the more ordinary qubit states implemented with
fermions and photons.

We find that the most promising processes for testing Bell
inequalities and the presence of entanglement are, by far,
those in which the final gauge bosons result from the decay
of a Higgs boson. In this case the null hypothesis that the
Bell inequalities be satisfied can be excluded using the data
of Hi-Lumi at the LHC with a significance of 6 for a Z Z final
state. The systematic uncertainty in the reconstruction of the
neutrino momenta in the case WW final states makes it very
hard to reach a satisfactory significance in this channel. We
hope that these provisional results encourage the experimen-
tal collaborations to estimate the actual significance in a full
simulation. In our opinion this is where Bell inequalities vio-
lation stands the best chance of being observed at energies
around the weak scale.

The same observables can also be measured in the di-
boson production initiated by electroweak quark fusion, rem-
iniscent of the Drell–Yan processes. In this case, the invariant
mass required to achieve significant values of the observables
is rather large and only few events are expected at the LHC.
These processes will become more competitive at future lep-
ton colliders, with both the FCC and the muon collider reach-
ing a significance of about 2 in testing the violation of Bell
inequalities with WW di-bosons. A better result is expected
in the case of Z Z di-bosons, in particular at the FCC.
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Appendix A: Spin and Gell–Mann matrices

The spin-1 representation of the three SU (2) generators Si ,
i ∈ {1, 2, 3}, used throughout the text is

S1 = 1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ , S2 = 1√

2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠ ,

S3 =
⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠ . (A.1)

These can be expressed as a function of the Gell–Mann matri-
ces T a as

S1 = 1√
2

(
T 1 + T 6

)
, S2 = 1√

2

(
T 2 + T 7

)
,

S3 = 1

2
T 3 +

√
3

2
T 8, (A.2)

and the matrices Si j in Eq. (2.19) are:

S31 = S13 = 1√
2

(
T 1 − T 6

)
,

S12 = S21 = T 5,

S23 = S32 = 1√
2

(
T 2 − T 7

)

S11 = 1

2
√

3
T 8 + T 4 − 1

2
T 3,

S22 = 1

2
√

3
T 8 − T 4 − 1

2
T 3,

S33 = T 3 − 1√
3
T 8, (A.3)

with 1 being the 3 × 3 unit matrix. The Gell–Mann matrices
T a are:

T 1 =
⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , T 2 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ , T 3 =

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

T 4 =
⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , T 5 =

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ , T 6 =

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠ ,

T 7 =
⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , T 8 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ . (A.4)

Appendix B: The functions qn
± and pn

± and thematrix an
m

In this Appendix we follow [15]. Theqn± functions introduced
in Sect. 2.4 are given by the following expressions

q1± = 1√
2

sin θ±( cos θ± ± 1
)

cos φ±,

q2± = 1√
2

sin θ±( cos θ± ± 1
)

sin φ±,
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q3± = 1

8

(
1 ± 4 cos θ± + 3 cos 2θ±),

q4± = 1

2
sin2 θ± cos 2 φ±,

q5± = 1

2
sin2 θ± sin 2 φ±,

q6± = 1√
2

sin θ±( − cos θ± ± 1
)

cos φ±,

q7± = 1√
2

sin θ±( − cos θ± ± 1
)

sin φ±,

q8± = 1

8
√

3

(
− 1 ± 12 cos θ± − 3 cos 2θ±), (B.1)

in terms of the spherical coordinates of the two decaying
particle rest frames.

The pn± functions utilized in Sect. 2.4 are given by the
following expressions:

p1± = √
2 sin θ±(5 cos θ± ± 1

)
cos φ±,

p2± = √
2 sin θ±(5 cos θ± ± 1

)
sin φ±,

p3± = 1

4

(
5 ± 4 cos θ± + 15 cos 2θ±),

p4± = 5 sin2 θ± cos 2 φ±,

p5± = 5 sin2 θ± sin 2 φ±,

p6± = √
2 sin θ±( − 5 cos θ± ± 1

)
cos φ±,

p7± = √
2 sin θ±( − 5 cos θ± ± 1

)
sin φ±,

p8± = 1

4
√

3

(
− 5 ± 12 cos θ± − 15 cos 2θ±). (B.2)

The matrix anm used in Sect. 2.4 is the following

anm = 1

g2
L − g2

R

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g2
R 0 0 0 0 g2

L 0 0
0 g2

R 0 0 0 0 g2
L 0

0 0 g2
R − 1

2 g2
L 0 0 0 0

√
3

2 g2
L

0 0 0 g2
R − g2

L 0 0 0 0
0 0 0 0 g2

R − g2
L 0 0 0

g2
L 0 0 0 0 g2

R 0 0
0 g2

L 0 0 0 0 g2
R 0

0 0
√

3
2 g2

L 0 0 0 0 1
2 g2

L − g2
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B.3)

The coefficients in Eq. (B.3) are gL = −1/2 + sin2 θW 
−0.2766 and gR = sin2 θW  0.2234.

Appendix C: Analytic expressions for the density matri-
ces

Appendix C.1: Polarization density matrix for
q q̄ → W+W−

We write below the expressions for the coefficients Aqq̄

[Θ,mVV ], f̃ qq̄a [Θ,mVV ], g̃qq̄a [Θ,mVV ], and h̃qq̄ab [Θ,mVV ],

with q = u, d, appearing in the polarization density matrix
for q q̄ → W+W−. The angle Θ is the scattering angle in
the CM frame from the anti-quark and W+ momenta. Our
convention for the polarization matrix is that the momen-
tum of W+ is chosen parallel to the k̂ unit vector of the spin
right-handed basis in Eq. (2.26) and

Auū = | M uū
WW |2 (C.1)

where the expression for the unpolarized square amplitude

| M uū
WW |2 is given in Eq. (4.13). Throughout the following

expressions we use cΘ ≡ cos Θ , sΘ ≡ sin Θ and DWW , fWW

which are given in Eq. (4.14).
.......Thethethe non-vanishing elements h̃uūab (h̃uūba = h̃uūab)

are given by

h̃uū11 [Θ,mWW ] = fWW

(1 − β2
W )

{(
βW + 1

)2
(cΘ + 1)2

−2βW (cΘ + 1)2
[
βW

(
βWcΘ + βW + 4

)

+cΘ + 1
] (

ḡuA + ḡuV
)
s2
W + 8β2

WDWW

×
[(

1 + c2
Θ

) (
ḡU2
A + ḡU2

V

) + 4cΘ ḡU
A ḡ

U
V

]
s4
W

}
,

h̃uū15 [Θ,mWW ] = fWW

√
2 sΘ√

1 − β2
W

{
(1 + cΘ)(1 + βW )

−βW (1 + cΘ)
(
1 + 4βW + β2

W + 2cΘ

)

× (
ḡuA + ḡuV

)
s2
W + 4β2

WDWW

[
2ḡuA ḡ

u
V

+cΘ

(
ḡu2
A + ḡu2

V

) ]
s4
W

}

h̃uū16 [Θ,mWW ] = fWW s
2
Θ

{
1 − 2βW (2βW + cΘ)

(
ḡuA + ḡuV

)

×s2
W + 4β2

WDWW

(
ḡu2
A + ḡu2

V

)
s4
W

}

h̃uū22 [Θ,mWW ] = fWW

1 − β2
W

{
(1 + cΘ)2

[
1 + β4

W

−2β3
W (cΘ − 3) + 8(cΘ − 1)cΘ

+β2
W (2 + 4cΘ) + 2βW (7cΘ − 5)

]

+2βW

[
5 − βW (4 + 3βW − cΘβW ) + 7cΘ

]

×(1 + cΘ)2DWW

(
ḡuA + ḡuV

)
s2
W

+8β2
WD2

WW

[
(1 + c2

Θ)ḡu2
A + 4cΘ ḡuA ḡ

u
V

+(1 + c2
Θ)ḡu2

V

]
s4
W

}

h̃uū23 [Θ,mWW ] = fWW

√
2sΘ

(1 − β2
W )3/2DWW

{
(1 + cΘ)

[
βW (2 + βW )

+2cΘ − 1
][

β2
W (1 + βW + cΘ)

−1 − 3βW − 3cΘ

] − βW (1 + cΘ)DWW[
1 − 12cΘ − 12βW + β2

W

(
4βW

+β2
W + 4cΘ − 2

)](
ḡuA + ḡuV

)
s2
W

+4β2
W (β2

W − 3)D2
WW

[
2ḡuA ḡ

u
V
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+cΘ(ḡu2
A + ḡu2

V )
]
s4
W

}

h̃uū24 [Θ,mWW ] = − fWW

√
2 sΘ√

1 − β2
WDWW

{
(1 + cΘ)

[
β2
W (3 + βW )

+(3βW + 2cΘ)(2cΘ − 1) − 1
]

