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Abstract
Much hope for finding new physics phenomena at microscopic scale relies on the observations
obtained from High Energy Physics experiments, like the ones performed at the Large Hadron
Collider (LHC). However, current experiments do not indicate clear signs of new physics that
could guide the development of additional Beyond Standard Model (BSM) theories. Identifying
signatures of new physics out of the enormous amount of data produced at the LHC falls into the
class of anomaly detection and constitutes one of the greatest computational challenges. In this
article, we propose a novel strategy to perform anomaly detection in a supervised learning setting,
based on the artificial creation of anomalies through a random process. For the resulting
supervised learning problem, we successfully apply classical and quantum support vector classifiers
(CSVC and QSVC respectively) to identify the artificial anomalies among the SM events. Even
more promising, we find that employing an SVC trained to identify the artificial anomalies, it is
possible to identify realistic BSM events with high accuracy. In parallel, we also explore the
potential of quantum algorithms for improving the classification accuracy and provide plausible
conditions for the best exploitation of this novel computational paradigm.

1. Introduction

Current approaches for the description of elementary particles rely on the standard model (SM) of particle
physics [1–4]. Despite its experimental success, the SM is theoretically incomplete and new physics is yet to
be explored [5, 6]. Since the discovery of the Higgs boson, the search for new physics, for example via
experiments at the Large Hadron Collider (LHC), has eventually become one of the main focuses of research
around high energy physics (HEP).

Experimental data obtained by the LHC experiments can help addressing the theoretical shortcomings of
the SM. If recorded, observations showing a significant deviation from the SM would indicate the existence
of new physics. However, state of the art LHC experiments do not yet show a clear indication of phenomena
that could motivate and validate new theories. A key challenge in this quest is represented by the problem of
storing and processing the amount of data produced by the LHC, amounting toO(106) collisions per
second, each consisting ofO(1) MB. This challenge will be amplified significantly with the start of the high
luminosity-LHC program planned for 2029 [7], that will reach a larger luminosity at the price of a larger
data flow.
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Figure 1. Illustration of the pipeline advised for our anomaly detection strategy. We start with HEP datasets of simulated SM,
Higgs and Graviton events. The Higgs events are considered separately, because they are not included in the processes of the SM
dataset. We apply a random process to the SM dataset to create artificial anomalies (see section 2). Based on the four different
datasets, we create balanced two-class datasets. One of the classes is always the SM. The other class is either composed of artificial
anomalies (training and validation), or Higgs or Graviton events (testing). We apply two preprocessing steps to the classification
datasets: feature extraction with PCA and normalization of the extracted features to the interval [−π,π]. Each training dataset is
then used to train multiple quantum or classical SVCs from which we select the best one based on the performance on the test
dataset. The best SVC is then applied in the detection of unseen anomalies (Higgs or Graviton events).

A possible remedy to handle this huge amount of data relies on the use of machine learning (ML)
models, which digest large amounts of data in order to extract underlying patterns [8–12]. The use of
anomaly detection techniques has been proposed as a valuable tool to identify Beyond SM (BSM) events
among the dominating number of SM background events [13–24]. Different approaches have been
investigated, belonging either to the supervised or unsupervised learning regimes. In the supervised learning
setting, the ML model is trained to distinguish between background and signal events using a dataset where
the events were labelled with the corresponding class. However, to acquire the labels of an event some
preliminary knowledge about the studied processes is required, e.g. through numerical simulations of a BSM
theory. This typically limits the generalization power of a supervised algorithm. In the context of the search
for new physics at the LHC, this means that this approach is typically effective whenever the considered
signal is the correct one (e.g. for Higgs boson searches). In unsupervised learning setting, the ML model is
trained to learn the structure of a dataset largely dominated by SM events. Without being provided any
additional information, it aims at identifying an anomaly as an outlier of some typicality measure, learned
during the training process. An unsupervised learning algorithm requires no labels. On one hand, this
increases the generalization power of the model. On the other hand, it reduces the accuracy since less
information about any specific signal is used.