−βW (1 + cΘ)(4βW + β2
W + 6cΘ

−3)DWW (ḡuA + ḡuV )s2
W

+4β2
WD2

WW

[
2ḡuA ḡ

u
V + cΘ

(
ḡu2
A + ḡu2

V

) ]
s4
W

}

h̃uū27 [Θ,mWW ] = − fWW s2
Θ

(1 − β2
W )DWW

{
1 − 12β2

W

+3β4
W − 18βWcΘ + 2β3

WcΘ − 8c2
Θ

+2βWDWW

[
2βW (5 − β2

W ) + (9 − β2
W )cΘ

]

×(ḡuA + ḡuV )s2
W + 4β2

W (β2
W − 5)D2

WW (ḡu2
A + ḡu2

V )s4
W

}

h̃uū28 [Θ,mWW ] = −
√

2 fWW sΘ√
3(1 − β2

W )3/2DWW

{
− 1 + β5

W (3 − cΘ)

+3β4
W (1 − cΘ)2 + βW

(
7 + 3cΘ − 16c2

Θ

)

+2β2
WcΘ

(
c2
Θ − 2cΘ − 7

) + cΘ(4 + 3cΘ

−6c2
Θ) − 2β3

W

(
5 + 5cΘ − 4c2

Θ

)

+βWDWW

[
− 7 + β3

W (4 − 12cΘ)

+β4
W (cΘ − 3) + 4βW (1 + 5cΘ)

+cΘ(16cΘ − 3) + 2β2
W (5 + 5cΘ − 4c2

Θ)
]

×(ḡuA + ḡuV )s2
W − 4β2

WD2
WW

×
[
2(1 + β2

W )ḡuA ḡ
u
V + (5 − 3β2

W )

×cΘ(ḡu2
A + ḡu2

V )
]
s4
W

}

h̃uū33 [Θ,mWW ] = − fWW

(1 − β2
W )2DWW

{
− 2(1 + cΘ)

×
[
2βW + β2

W (βW − 1)(βW + 3β2
W + β3

W − 3)

+4cΘ

[
1 + βW (βW − 1)(2 + βW )

(
2βW + β2

W − 1
)] + c2

Θ

(
3 − 20βW − 2β2

W

+12β3
W + 3β4

W

) + (3 − β2
W )2c3

Θ

]

+2βW (1 + cΘ)DWW

[
2 + 5βW + β2

W

×(2 + βW )(β2
W − 2) + cΘ

(
4 − 13βW − 2β2

W

+10β3
W + 2β4

W − β5
W

)

−2(5 − 3β2
W )c2

Θ

]
(ḡuA + ḡuV )s2

W + 2β2
WD2

WW

×
[
16(1 − β2

W )cΘ ḡuA ḡ
u
V + [

2β2
W − β4

W − 5

+(13 − 10β2
W + β4

W )c2
Θ

]
(ḡu2

V + ḡu2
A )

]
s4
W

}
(C.2)

h̃uū34 [Θ,mWW ] = − fWW s2
Θ

(1 − β2
W )

{
1 + β4

W − 2cΘ − 6c2
Θ

+2β3
W (1 + cΘ) − 2βW (1 + 5cΘ)

+2β2
W (cΘ + c2

Θ − 3)

+2βWDWW

[
1 + 5cΘ − βW

(
βW + βWcΘ − 4)

]

×(ḡuA + ḡuV )s2
W − 8β2

WD2
WW (ḡu2

A + ḡu2
V )s4

W

}

h̃uū37 [Θ,mWW ] = −
√

2 fWW sΘ
(1 − β2

W )3/2DWW

{
2β5

W + β4
WcΘ(5 + cΘ)

+βW (2 + 4cΘ − 14c2
Θ) + cΘ(3 + cΘ

−6c2
Θ) + β3

W (4cΘ + 6c2
Θ − 8)

+2β2
W (2 − 8cΘ + c2

Θ + c3
Θ)

−2βWDWW

[
2 + β4

W + βW (4 − 8cΘ) + 4β3
WcΘ

+(2 − 7cΘ)cΘ + β2
W

[
cΘ(2 + 3cΘ) − 3

]]

×(ḡuA + ḡuV )s2
W + 8β2

WD2
WW

×
[
2ḡuA ḡ

u
V + (β2

W − 2)cΘ(ḡu2
A + ḡu2

V )
]
s4
W

}

h̃uū38 [Θ,mWW ] = fWW√
3(1 − β2

W )2DWW

{
2 + 4cΘ − 9c2

Θ

−6c3
Θ + 9c4

Θ + 2β6
W (cΘ + c2

Θ − 2)

+4β5
W (1 − 3cΘ + c2

Θ + c3
Θ)

−4β3
W (2 − 5cΘ − 2c2

Θ + 5c3
Θ)

+4βW (1 − 4cΘ − 3c2
Θ + 6c3

Θ)

+β4
W (10 + 8cΘ − 21c2

Θ + 2c3
Θ + c4

Θ)

−2β2
W (6+7cΘ−14c2

Θ−2c3
Θ+3c4

Θ)

+2βW (1 − cΘ)DWW

[
− 2 + 7βW + β2

W (2

−3βW )(2−β2
W )+(

6+15βW−6β2
W−14β3

W

+4β4
W + 3β5

W

)
cΘ + 2(6 − 5β2

W + β4
W )c2

Θ

]

×(ḡuA + ḡuV )s2
W + 2β2

WD2
WW

[[
6β2

W − 3β4
W

−7 + (β2
W − 3)(3β2

W − 5)c2
Θ

]
(ḡu2

V + ḡu2
A )

+16(β2
W − 1)cΘ ḡuA ḡ

u
V

]
s4
W

}

h̃uū44 [Θ,mWW ] = fWW s2
Θ

DWW

{
− 1 + β2

W + 2βWcΘ

+2c2
Θ − 2βW (βW + cΘ)DWW (ḡuA + ḡuV )s2

W

+2β2
WD2

WW (ḡu2
A + ḡu2

V )s4
W

}

h̃uū47 [Θ,mWW ] =
√

2 fWW sΘ√
1 − β2

WDWW

{
(cΘ − 1)

[
− 1 + 3β2

W

−β3
W + 2cΘ + 4c2

Θ + βW (3 + 6cΘ)
]

+βW

[
3 + (4 − βW )βW + 6cΘ

]

×(1 − cΘ)DWW (ḡuA + ḡuV )s2
W

+4β2
WD2

WW

[
−2ḡuA ḡ

u
V+cΘ(ḡu2

A +ḡu2
V )

]
s4
W

}

h̃uū48 [Θ,mWW ] = fWW s2
Θ√

3(1 − β2
W )DWW

{
1 + β4

W − 2β3
W

×(3 − cΘ) + 6cΘ − 6c2
Θ + 2βW (3 − 5cΘ)

−β2
W (6 + 6cΘ − 2c2

Θ) − 2βW

[
3 − 4βW

−3β2
W + cΘβ2

W − 5cΘ

]
DWW (ḡuA + ḡuV )s2

W

−8β2
WD2

WW (ḡu2
A + ḡu2

V )s4
W

}

123
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h̃uū55 [Θ,mWW ] = 2 fWW s
2
Θ

{
1 − 2βW (βW + cΘ)

×(ḡuA + ḡuV )s2
W + 2β2

WDWW (ḡu2
A + ḡu2

V )s4
W

}

h̃uū56 [Θ,mWW ] =
√

2 fWW sΘ√
1 − β2

W

{
(1 − βW )(1 − cΘ) + βW (1

−4βW + β2
W − 2cΘ)(1 − cΘ)(ḡuA + ḡuV )s2

W

+4β2
WDWW

[
2ḡuA ḡ

u
V − cΘ(ḡu2

A + ḡu2
V )

]
s4
W

}

h̃uū66 [Θ,mWW ] = fWW

1 − β2
W

{
(1 − cΘ)2(1 − βW )2

−2βW (1 − cΘ)2
[
4βW − (1 + β2

W )

×(1 − cΘ)
]
(ḡuA + ḡuV )s2

W

+8β2
WDWW

[
(1 + c2

Θ)(ḡu2
V + ḡu2

A )

−4cΘ ḡuA ḡ
u
V

]
s4
W

}
(C.3)

h̃uū77 [Θ,mWW ] = fWW

(1 − β2
W )DWW

{
(1 − cΘ)2

[
1 + β4

W

+β2
W (2 − 4cΘ) + 8cΘ(1 + cΘ) − 2β3

W

×(3 + cΘ) + 2βW (5 + 7cΘ)
]

− 2βW (1 − cΘ)2

×DWW

[
5 + 7cΘ + 4βW − β2

W (3 + cΘ)
]

×(ḡuA + ḡuV )s2
W + 8β2

WD2
WW

[
(1 + c2

Θ)

×(ḡu2
V + ḡu2

A ) − 4cΘ ḡuA ḡ
u
V

]
s4
W

}

h̃uū78 [Θ,mWW ] = −
√

2 fWW sΘ√
3(1 − β2

W )3/2DWW

{
2 − cΘ + 2β5

WcΘ

−9c2
Θ + 6c3

Θ − 2β3
W (1 − 4cΘ + c2

Θ)

+3β4
W (2 − cΘ + c2

Θ) + 2βW (1 − 9cΘ

+5c2
Θ) − 2β2

W (6 − 4cΘ − c2
Θ + c3

Θ)

−2βWDWW

[
1 + 4β3

W + 4βW (cΘ − 2)

+β4
WcΘ + cΘ(5cΘ − 9) − β2

W

×(1 − 4cΘ + c2
Θ)

]
(ḡuA + ḡuV )s2

W + 8β2
WD2

WW

×
[
2(β2

W − 2)ḡuA ḡ
u
V + cΘ(ḡu2

A + ḡu2
V )

]
s4
W

}

h̃uū88 [Θ,mWW ] = fWW

3(1 − β2
W )2DWW

{
4 − 12cΘ + 3c2

Θ

+18c3
Θ − 9c4

Θ − β6
W (2 + 6cΘ − 4c2

Θ)

+4β3
W (6 + cΘ − 6c2

Θ − c3
Θ)

−4β5
W (3 + 3c2

Θ − 2c3
Θ)

−4βW (3 − cΘ − 9c2
Θ + 3c3

Θ)

+β4
W (8 − 24cΘ + 3c2

Θ − 6c3
Θ − c4

Θ)

−2β2
W (3 − 21cΘ + 5c2

Θ + 6c3
Θ − 3c4

Θ)

−2βWDWW

[
βW + 3βW (8 − 3cΘ)cΘ

+2β2
W s

2
Θ(6 + cΘ) + 2β3

W (3 − 12cΘ + c2
Θ)

−3β5
W s

2
Θ − 2(3 − cΘ)(1 − 3c2

Θ) − β4
W (6

+6c2
Θ − 4c3

Θ)
]
(ḡuA + ḡuV )s2

W + 2β2
W

×D2
WW

[[
1 + 2β2

W (3 + c2
Θ) − 9c2

Θ

−3β4
W s

2
Θ

]
(ḡu2

V + ḡu2
A )

+48(1 − β2
W )cΘ ḡuA ḡ

u
V

]
s4
W

}
(C.4)

The non-vanishing elements f̃ uūa are given by

f̃ uū2 [Θ,mWW ] = 2
√

2 fWW sΘ
3(1 − β2

W )3/2DWW

{
1 − cΘ − βW

×
(

4 + 3β3
W (1 − cΘ) − 6cΘ + 2β4

WcΘ

−4c2
Θ − 4β2

W (1 + cΘ + c2
Θ) − 2β(3

+cΘ + 2c2
Θ + 2c3

Θ)
)

+ 2βWDWW

[
2 + 4β3

W

−3cΘ + β4
WcΘ − 2c2

Θ − 4βW (2 + cΘ)

−2β2
W (1 + cΘ + c2

Θ)
]
(ḡuA + ḡuV )s2

W

+8β2
WD2

WW

[
2(2 − β2

W )ḡuA ḡ
u
V

+cΘ(ḡu2
A + ḡu2

V )
]
s4
W

}

f̃ uū3 [Θ,mWW ] = fWW

3(1 − β2
W )2DWW

{
1 + β6

W (1 − cΘ)2

+2cΘ − 3c2
Θ + 8β3

W (1 − cΘ)s2
Θ

−4β5
W (1 − 3cΘ + c2

Θ + c3
Θ) − 4βW (1

+5cΘ − 3c2
Θ − 3c3

Θ)

−β2
W (21 − 2cΘ + c2

Θ − 8c3
Θ − 12c4

Θ)

+β4
W (11 − 2cΘ + 3c2

Θ − 8c3
Θ − 4c4

Θ)

+4βW (1 − cΘ)DWW

[
1 + 3cΘ(2 + cΘ)

−2β3
W (3 + cΘ) + 2βW (5 + 3cΘ)

−2β2
W s

2
Θ + β4

W (1 − 2cΘ − c2
Θ)

]

×(ḡuA + ḡuV )s2
W − 8β2

WD2
WW

[[
5 − 3c2

Θ

+β2
W (c2

Θ − 3)
]
(ḡu2

V + ḡu2
A )

+4(1 − β2
W )cΘ ḡuA ḡ

u
V

]
s4
W

}

f̃ uū4 [Θ,mWW ] = 2 fWW s2
Θ

3(1 − β2
W )DWW

{
1 − βW

[
4cΘ

+βW (6 − β2
W + 4βWcΘ + 4c2

Θ)
]

+4βWDWW (cΘ + 2βW + β2
WcΘ)

×(ḡuA + ḡuV )s2
W − 8β2

WD2
WW (ḡu2

A + ḡu2
V )s4

W

}

f̃ uū7 [Θ,mWW ] = 2
√

2 fWW sΘ
3(1 − β2

W )3/2DWW

{
1 + cΘ + βW

(
4 + 6cΘ

−2β4
WcΘ − 4c2

Θ − 3β3
W (1 + cΘ)

−4β2
W (1 − cΘ + c2

Θ)

+2βW (3 − cΘ + 2c2
Θ − 2c3

Θ)
)

+2βWDWW

[
4β3

W + 4βW (cΘ − 2)

+β4
WcΘ + (cΘ − 2)(1 + 2cΘ)

−2β2
W (1 − cΘ + c2

Θ)
]

×(ḡuA + ḡuV )s2
W − 8β2

WD2
WW

×
[
2(β2

W − 2)ḡuA ḡ
u
V + cΘ(ḡu2

A + ḡu2
V )

]
s4
W

}

123
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f̃ uū8 [Θ,mWW ] = fWW

3
√

3(1 − β2
W )2DWW

{
1 + 6cΘ

+3c2
Θ − β6

W (1 + 6cΘ + c2
Θ)

−4β5
W (3 + 3cΘ + 3c2

Θ − c3
Θ)

+8β3
W (3 + cΘ − 3c2

Θ − c3
Θ) − 4βW (3

−5cΘ − 9c2
Θ + 3c3

Θ)

+β2
W (21 + 6cΘ + c2

Θ + 24c3
Θ − 12c4

Θ)

−β4
W (11 + 6cΘ + 3c2

Θ + 24c3
Θ − 4c4

Θ)

+4βWDWW

[
3 − 2β2

W s
2
Θ(3 + cΘ) + 2β3

W

×(3 + 6cΘ − c2
Θ) − cΘ(5 + 9cΘ − 3c2

Θ)

+2βW (5 + 6cΘ − 3c2
Θ) − β4

W (3 + 3cΘ

+3c2
Θ − c3

Θ)
]
(ḡuA + ḡuV )s2

W

+8β2
WD2

WW

[[
5 − 3c2

Θ + β2
W (c2

Θ − 3)
]

×(ḡu2
V + ḡu2

A ) + 12(1 − β2
W )cΘ ḡuA ḡ

u
V

]
s4
W

}
.

(C.5)

The elements g̃uūa are identical: g̃uūa = f̃ uūa .

The elements h̃dd̄ab , f̃ dd̄a , g̃dd̄a can be obtained from the
following transformations

Add̄ = Auū
{
ḡuV → −ḡdV , ḡuA → −ḡdA , βW → −βW

}

h̃dd̄ab = h̃uūab

{
ḡuV → −ḡdV , ḡuA → −ḡdA , βW → −βW

}

f̃ dd̄a = f̃ uūa

{
ḡuV → −ḡdV , ḡuA → −ḡdA , βW → −βW

}

g̃dd̄a = g̃uūa
{
ḡuV → −ḡdV , ḡuA → −ḡdA , βW → −βW

}
,

(C.6)

where in this case the angle Θ is the angle between the antid-
own quark d̄ and the W+ momenta. The effective couplings
ḡu,d
V,A are defined in Eq. (4.9).

Appendix C.2: Polarization density matrix for q q̄ → Z Z

We write below the coefficients Aqq̄ [Θ,mVV ], f̃ qq̄a [Θ,mVV ],
g̃qq̄a [Θ,mVV ], and h̃qq̄ab [Θ,mVV ], appearing in the polarization
density matrix for q q̄ → Z Z . The angle Θ is the scattering
angle in the CM frame from the anti-quark and one of the
Z momenta. Our convention is that the Z is in this case the
one with momentum parallel to the k̂ unit vector of the spin
right-handed basis in Eq. (2.26). Results below will be given
for a generic quark q.

Aqq̄ = | M qq̄
Z Z |2 (C.7)

where the expression for the unpolarized square amplitude

| M qq̄
Z Z |2 is given in Eq. (4.25). Throughout the following

expressions we use cΘ ≡ cos Θ , sΘ ≡ sin Θ and DZZ , fZZ
which are given in Eq. (4.26).