In this paper, we propose a novel strategy for anomaly detection that tries to retain the best out of the
supervised and unsupervised setting. We propose a supervised learning approach in which the signal sample
is built by perturbing the background sample, without relying on any specific BSM theory. The background
events are represented by a selection of SM processes, and signal events are generated artificially through a
random process, which is denoted here as scrambling. This approach ensures that we introduce as little
physically-inspired bias as possible into the types of signal events we are looking for, while guaranteeing that
the obtained processes are compliant with the conservation laws of physics and detector-specific constraints.
We solve the resulting binary classification between background and signal events with the support vector
classifier (SVC) approach. An illustration of the proposed anomaly detection pipeline is shown in figure 1.
The proposed approach sits between purely supervised and purely unsupervised methods, and therefore we
also expected that its accuracy in detecting specific signal events and its generalizability will lie between these
two approaches.

In parallel with classical SVC techniques, we also consider the application of quantum kernel based
classification methods. QuantumML (QML) has recently been proposed as a new framework offering
potential speedups and performance improvements over classical ML [25–28]. Several QML algorithms, like
quantum SVCs (QSVCs) [29–31], variational quantum classifiers (VQCs) [30, 31], quantum convolutional
neural networks [32], or quantum autoencoders [33] have been applied to a wide range of HEP
problems [34–50]. With the current methods, quantum algorithms generally achieve a performance similar
to their classical counterparts. While future quantum hardware and algorithmic improvements may lead to
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more significant advantages, a solid and rigorous benchmark of the available quantum techniques is already
important today.

In this work, we verify numerically the feasibility to distinguish SM events from artificially created
anomalies. We show that such a classifier preserves its discrimination power once the scrambling anomalies
are replaced by events from realistic BSM theories. Furthermore, we demonstrate the application of a
kernel-based quantum classification algorithm to the problem under study.

This paper is organized as follows: In section 2 we present the scrambling method, followed by a short
description of the applied classification algorithm in section 3. In section 4 we demonstrate and discuss the
effectiveness of the proposed anomaly detection workflow. Finally, in section 5, we conclude with a general
discussion of the proposed method and the application of quantum algorithms for the studied classification
task.

2. Dataset scrambling

To generate a dataset for our supervised learning problem, we start from an existing collection of SM events
and we vary the different features in order to introduce anomalies (artificial events). The events are
represented by features like the momenta or the number of particles, extracted from the collision data
obtained from experiments or simulations (see section 4.1 and appendix A for details). The variation of these
features is done under certain constrains imposed by physics conservation laws or experiment-related
constraints. We call this process data scrambling. Its goal is to generate events that do not conform with the
SM, without relying on a specific BSM theory, and therefore introducing as little bias as possible about the
type of BSM events we would like to identify. We propose to do this via a random perturbation of the SM
events. The main idea of the scrambling is illustrated in figure 2(a). Starting from the SM dataset (yellow
region), we generate artificial events outside the SM (blue region). Even though there is an overlap between
the region of SM events and artificial events, we want to verify that a classifier, trained to separate the SM
events from the artificial BSM ones, would retain its discrimination power once applied to realistic BSM
events (green region).

The scrambling is done by replacing a feature in the original SM dataset with a new value chosen
according to a Gaussian distributionN (µ,σ), where µ= f is the initial value of the feature and σ is the
standard deviation. Depending on the feature, the standard deviation of the scrambling distribution is
chosen according to one of the following three options; (i) the standard deviation is fixed to a constant,
σ = λf, (ii) proportional to the standard deviation σf of the initial feature distribution, σ = λfσf, or (iii)
proportional to the feature value f, σ = λff. The constant λf , in the following denoted as scrambling factor,
determines the strength of the scrambling.

Some of the features are correlated (e.g. transverse momentum of lepton and missing transverse energy)
and therefore cannot be scrambled individually. Additionally, depending on the feature we have to implement
different strategies to respect conservation laws or detector-specific limitations. Therefore, the features are
divided into four categories: momenta, isolations, jets and particle numbers, each with their own scrambling
strategy. The scrambling strategies are presented in detail in appendix B. In figure 2(b), the scrambling is
visualized for some features in the SM dataset, each belonging to one of the categories mentioned above.