The non-vanishing elements h̃qq̄ab (h̃qq̄ba = h̃qq̄ab ), are given
by

h̃qq̄11 [Θ,mZZ ] = fZZ (1 − β2
Z )
{
(1 + c2

Θ)(gq4
A + 6gq2

A gq2
V

+gq4
V ) + 8cΘgqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄15 [Θ,mZZ ] = fZZ
√

2
√

1 − β2
Z sΘ

{
cΘ(gq4

A + 6gq2
A gq2

V

+gq4
V ) + 4gqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄16 [Θ,mZZ ] = fZZ (1 − β2
Z )s

2
Θ

{
gq4
A + 6gq2

A gq2
V + gq4

V

}

h̃qq̄22 [Θ,mZZ ] = fZZ (1 − β2
Z )

DZZ

{
− 8cΘ

[
3 + 2β2

Z − β4
Z

−4c2
Θ

]
gqAg

q
V (gq2

A + gq2
V )

+
[
(1 + β2

Z )
2 − (7 + 10β2

Z − β4
Z )c

2
Θ

+4(2 + β2
Z )c

4
Θ

]
(gq4

V + 6gq2
A gq2

V + gq4
A )

}

h̃qq̄23 [Θ,mZZ ] = fZZ2
√

2
√

1 − β2
Z sΘ

DZZ

{[
cΘ(1 + β2

Z + (β2
Z

−3)c2
Θ)

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+
[
2(1 + β2

Z )
2 − 2(5 − 2β2

Z + β4
Z )c

2
Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

h̃qq̄24 [Θ,mZZ ] = fZZ
√

2
√

1 − β2
Z sΘ

DZZ

{[
(3 − β2

Z )(1 + β2
Z )cΘ

−4c3
Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+
[
4(1 + β2

Z )
2 − 8(1 + β4

Z )c
2
Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

h̃qq̄27 [Θ,mZZ ] = − fZZ (1 − β2
Z )s

2
Θ

DZZ

{[
(1 + β2

Z )
2

+4(β2
Z − 2)c2

Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

}

h̃qq̄28 [Θ,mZZ ] = fZZ2
√

2
√

1 − β2
Z sΘ√

3DZZ

{[
2(1 + β2

Z )
2(1 + c2

Θ)

−8(1 + β2
Z )c

2
Θ

]
gqAg

q
V (gq2

A + gq2
V )

+
[
2(1 − 3β2

Z )c
3
Θ + (1 + β2

Z )(3β2
Z

+c2
Θ − 2)cΘ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

}

h̃qq̄33 [Θ,mZZ ] = − fZZ
DZZ

{
8cΘ

[
2 + β2

Z + β6
Z + (−3

+2β2
Z − 3β4

Z )c
2
Θ

]
gqAg

q
V (gq2

A + gq2
V )

+
[
(βZ + β3

Z )
2 + (7 − 5β2

Z − 3β4
Z + β6

Z )c
2
Θ

−(9 − 10β2
Z + 5β4

Z )c
4
Θ

]
(gq4

A n

+6gq2
A gq2

V + gq4
V )

}

h̃qq̄34 [Θ,mZZ ] = fZZ (1 − β2
Z )s

2
Θ

DZZ

{[
2(3 + β2

Z )c
2
Θ

−(1 + β2
Z )

2
]
(gq4

A + 6gq2
A gq2

V + gq4
V )

123
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+8(1 + β2
Z )g

q
Ag

q
V (gq2

A + gq2
V )

}
(C.8)

h̃qq̄37 [Θ,mZZ ] = − fZZ
√

2(1 − β2
Z )

3/2cΘ sΘ
DZZ

{
3(1 + β2

Z

−2c2
Θ)(gq4

A + 6gq2
A gq2

V + gq4
V )

+4(1 − β2
Z )cΘgqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄38 [Θ,mZZ ] = fZZ√
3DZZ

{[
2 + 3β2

Z − β6
Z − (9 − 9β2

Z

−β4
Z + β6

Z )c
2
Θ + (9 − 18β2

Z + 5β4
Z )c

4
Θ

]

(gq4
A + 6gq2

A gq2
V + gq4

V )

+8cΘ

[
2 + β2

Z + β6
Z − (3 − 2β2

Z + 3β4
Z )c

2
Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

h̃qq̄44 [Θ,mZZ ] = 2 fZZ s2
Θ

DZZ

{[
2(1 + β4

Z )c
2
Θ − (1 + β2

Z )
2
]

×(gq4
A + 6gq2

A gq2
V + gq4

V )

h̃qq̄47 [Θ,mZZ ] = fZZ
√

2
√

1 − β2
Z sΘ

DZZ

{
cΘ

[
(β2

Z − 3)(1

+β2
Z ) + 4c2

Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+4
[
(1 + β2

Z )
2 − 2(1 + β4

Z )c
2
Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

h̃qq̄48 [Θ,mZZ ] = fZZ (1 − β2
Z )s

2
Θ√

3DZZ

{[
(1 + β2

Z )
2 − 2(3

+β2
Z )c

2
Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+24(1 + β2
Z )cΘgqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄55 [Θ,mZZ ] = fZZ2(1 − β2
Z )s

2
Θ

[
gq4
A + 6gq2

A gq2
V + gq4

V

]

h̃qq̄56 [Θ,mZZ ] = − fZZ
√

2
√

1 − β2
Z sΘ

{
cΘ(gq4

A + 6gq2
A gq2

V

+gq4
V ) − 4gqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄66 [Θ,mZZ ] = fZZ (1 − β2
Z )
{
(1 + c2

Θ)(gq4
A + 6gq2

A gq2
V

+gq4
V ) − 8cΘgqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄77 [Θ,mZZ ] = fZZ (1 − β2
Z )

DZZ

{
8cΘ

[
3 + 2β2

Z − β4
Z

−4c2
Θ

]
cΘgqAg

q
V (gq2

A + gq2
V )

+
[
(1 + β2

Z )
2 − (7 + 10β2

Z − β4
Z )c

2
Θ

+4(2 + β2
Z )c

4
Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

}

h̃qq̄78 [Θ,mZZ ] = fZZ
√

2
√

1 − β2
Z√

3DZZ

{
cΘ

[
1 + 4β2

Z + 3β4
Z

−2(3 + β2
Z )c

2
Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+4
[
(9 − 2β2 + β4

Z )c
2
Θ − 2(1

+β2
Z )

2
]
gqAg

q
V (gq2

A + gq2
V )

}

h̃qq̄88 [Θ,mZZ ] = fZZ
3DZZ

{[
(1 + β2

Z )
2(4 + β2

Z ) + (3

+3β2
Z − 7β4

Z + β6
Z )c

2
Θ

−(9 + 6β2
Z + 5β4

Z )c
4
Θ

]
(gq4

A

+6gq2
A gq2

V + gq4
V )

−24cΘ

[
2 + β2

Z + β6
Z − (3 − 2β2

Z

+3β4
Z )c

2
Θ

]
gqAg

q
V (gq2

A + gq2
V )

}
(C.9)

The non-vanishing elements f̃ qq̄a are given by

f̃ qq̄2 [Θ,mZZ ] = fZZ2
√

2
√

1 − β2
Z

3DZZ

{
cΘ

[
2β2

Z + 3β4
Z

−4β2
Z c

2
Θ − 1

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+4
[
(1 + β2

Z )
2 + 4β2

Z (β
2 − 2)c2

Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

f̃ qq̄3 [Θ,mZZ ] = fZZ
3DZZ

{[
(1 + β2

Z )
3

+(15β2
Z − 13β4

Z + β6
Z − 3)c2

Θ

+4β2
Z (β

2
Z − 3)c4

Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+8cΘ

[
1 + 3β4

Z − β6
Z + β2

Z (5 − 8c2
Θ)

]

×gqAg
q
V (gq2

A + gq2
V )

}

f̃ qq̄4 [Θ,mZZ ] = fZZ2(1 − β2
Z )s

2
Θ

3DZZ

{[
1 + β4

Z + β2
Z (2

+4c2
Θ)

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

}

f̃ qq̄7 [Θ,mZZ ] = fZZ2
√

2
√

1 − β2
Z

3DZZ

{
cΘ

[
1 − 2β2

Z − 3β4
Z

+4β2
Z c

2
Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+4
[
(1 + β2

Z )
2 + 4β2

Z (β
2
Z − 2)c2

Θ

]

×gqAg
q
V (gq2

A + gq2
V )

}

f̃ qq̄8 [Θ,mZZ ] = − fZZ

3
√

3DZZ

{[
(1 + β2

Z )
3 + (15β2

Z

−13β4
Z + β6

Z − 3)c2
Θ

+4β2
Z (β

2
Z − 3)c4

Θ

]
(gq4

A + 6gq2
A gq2

V + gq4
V )

+24cΘ

[
β6

Z + β2
Z (8c

2
Θ − 5) − 1

−3β4
Z

]
gqAg

q
V (gq2

A + gq2
V )

}
. (C.10)

The elements g̃qq̄a are identical: g̃qq̄a = f̃ qq̄a .
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Appendix C.3: Polarization density matrix for u d̄ → W+Z

We write below the expressions for the coefficients Aud̄

[Θ,mVV ], f̃ ud̄a [Θ,mVV ], g̃ud̄a [Θ,mVV ], and h̃ud̄ab [Θ,mVV ],
appearing in the polarization density matrix for u d̄ → W+Z
in the limit MW = MZ = MV , where mVV is the invariant
mass of WZ system in this approximation. The angle Θ

is the scattering angle in the CM frame from the anti-down
quark and W+ momenta. Our convention for the polarization
matrix is that the momentum of W+ is chosen parallel to the
k̂ unit vector of the spin right-handed basis in Eq. (2.26).

Aud̄ = | M ud̄
W Z |2 (C.11)

where the expression for the unpolarized square amplitude

| M ud̄
W Z |2 is given in Eq. (4.30). Throughout the following

expressions we use cΘ ≡ cos Θ , sΘ ≡ sin Θ and DWZ , fWZ

which are given in Eq. (4.31).
The non-vanishing elements h̃ud̄ab (h̃ud̄ba = h̃ud̄ab ) are given

by

h̃ud̄11 [Θ,mVV ] = fWZ (1 + cΘ)2
{
(1 − β2

V )(3 + β2
V )2

−2 (3 + β2
V )
[
3 − βV

(
3 − 15cΘ + 2βV

+β2
V (3 + βV + 9cΘ)

)]
c2
W +

[
9 − βV

(
18

−33βV + 24β2
V + 41β3

V + 6β4
V + β5

V

+6 (3 + β2
V )
( − 5 + 6βV + 3β2

V

)
cΘ

+72βV (−3 + β2
V )c2

Θ

)]
c4
W

}

h̃ud̄15 [Θ,mVV ] = fWZ

√
2
√

1 − β2
V (1 + cΘ)

{
(3 + β2

V )2 + (3

+β2
V )
[
βV

(
3 + 3β2

V − 2βV − 30cΘ

) − 6
]
c2
W

+
[
9 − βV

(
9 − 24βV + 12β2

V + 17β3
V

+3β4
V + 6(3βV − 5)(3 + β2

V )cΘ

−216βV c
2
Θ

)]
c4
W

}

h̃ud̄16 [Θ,mVV ] = fWZ (1 − β2
V )s2

Θ

{
(3 + β2

V )2 − 2 (3 + β2
V )

×
[
3 + β2

V + 15βV cΘ

]
c2
W

+
[
9 + 24β2

V − 17β4
V + 30βV (3 + β2

V )cΘ

+216β2
V c

2
Θ

]
c4
W

}

h̃ud̄22 [Θ,mVV ] = fWZ (1 + cΘ)2)

DWZ

{
(1 − β2

V )(3 + β2
V )2

[
(1

+β2
V )2 − 8(1 + β2

V )cΘ + 4(2 + β2
V )c2

Θ

]

+2 (3 + β2
V )(1 + β2

V )
[
(1 + β2

V )(−3 − 15βV

+2β2
V + 9β3

V + β4
V ) + (

24 + 3βV − 16β2
V + 6β3

V

−8β4
V + 3β5

V

)
cΘ + 4

( − 6 + 36βV + β2
V − 9β3

V + 4β4
V

−21β5
V + β6

V

)
c2
Θ + 12βV

( − 12 + 7β2
V + 3β4

V

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 90βV + 33β2
V − 24β3

V

−41β4
V − 18β5

V − β6
V

) − 2 (1 + β2
V )(3 + β2

V )
(
12 + 3βV − 98β2

V + 6β3
V + 50β4

V + 3β5
V

)
cΘ

+4
(
18 − 216βV − 105β2

V − 18β3
V − 121β4

V

+144β5
V + 65β6

V + 42β7
V − β8

V

)
c2
Θ

+24βV (3 + β2
V )
(
12 − 36βV − 7β2

V

+30β3
V − 3β4

V

)
c3
Θ + 288β2

V (9 − 6β2
V − β4

V )c4
Θ

]
c4
W

}

h̃ud̄23 [Θ,mVV ] =
√

2 fWZ

√
1 − β2

V (1 + cΘ)sΘ

DWZ

{
9 + 24β2

V

+22β4
V + 8β6

V + β8
V

+(
9 + 6β2

V − 8β4
V − 6β6

V − β8
V

)
cΘ

−(
54 + 18β2

V − 6β4
V − 2β6

V

)
c2
Θ

−
[
(1 + β2

V )2(18 − 9βV + 12β2
V

+6β3
V + 2β4

V + 3β5
V

)

+2
(
9 + 108βV + 6β2

V + 144β3
V − 8β4

V

+36β5
V − 6β6

V − β8
V

)
cΘ

−4
(
27 − 27βV + 9β2

V − 3β4
V + 21β5

V

−β6
V + 6β7

V

)
c2
Θ − 72

(
9βV − β5

V

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 9βV − 48β2
V + 6β3

V

+19β4
V + 3β5

V

) + (
9 + 216βV − 48β2

V

+288β3
V − 26β4

V + 72β5
V + 48β6

V + 17β8
V

)
cΘ

−2
(
27 − 54βV − 477β2

V − 327β4
V + 42β5

V

+89β6
V + 12β7

V

)
c2
Θ

−36βV

(
18 − 9βV + 6β3

V − 2β4
V + 3β5

V

)
c3
Θ

+648β2
V (β2

V − 3)c4
Θ

]
c4
W

}

h̃ud̄24 [Θ,mVV ] =
√

2 fWZ

√
1 − β2

V (1 + cΘ)sΘ

DWZ

{
(3 + β2

V )2

[
(1 + β2

V )2 + 2(1 − β4
V )cΘ − 4c2

Θ

]

−(3 + β2
V )

[
(1 + β2

V )2(6 − 9βV + 2β2
V

+3β3
V

) − 2 (1 + β2
V )
(
6 + 27βV − 4β2

V

+3β3
V − 2β4

V

)
cΘ − 4

(
6 − 18βV + 2β2

V

+3β3
V + 9β5

V

)
c2
Θ + 24βV (−6 + β2

V )c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 27βV − 12β2
V + 19β4

V + 3β5
V

)

+2 (1 + β2
V )(3 + β2

V )
(
3 + βV 27 − 29β2

V

+3β3
V + 8β4

V

)
cΘ − 4

(
9 − 54βV−156β2

V−9β3
V−89β4

V

+30β5
V + 36β6

V + 9β7
V

)
c2
Θ

−24βV (3 + β2
V )
(
6 − 9βV − β2

V + 6β3
V

)
c3
Θ

+432 β2
V (β2

V − 3)c4
Θ

]
c2
W

}
(C.12)
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h̃ud̄27 [Θ,mVV ] = − fWZ (1 − β2
V )s2

Θ

DWZ

{
(3 + 4β2

V + β4
V )2

+4(β2
V − 2)(3 + β2

V )2c2
Θ

−2(3 + β2
V )
[
(1 + β2

V )2(3 + β2
V )

+3βV (15 − β2
V )(1 + β2

V )cΘ

+4
(
β2
V + β4

V − 6
)
c2
Θ + 12βV (5β2

V

−12)c3
Θ

]
c2
W +

[
(1 + β2

V )2(9 − 84β2
V + 19β4

V

)

+6βV (15 − β2
V )(1 + β2

V )
(
3 + β2

V

)
cΘ

+4
(
321β2

V + 238β4
V − 53β6

V − 18
)
c2
Θ

+24 βV (3 + β2
V )
(
5β2

V − 12
)
c3
Θ

−864 β2
V (3 − β2

V )c4
Θ

]
c4
W

}

h̃ud̄28 [Θ,mVV ] =
√

2 fWZ

√
1 − β2

V sΘ√
3DWZ

{
(3 + β2

V )2
[
1 + 2β2

V

+β4
V − (

4 − 2β2
V − 6β4

V

)
cΘ

−(3 + 2β2
V − β4

V )c2
Θ + (

6 − 10β2
V

)
c3
Θ

]

−(3 + β2
V )
[
(1 + β2

V )2(6 + 21βV + 2β2
V

−9β3
V

) + (1 + β2
V )(3 + β2

V )
(
15βV

+12β2
V + 3β3

V − 8
)
cΘ

−2
(
9 + 96βV + 9β2

V − 42β3
V − β4

V

−78β5
V − β6

V

)
c2
Θ − 4(3 + β2

V )
(
9βV + 5β2

V − 3
)
c3
Θ

+24βV (9 − 13β2
V )c4

Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 63βV + 24β2
V

−6β3
V + 19β4

V − 9β5
V

)