Even though the scrambling does not have an explicit bias related to specific BSM theories, it contains
implicit assumptions based on the chosen sampling distribution. As presented above, the scrambling is
performed independently for each feature (unless the features are related to each other by e.g. conservation
laws). However, in principle it is possible to use any random process to perturb the features, i.e. even
introducing correlations among them. The only requirement the generated events have to fulfill is that some
lie outside the ‘event space’ of the SM, while respecting the physical conservation laws and the constraints
imposed by the detector. However, there is no guarantee that any chosen scrambling distribution will
generate events resembling real BSM events. Nevertheless, the hope is that by learning to distinguish between
SM and artificial events, we obtain some level of generalization on out-of-distribution samples, and therefore
the possibility to detect BSM events even if they would lie outside the space of scrambled events (no overlap
between the blue and green region in figure 2(a). The generalization capabilities of our approach are
qualitatively tested by means of the experiments performed in section 4.

3. Support vector classifier

3.1. Classical SVC
The SVC, which belongs to the family of kernel methods, is a supervised learning model that can draw
hyperplanes between two classes of data points. By embedding data points into a high dimensional feature
space, where they become linearly separable, SVCs can successfully solve complex classification tasks. The
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Figure 2. (a) Schematic illustration of the scrambling idea. The scrambling process generates random events (blue region) based
on SM events (yellow region). Being able to distinguish a SM event from a scrambled event, enables us to identify events
originating from physics beyond the SM (green region). (b) Comparison of initial SM data and scrambled data at medium
scrambling strength, for a selection of the high-level features.

success of the SVC results from the so-called kernel trick, which allows to calculate a similarity measure
between data points (i.e. the kernel) without explicitly performing the mapping to the high dimensional
feature space. An example of such a kernel is the widely used radial basis function (RBF) kernel (also known
as Gaussian kernel),

K
(
xi,xj

)
= exp

(
−γ∥xi − xj∥2

)
, (1)

where xi,xj ∈ Rn, and γ is a hyperparameter to determine the bandwidth of the kernel function. Notice that
this specific kernel function corresponds to a situation in which data points would effectively be mapped into
an infinite-dimensional feature space [51].

3.2. Quantum SVC
For the QSVC, the kernel values are evaluated in a Hilbert space of quantum states. Specifically, classical
features x ∈ X are encoded in the quantum state space F via a feature map ϕ : X →F ,

x→ ρ(x) = |ϕ(x)⟩⟨ϕ(x) | . (2)

Usually, the feature map is given in terms of a parameterized unitary U(x) applied to a fixed reference state,
e.g. |ϕ(x)⟩= U(x)|0⟩. The kernel used in the classical SVC optimization is then calculated as the overlap
between two encoded quantum states,

K
(
xi,xj

)
= Tr

[
ρ(xi)ρ

(
xj
)]

=
∣∣⟨ϕ(xi) |ϕ(xj)⟩∣∣2 . (3)

A kernel of this form can be evaluated on a quantum device, and could bring an advantage over classical
SVCs provided that the quantum feature map is hard to simulate classically [30]. A carefully chosen quantum
feature map allows to solve specific classification problems more efficiently than with any know classical
counterpart [52] and it is assumed that quantum kernels will outperform classical kernels if there exists a
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Figure 3. (a) Quantum circuit used by the quantum support vector classifier (QSVC) to measure the overlap between two
encoded quantum states. The feature vector x is encoded into a quantum state through the parameterized unitary U(x). (b)
Kernel matrix for the classification between SM events and artificial anomalies calculated on the IBM quantum processor
ibm_cairo using 6 features (corresponding to 6 qubits).

bias in the data that is hard to simulate classically [53, 54]. The quantum circuit used to evaluate the kernel in
equation (3) is schematically shown in figure 3(a). The overlap between the encoded quantum states is given
by the probability of measuring the all-zero state at the end of the circuit. For the encoding of the classical
data into a quantum state, there exist several different strategies, e.g. the basis encoding, the amplitude
encoding, or, generally, the encoding via a quantum feature map [31]. The embedding we apply is inspired
by the quantum feature map introduced in [30], which is conjectured to be hard to simulate classically. The
feature map is commonly applied as a “general purpose” embedding, and it is not expected that it provides
the best possible results. However, the tailoring of the feature map to the studied problem [55, 56] is beyond
the scope of this work. The formal definition of the applied embedding unitary is

UΦ(x) = UΦ(x)H
⊗nUΦ(x)H

⊗n , (4)

where H⊗n is a layer of Hadamard gates and

UΦ(x) = exp

i
∏
S⊆[n]

ϕS (x)
∏
i∈S

Zi

 . (5)

The encoded state is obtained by applying the embedding unitary to the all zeros state |0⟩⊗n. We choose the
following coefficients ϕS for the data encoding

ϕ{i} = γxi ,

ϕ{i,j} =
(γxi)

(
γxj
)

γπ
=

γ

π
xi xj ,

(6)

where we also introduced the hyperparameter γ, which is a constant scaling factor of the input features x.
The rescaling of the two-index coefficients ϕ{i,j} ensures that all encoded rotation angles lie in the interval
[−γπ,γπ], if we assume that xi ∈ [−π,π].