+(1 + β2
V )
( − 36 + 135βV + 498β2

V + 117β3
V

+32β4
V + 33β5

V − 102β6
V + 3β7

V

)
cΘ

+( − 27 − 576βV + 450β2
V + 60β3

V + 336β4
V

+552β5
V + 22β6

V + 156β7
V + 19β8

V

)
c2
Θ

+2
(
27 − 162βV − 1107β2

V − 108β3
V

+333β4
V − 18β5

V + 571β6
V

)
c3
Θ

+12
(
54βV − 81β2

V − 60β3
V − 26β5

V − 3β6
V

)

+216 β2
V (9 − 11β2

V )c5
Θ

]
c4
W

}

h̃ud̄33 [Θ,mVV ] = fWZ (1 + cΘ)

DWZ

{
(3 + β2

V )2
[
β2
V + 2β4

V + β6
V

+(
4 + β2

V − 2β4
V + β6

V

)
cΘ + (

3 − 6β2
V

−β4
V

)
c2
Θ + (

10β2
V − 5β4

V − 9
)
c3
Θ

]
− 2(3

+β2
V )
[
βV (1 + β2

V )2(−6 + 3βV + 6β2
V + β3

V )

+(1 + β2
V )(12 − 12βV − 5β2

V + 30β3
V

+6β4
V + β5

V )cΘ + (
9 + 102βV − 15β2

V

−12β3
V − 9β4

V − 54β5
V − β6

V + 12β7
V

)
c2
Θ

−(3 + βV )
(
9 − 21βV + 32β3

V − 9β4
V

+5β5
V

)
c3
Θ − 6βV

(
27 − 28β2

V + 9β4
V

)
c4
Θ

]
c2
W

+
[
2βV (1 + β2

V )2( − 18 + 27βV + 12β2
V

−6β3
V + 6β4

V + 5β5
V

) − 4(1 + β2
V )
( − 9 + 18βV

+84β2
V − 39β3

V − 28β4
V − 24β5

V − 39β6
V − 3β7

V + 2β8
V

)
cΘ

+(
27 + 612βV − 468β2

V + 132β3
V + 210β4

V

−348β5
V + 492β6

V − 36β7
V − 37β8

V + 24β9
V

)
c2
Θ

−(
81 − 324βV − 2412β2

V + 468β3
V + 534β4

V

+228β5
V + 1172β6

V + 12β7
V − 175β8

V

)
c3
Θ

−12
(
81βV − 81β2

V − 57β3
V + 126β4

V

−β5
V − 9β6

V + 9β7
V

)
c4
Θ

+36β2
V (3 − β2

V )(17β2
V − 27)c5

Θ

]
c4
W

}

h̃ud̄34 [Θ,mVV ] = − fWZ (1 − β2
V )s2

Θ

DWZ

{
(3 + 4β2

V + β4
V )2

−2(1 + β2
V )
(
3 + β2

V

)2
cΘ − 2

(
3 + β2

V

)3
c2
Θ

−2(3 + β2
V )
[
(1 + β2

V )2(3 + 3βV + β2
V )

−(1 + β2
V )
(
6 − 33βV + 2β2

V − 9β3
V

)
cΘ

−2
(
9 + 18βV + 6β2

V + 12β3
V + β4

V

)
c2
Θ

−12βV

(
9 + 2β2

V

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 18βV − 30β2
V + 6β3

V + β4
V

)

+2 (1 + β2
V )(3 + β2

V )
(
33βV + 17β2

V

+9β3
V − 3

)
cΘ − 2

(
27 + 108βV − 405β2

V + 108β3
V

−387β4
V + 24β5

V − 35β6
V

)
c2
Θ

−24βV (3 + βV )(3 + 2βV )
(
3 + β2

V

)
c3
Θ

−216β2
V

(
9 + β2

V

)
c4
Θ

]
c4
W

}
(C.13)

h̃ud̄37 [Θ,mVV ] = −
√

2 fWZ

√
1 − β2

V sΘ

DWZ

{
(1 − β2

V )(3 + β2
V )2

×
[
3 + β2

V (3 − cΘ) + cΘ(1 − 6cΘ)
]
cΘ

+2 (3 + β2
V )
[
3 (2βV + 3β3

V − β7
V )

−3 (1 − β4
V )
(
3 − 2βV + β2

V

)
cΘ

+(
3 + 75βV − 5β2

V − 6β3
V + β4

V − 45β5
V

+β6
V

)
c2
Θ − 6 (1 − β2

V )
(
3 − 3βV + β2

V + β3
V

)
c3
Θ

−12βV

(
9 − 8β2

V

)
c4
Θ

]
c2
W

+
[
6 βV (1 + β2

V )2(6βV + β2
V + β4

V − 6
)

+3 (1 + β2
V )
(
9 − 12βV − 99β2

V + 8β3
V

−5β4
V + 4β5

V + 23β6
V

)
cΘ

+(
9 + 450βV − 228β2

V + 114β3
V − 146β4

V

−282β5
V + 76β6

V − 90β7
V + β8

V

)
c2
Θ

+6
( − 9 + 18βV − 291β2

V − 18β3
V − 19β4

V

−2β5
V − 119β6

V + 2β7
V

)
c3
Θ

−12
(
54βV − 27β2

V − 30β3
V + 18β4

V

−16β5
V−3β6

V

)
c4
Θ+216β2

V (7β2
V−9)c5

Θ

]
c4
W

}

h̃ud̄38 [Θ,mVV ] = fWZ (cΘ − 1)√
3DWZ

{
(3 + β2

V )2
[
1 + β2

V (1 − cΘ)

+3cΘ

][
β4
V + 3c2

Θ − β2
V (1 + 4cΘ + 5c2

Θ)
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−2
]

+ 2(3 + β2
V )
[
(1 + β2

V )2(6 − 6βV − β2
V

+6β3
V − β4

V

) + (1 + βV )(1 + β2
V )
(
18 + 36βV − 33β2

V

+3β3
V − β4

V + β5
V

)
cΘ

−(
9 − 144βV − 39β2

V − 30β3
V − 17β4

V

+48β5
V − β6

V − 18β7
V

)
c2
Θ

−(
27 + 54βV − 45β2

V − 216β3
V − 3β4

V

+18β5
V + 5β6

V

)
c3
Θ − 6βV (3 − β2

V )(9

−13β2
V )c4

Θ

]
c2
W +

[
2(1+β2

V )2(18βV+30β2
V−12β3

V

−25β4
V − 6β5

V + 14β6
V − 9

)

−2
(
27 + 162βV − 135β2

V + 126β3
V − 90β4

V

−66β5
V + 160β6

V − 30β7
V + 75β8

V − 13β10
V

)
cΘ

+(
27 − 864βV − 1404β2

V − 468β3
V − 54β4

V

+228β5
V + 628β6

V − 12β7
V − 253β8

V − 36β9
V

)
c2
Θ

+(
81 + 324βV − 3348β2

V − 1188β3
V

+270β4
V − 324β5

V + 1308β6
V + 36β7

V

−391β8
V

)
c3
Θ + 12 (81βV + 81β2

V − 117β3
V

−270β4
V − 9β5

V + 57β6
V + 13β7

V )c4
Θ

+108(27β2
V − 42β4

V + 11β6
V )c5

Θ

]
c4
W

}

h̃ud̄44 [Θ,mVV ] = 2 fWZ s2
Θ

DWZ

{
2(3 + β2

V )2(1 + β4
V

)
c2
Θ

−(3 + 4β2
V + β4

V )2 + 2 (3 + β2
V )
[
(1 + β2

V )2(3 + β2
V )

+3βV (1 + β2
V )
(
7 + β4

V

)
cΘ

−2 (3 + β2
V )
(
1 + β4

V

)
c2
Θ

−12 βV

(
3 − β2

V + 2β4
V

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(3β2
V − 19β4

V + 9β6
V − 9

)

−6βV (1 + β2
V )(3 + β2

V )
(
7 + β4

V

)
cΘ + 2

(
9

−210β2
V − 44β4

V + 42β6
V − 53β8

V

)
c2
Θ

+24βV

(
9 + 5β4

V + 2β6
V

)
c3
Θ + 72β2

V

(
9

−6β2
V + 5β4

V

)
c4
Θ

]
c4
W

}

h̃ud̄47 [Θ,mVV ] =
√

2 fWZ

√
1 − β2

V (1 − cΘ)sΘ

DWZ

{
(3 + β2

V )2

×
[
(1 + β2

V )2 − 2
(
1 − β4

V

)
cΘ − 4c2

Θ

]