An example of a kernel matrix obtained with this quantum feature map is shown in figure 3(b). The
kernel values were estimated with the IBM Quantum processor ibm_cairo using 6 input features
(corresponding to 6 qubits).
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4. Results

4.1. Datasets
In the studied anomaly detection problem, background events are represented by simulated samples of the
SM processes typically observed at 13 TeV [57, 58]. The included processes are (with relative occurrences): W
bosons decaying into a charged and a neutral lepton (59.2%), multi-jet production from QCD processes
(33.8%), Z boson decaying into two charged leptons (6.7%), and t̄t production (0.3%). To test the proposed
anomaly detection strategy, we use two different types of processes as signal events. The first one is the Higgs
boson, which has not been included in the SM dataset, and can therefore be interpreted as a BSM particle.
The dataset for the Higgs boson consists of simulated high-mass Higgs particle produced via vector boson
fusion [59]. Additionally, we also use a sample of simulated Randall–Sundrum Gravitons [60] decaying to
two Z bosons, forcing each Z to decay to a lepton pair [61]. These two anomaly datasets serve as proxies for
new-physics searches targeted by the ATLAS and CMS experiments at the LHC.

All events are obtained with Monte Carlo simulations (PYTHIA8 [62]+DELPHES [63] for SM,
PYTHIA6 [64] for Higgs and Graviton) and are described by 23 high-level features representing simulated
measurement results as obtained with e.g. the CMS detector. A detail list of the features and their description
in given in appendix A.

Using the scrambling process introduced in section 2 we create three different datasets with artificial
anomalies, each with different scrambling intensity, denoted as low,medium and high scrambling. The
corresponding scrambling factors λf are listed in appendix B.4. Here, we limit ourselves to the scrambling of
a subset of 17 out of the 23 high level features, allowing us to satisfy physical constraints like energy
conservation.

Following this methodology, we create training, validation and testing datasets for the binary
classification. Unless stated otherwise, the classification datasets contain 1000 samples per class, where the
background is labelled as the negative class, and the signals as the positive class. We create ten training
datasets for each scrambling strength, and one validation dataset, all consisting of a combination between
SM data and artificial anomalies. Further, we prepare two test datasets, one consisting of a combination of
SM and Higgs data, and the other of a combination of SM and Graviton data. The datasets and their
composition are schematically shown in the first two panels of figure 1.

4.2. Numerical experiments
The training of a classifier consists of two main steps, the preprocessing of the data samples and the training
itself. For the preprocessing we consider the following steps: standardization applied of the input features,
feature selection or feature extraction to reduce the number of features used in the classification, and
normalization applied to balance the importance between the feature before forwarding them to the
classifier. In the classical case, the kernel matrix for the training of the classifier is calculated with
equation (1). To calculate the kernel matrix with a quantum computer, we use a parameterized quantum
circuit to encode the classical features in a quantum state, and obtain the kernel values by calculating the
fidelity between two encoded data samples (equation (3)). Similarly to the classical case, and as proposed
in [65, 66], we introduce a hyperparameter γ in the quantum feature map to control its resolution in the
Hilbert space. Figure 6 in the appendix shows an overview of the training workflow, and in appendix C we
present a detailed hyperparameter optimization for the QSVC model.

For the simulations we have fixed the steps of the training workflow in the following way. We use no
standardization transformation prior to the feature extraction with PCA, since the tested standardization
algorithms all lead to a reduced performance (see appendix C.1). In the normalization step we scale all
features to the interval [−π,π]. For the quantum classifier, we encode the data with a feature map similar to
the one introduced in [30] with a hyperparameter fixed to γ= 0.5. A detailed description of the applied
feature map and a justification for fixing its hyperparameter are given in section 3.2 and appendix C.4,
respectively. In the case of the classical SVC, the hyperparameter of the RBF kernel (equation (1)) is
optimized for each classification individually, by selecting the one that achieves the best validation score on
an independent validation dataset.