−(3 + β2
V )
[
(1 + β2

V )2(6 + 9βV + 2β2
V

−3β3
V

) + 2 (1 + β2
V )
(
27βV + 4β2

V

+3β3
V + 2β4

V − 6
)
cΘ − 4

(
6 + 18βV + 2β2

V

−3β3
V − 9β4

V

)
c2
Θ − 24

(
6βV − β3

V

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 27βV − 12β2
V + 19β4

V

−3β5
V

) − 2 (1 + β2
V )(3 + β2

V )
(
3 − 27βV

−29β2
V − 3β3

V + 8β4
V

)
cΘ − 4

(
9 + 54βV

−156β2
V + 9β3

V − 89β4
V − 30β5

V + 36β6
V

−9β7
V

)
c2
Θ − 24 (3 + β2

V )
(
6βV + 9β2

V

−β3
V − 6β4

V

)
c3
Θ − 432β2

V

(
3 − β2

V

)
c4
Θ

]
c4
W

}

(C.14)

h̃ud̄48 [Θ,mVV ] = fWZ (1 − β2
V )s2

Θ√
3DWZ

{
(3 + 4β2

V + β4
V )2 + 6(1

+β2
V )(3 + β2

V )2cΘ − 2 (3 + β2
V )3c2

Θ

−2 (3 + β2
V )
[
(1 + β2

V )2(3 − 9βV + β2
V

)

+3 (1 + β2
V )
(
6 + 11βV + 2β2

V + 3β3
V

)
cΘ

−2
(
9 − 54βV + 6β2

V − 36β3
V + β4

V

)
c2
Θ

−12βV (9 + 2β2
V )c3

Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 54βV − 30β2
V − 18β3

V

+β4
V

) + 6 (1 − βV )(1 + β2
V )(3 + β2

V )

×(
3 + 14βV − 3β2

V

)
cΘ

+2
(
324βV + 405β2

V + 324β3
V + 387β4

V

+72β5
V + 35β6

V − 27
)
c2
Θ

−24βV (3 + β2
V )
(
9 − 27βV + 2β2

V

)
c3
Θ

−216β2
V (9 + β2

V )c4
Θ

]
c4
W

}

h̃ud̄55 [Θ,mVV ] = 2 fWZ (1 − β2
V )s2

Θ

{
(3 + β2

V )2 − 2 (3 + β2
V )

×
[
3 + β2

V + 3βV

(
5 − β2

V

)
cΘ

]
c2
W

+
[
9 + 15β2

V − 17β4
V + 9β6

V + βV

(
90

+12β2
V − 6β4

V

)
cΘ + 72β2

V

(
3 − β2

V

)
c2
Θ

]
c4
W

}

h̃ud̄56 [Θ,mVV ] = √
2 fWZ

√
1 − β2

V (1 − cΘ)

{
(3 + β2

V )2

−(3 + β2
V )
[
6 + 3βV + 2β2

V + 3β3
V

+30βV cΘ

]
c2
W +

[
9 + 9βV + 24β2

V + 12β3
V

−17β4
V + 3β5

V + 6βV (5 + 3βV )

×(
3 + β2

V

)
cΘ + 216β2

V c
2
Θ

]
c4
W

}

h̃ud̄66 [Θ,mVV ] = fWZ (1 − cΘ)2
{
(1 − β2

V )(3 + β2
V )2

−2(3 + β2
V )
[
3 + 3βV − 2β2

V + 3β3
V

−β4
V + βV

(
15 − 9β2

V

)
cΘ

]
c2
W

+
[
9 + 18βV + 33β2

V + 24β3
V

−41β4
V + 6β5

V − β6
V

+6βV (5 + 6βV − 3β2
V )(3 + β2

V )cΘ

+72β2
V (3 − β2

V )c2
Θ

]
c4
W

}

h̃ud̄77 [Θ,mVV ] = fWZ (1 − cΘ)2

DWZ

{
(1 − β2

V )(3 + β2
V )2

[
1 + β4

V

+8cΘ(1 + cΘ) + 2β2
V (1 + 4cΘ + 2c2

Θ)
]

+2(3 + β2
V )
[
(1 + β2

V )2(15βV + 2β2
V
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−9β3
V + β4

V − 3
) + (1 + β2

V )
(
3βV + 16β2

V

+6β3
V + 8β4

V + 3β5
V − 24

)
cΘ

+4
(
β2
V + 9β3

V + 4β4
V + 21β5

V

+β6
V − 6 − 36βV

)
c2
Θ

+12βV

(
7β2

V + 3β4
V − 12

)
c3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 90βV + 33β2
V

+24β3
V − 41β4

V + 18β5
V − β6

V

)

−2 (1 + β2
V )(3 + β2

V )
(
3βV + 98β2

V

+6β3
V − 50β4

V + 3β5
V − 12

)
cΘ

+4
(
18 + 216βV − 105β2

V + 18β3
V

−121β4
V − 144β5

V + 65β6
V − 42β7

V − β8
V

)
c2
Θ

+24βV (3 + β2
V )
(
12 + 36βV − 7β2

V − 30β3
V

−3β4
V

)
c3
Θ + 288β2

V

(
9 − 6β2

V − β4
V

)
c4
Θ

]
c4
W

}

h̃ud̄78 [Θ,mVV ] = −
√

2 fWZ

√
1 − β2

V sΘ√
3DWZ

{
(3 + β2

V )2(1

+β2
V − 2cΘ

)[
2 + 2β2

V + 3(1

−β2
V )cΘ − (3 + β2

V )c2
Θ

]

−2(3 + β2
V )
[
(1 + β2

V )2(6 − 3βV + 2β2
V

)

+(1 + β2
V )(63βV − 10β2

V + 6β3
V

−3β4
V + 3β5

V − 3
)
cΘ

−(
27 + 33βV + 3β2

V + 66β3
V

+β4
V + 21β5

V + β6
V

)
c2
Θ

+2
(
9 − 81βV + 6β2

V + 18β3
V + β4

V

−9β5
V

)
c3
Θ + 12βV

(
9 + 2β2

V

)
c4
Θ

]
c2
W

+
[
2 (1 + β2

V )2(9 − 9βV − 30β2
V

−3β3
V + 19β4

V

) + (1 + β2
V )
(
378βV − 105β2

V + 162β3
V

−19β4
V + 30β5

V − 3β6
V + 6β7

V − 9
)
cΘ

−(
81 + 198βV − 1584β2

V + 462β3
V − 1110β4

V

+258β5
V + 184β6

V + 42β7
V − 35β8

V

)
c2
Θ

−2
(
486βV + 405β2

V + 54β3
V + 495β4

V

+18β5
V + 71β6

V + 18β7
V − 27

)
c3
Θ

+12βV

(
54 − 243βV + 30β2

V + 54β3
V

+4β4
V − 15β5

V

)
c4
Θ + 216β2

V (9 + β2
V )c5

Θ

]
c4
W

}

(C.15)

h̃ud̄88 [Θ,mVV ] = fWZ

3DWZ

{
(4 + β2

V )
(
3 + 4β2

V + β4
V

)2

−6 (3 + β2
V )2(2 + β2

V + β6
V

)
cΘ

+(3 + β2
V )2(3 + 3β2

V − 7β4
V + β6

V )c2
Θ

+6 (27 + 18β4
V + 16β6

V + 3β8
V )c3

Θ

−(3 + β2
V )2(9 + 6β2

V + 5β4
V )c4

Θ

+
[

− 2(1 + β2
V )2(36 + 54βV + 33β2

V

−36β3
V + 10β4

V − 18β5
V + β6

V

)

+12
(
18 − 33βV + 21β2

V − 59β3
V + 8β4

V

−43β5
V + 10β6

V − 21β7
V + 6β8

V − 4β9
V + β10

V

)
cΘ

+2
(
810βV − 45β2

V + 324β3
V + 42β4

V

−144β5
V + 30β6

V + 108β7
V + β8

V

+54β9
V − β10

V − 27
)
c2
Θ

−12
(
27 + 36βV + 36β3

V + 18β4
V − 52β5

V

+16β6
V − 20β7

V + 3β8
V

)
c3
Θ

+2
(
81 − 972βV + 108β2

V + 324β3
V + 90β4

V

−324β5
V + 36β6

V − 180β7
V + 5β8

V

)
c4
Θ

+12βV (3 + β2
V )2(9 + β2

V

)
c5
Θ

]
c2
W

+
[
2(1 + β2

V )2(18 + 54βV + 21β2
V − 36β3

V

+32β4
V − 18β5

V − 13β6
V

)

−6
(
18 − 66βV − 123β2

V − 118β3
V − 64β4

V

−86β5
V + 154β6

V − 42β7
V + 78β8

V − 8β9
V

+β10
V

)
cΘ +

(
27 − 1620βV + 1044β2

V

−648β3
V + 426β4

V + 288β5
V + 384β6

V

−216β7
V + 539β8

V − 108β9
V + 28β10

V

)
c2
Θ

+6
(
27 + 72βV − 972β2

V + 72β3
V + 162β4

V

−104β5
V + 340β6

V − 40β7
V − 69β8

V

)
c3
Θ

+(
1944βV + 1512β2

V − 648β3
V + 882β4

V

+648β5
V − 1944β6

V + 360β7
V − 257β8

V

−81
)
c4
Θ − 12βV

(
81 − 486βV + 63β2

V

+324β3
V + 15β4

V − 126β5
V + β6

V

)
c5
Θ

−108β2
V

(
27 + 6β2

V − 5β4
V

)
c6
Θ

]
c4
W

}
(C.16)

The non-vanishing elements f̃ ud̄a are given by

f̃ ud̄2 [Θ,mVV ] =
2
√

2 fWZ

√
1 − β2

V sΘ

3DWZ

{
(3 + β2

V )2
[
1 + 2β2

V

+β4
V + (

2β2
V + 3β4

V − 1
)
cΘ + (

β2
V

+4β4
V − 8

)
c2
Θ − 4β2

V c
3
Θ

]

−
[
2(1 + β2

V )2(3 + β2
V )(3 + 6βV + β2

V )

−2(1 + β2
V )(3 + β2

V )
(
3 − 9βV − 8β2

V

−30β3
V − 3β4

V + 3β5
V

)
cΘ − 8βV (3 + β2

V )
(
6 + 6βV − 6β2

V − β3
V − 6β4

V − β5
V

)
c2
Θ

−8β2
V (3 + β2

V )
(
3 + 27βV + β2

V − 9β3
V

)
c3
Θ

+96β3
V (3 + β2

V )c4
Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 36βV + 78β2
V + 12β3

V

−35β4
V

) − (1 + β2
V )
(
9 − 54βV − 273β2

V

−198β3
V − 125β4

V − 42β5
V − 3β6

V + 6β7
V

)
cΘ

−8βV

(
18 + 9βV − 12β2

V − 48β3
V − 24β4

V

−65β5
V − 6β6

V + 4β7
V

)
c2
Θ
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−8β2
V

(
72 + 81βV − 6β2

V − 22β4
V − 9β5

V

)
c3
Θ

−48β3
V

(
6 + 27βV + 2β2

V − 6β3
V

)
c4
Θ

−432β4
V c

5
Θ

]
c4
W

}

f̃ ud̄3 [Θ,mVV ] = fWZ (1 − cΘ)

3DWZ

{
(3 + β2

V )2
[
(1 + 3β2

V + 3β4
V

+β6
V ) + (3 + 13β2

V + 9β4
V − β6

V )cΘ + 4β2
V (7

−β2
V )c2

Θ + 4β2
V (3 − β4

V )c3
Θ

]

−
[
2 (1 + β2

V )2(3 + β2
V )
(
3 + 6βV

+4β2
V − 6β3

V + β4
V

) + 2 (1 + βV )

×(1 + β2
V )(3 + β2

V )
(
9 + 45βV − 12β2

V

−12β3
V + 19β4

V − β5
V

)
cΘ

+8 βV (3 + β2
V )2(6 + 7βV + 12β2

V − β3
V

)
c2
Θ

+8 β2
V (3 + β2

V )
(
9 + 90βV − 18β3

V − β4
V

)
c3
Θ

+96β3
V (3 − β2

V )(3 + β2
V )c4

Θ

]
c2
W

+
[
(1 + β2

V )2(9 + 36βV − 165β2
V − 24β3

V

+115β4
V − 12β5

V + β6
V

)

+(1 + β2
V )
(
27 + 324βV + 216β2

V − 36β3
V

−162β4
V + 60β5

V − 32β6
V + 36β7

V − β8
V

)
cΘ

+16βV

(
27 + 117βV + 72β2

V + 51β3
V

+39β4
V − 47β5

V + 6β6
V + 11β7

V

)
c2
Θ

+16β2
V

(
108 + 135βV + 144β2

V + 18β3
V

+6β4
V − 9β5

V + 2β6
V

)

+48β3
V (18 + 81βV − 15β3

V − 2β4
V )c4

Θ

+432β4
V (3 − β2

V )c5
Θ

]
c4
W

}

f̃ ud̄4 [Θ,mVV ] = 2 fWZ (1 − β2
V )s2

Θ

3DWZ

{
(3 + β2

V )2
[
(1 + 2β2

V

+β4
V ) + 4β2

V (3 + β2
V )2c2

Θ

]

−2 (3 + β2
V )
[
3 + 7β2

V + 5β4
V + β6

V

+(
24βV + 24β3

V

)
cΘ

+4β2
V

(
3 + β2

V

)
c2
Θ + 48β3

V c
3
Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 30β2
V + β4

V

)

+48βV

(
3 + 4β2

V + β4
V

)
cΘ

+32β2
V (18 + 12β2

V − β4
V )c2

Θ

+96β3
V

(
3 + β2

V

)
c3
Θ + 432β4

V c
4
Θ

]
c4
W

}

f̃ ud̄7 [Θ,mVV ] =
2
√

2 fWZ

√
1 − β2

V sΘ

3DWZ

{
(3 + β2

V )2(1 + cΘ

+β4
V (1 − 3cΘ + 4c2

Θ

)

+2β2
V

(
1 − cΘ − 4c2

Θ + 2c3
Θ

)

−
[
2 (3 − 6βV + β2

V )(1 + β2
V )2(3 + β2

V )

−2(1 + β2
V )(3 + β2

V )

−2 (1 + β2
V )(3 + β2

V )
( − 3 − 9βV + 8β2

V

−30β3
V + 3β4

V + 3β5
V

)
cΘ

+8βV (3 + β2
V )
(
6 − 6βV

−6β2
V + β3

V − 6β4
V + β5

V

)
c2
Θ

+8β2
V (3 + β2

V )
(
3 − 27βV + β2

V + 9β3
V

)
c3
Θ

+96β3
V (3 + β2

V )c4
Θ

]
c2
W +

[
(1 + β2

V )2

[
9 + βV (7βV − 6)

(
6 − 6βV − 5β2

V

)]

+(1 + β2
V )
(
9 + 54βV − 273β2

V + 198β3
V

−125β4
V + 42β5

V − 3β6
V − 6β7

V

)
cΘ

+8βV

(
18 − 9βV − 12β2

V + 48β3
V

−24β4
V + 65β5

V − 6β6
V − 4β7

V

)
c2
Θ

+8β2
V

[
72 − βV (81 + 6βV + 22β3

V − 9β4
V )
]
c3
Θ

+48β3
V

(
6 − 27βV + 2β2

V

+6β3
V

)
c4
Θ + 432β4

V c
5
Θ

]
c4
W

}
(C.17)

f̃ ud̄8 [Θ,mVV ] = − fWZ

3
√

3DWZ

{
(3 + β2

V )2
[
(1 + β2

V )3

−6
(
1 + 5β2

V + 3β4
V − β6

V

)
cΘ

−(
3 − 15β2

V + 13β4
V − β6

V

)
c2
Θ

+48β2
V c

3
Θ + 4β2

V

(
β2
V − 3

)
c4
Θ

]

+
[

− 2(1 + β2
V )2(9 − 54βV + 15β2

V

+36β3
V + 7β4

V + 18β5
V + β6

V

)

−12
(
24βV − 51β2

V + 20β3
V − 58β4

V

+4β5
V − 14β6

V + 12β7
V + 3β8

V

+4β9
V + β10

V − 9
)
cΘ

+2
(
27 + 162βV − 117β2

V + 1296β3
V

+30β4
V + 900β5

V + 54β6
V + 7β8

V

−54β9
V − β10

V

)
c2
Θ

+48βV

(
9 − 18βV − 21β2

V − 12β3
V

+7β4
V − 2β5

V + 5β6
V

)
c3
Θ

−8β2
V

(
486βV − 9β2

V + 108β3
V + 3β4

V − 18β5
V

+β6
V − 27

)
c4
Θ + 96β3

V

(
9 − β4

V

)
c5
Θ

]
c2
W

+
[
(1 + β2

V )2(9 − 108βV − 165β2
V

+72β3
V + 115β4

V + 36β5
V + β6

V

)

+6
(
48βV − 195β2

V + 40β3
V − 130β4

V

+8β5
V + 130β6

V + 24β7
V + 75β8

V

+8β9
V + β10

V − 9
)
cΘ

−(
27 + 324βV − 1629β2

V + 2592β3
V

−762β4
V + 1800β5

V + 558β6
V − 209β8

V

−108β9
V − β10

V

)
c2
Θ

−48βV

(
9 − 9βV − 21β2

V + 93β3
V

+7β4
V + 53β5

V + 5β6
V − 9β7

V

)
c3
Θ

−16β2
V

(
108 − 243βV − 99β2

V − 54β3
V

+51β4
V + 9β5

V + 2β6
V

)
c4
Θ

−96β3
V (9 − 81βV + 9β3

V − β4
V )c5

Θ
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−432β4
V (3 − β2

V )c6
Θ

]
c4
W

}
(C.18)

The elements g̃ud̄a are identical: g̃ud̄a = f̃ ud̄a .
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