Using this workflow, we train (Q)SVCs for each scrambling strength and training dataset, and
evaluate/validate them on the corresponding validation/test datasets. Since the events in the test dataset are
not visible to the classifier during its training, this methodology can be used to verify that the proposed
anomaly detection approach generalizes to unknown BSM events. All quantum computations were done
with Qiskit [67]. The results are shown in figure 4.

In figure 4, we compare the average AUC score for identifying artificial anomalies (blue lines), Higgs
events (red lines) and Graviton events (green lines) with a quantum (solid lines) and a classical (dashed
lines) classifier at different scrambling strength and for different number of features. The average is taken
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Figure 4. AUC for classification of BSM events among SM events with quantum and classical SVCs for different scrambling
strength and different number of features. (a) AUC for identifying artificial anomaly (blue), Higgs (red) or Graviton (green)
events among SM events for a QSVC (solid lines) and a classical SVC (dashed lines). The classifiers were trained on artificial
anomalies generated with the low scrambling strength. (b) and (c) Equivalent results, but for medium and high scrambling
intensity, respectively.

Table 1.Highest validation AUC for classification between artificial anomalies and SM events with quantum and classical SVCs for
different scrambling strengths (fourth column). The third column lists the number of features for which this validation AUC is achieved.
The last two columns hold the corresponding detection AUC of the Higgs and Graviton events.

Scrambling Number of Anomalies Higgs Graviton
Algorithm strength features AUC AUC AUC

low 8 0.900± 0.003 0.939± 0.087 0.944± 0.086
SVC medium 6 0.971± 0.003 0.981± 0.021 0.986± 0.022

high 6 0.992± 0.001 0.987± 0.010 0.995± 0.006

low 8 0.886± 0.006 0.992± 0.003 0.997± 0.001
QSVC medium 6 0.957± 0.006 0.978± 0.008 0.997± 0.001

high 6 0.981± 0.004 0.958± 0.021 0.996± 0.002

QSVCa medium 6 0.870± 0.052

sSVC-Hb 6 0.9997± 0.0001 0.989± 0.005
sSVC-Gc 6 0.9995± 0.0003 0.99999± 0.00001
aQuantum kernel estimation executed on IBM Quantum device ibm_cairo.
bReference calculation: supervised training for SM/Higgs classification.
cReference calculation: supervised training for SM/Graviton classification.

over the AUC scores of the classifiers resulting from the 10 training dataset instances. The uncertainty bands
are given by the standard deviation of the AUC scores.

A few observations are in order: confirming our expectations, the validation score for identifying the
artificial anomalies (blue lines) increases with the number of features, and the scrambling strength. We can
also confidently conclude that the proposed anomaly detection strategy is successful, since it generalizes to
Higgs and Graviton events, even though the classifiers were trained to identify the artificial anomalies. For
the low scrambling strength, using 8 features leads to the highest identification AUC of artificial anomalies
and the highest detection AUC of the Higgs and Graviton events. For the medium and high scrambling
strengths the highest AUC values are reached for 6 features. A possible reason why the number of features
with the highest AUC changes for the different scrambling factors is that inducing more extreme anomalies
produces, on average, events which are easier to distinguish from SM ones. In general, this leads to both an
increased validation and detection AUC for the same number of features. In other words, for an increased
scrambling strength, a lower number of features is required to achieve the same performance. However, the
highest detection AUC value is reached for the low scrambling.

In most cases the classifiers are even better at detecting the Higgs and the Graviton events than
identifying the artificial ones. The numerical values of the highest validation AUC and the corresponding
detection AUC are listed in table 1.

The performance of the classical and QSVCs is very similar. Looking only at the classification between
SM and artificial anomalies (blue curves), the classical SVC outperforms the quantum SVC in all cases.
However, the gap gets smaller for increasing number of features, and increasing scrambling strength.
Focusing on the detection we observe the contrary behaviour. For low scrambling strength (where the
detection AUC is the highest) the QSVC is better at detecting the Higgs and Graviton events. However,
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increasing the scrambling strength closes the gap between the classical and QSVC when detecting Graviton
events, and the order gets reversed for the detection of Higgs events.

Overall, the results suggest that, although a QSVC can be better than a classical one in terms of detection
ability, in general the two methods exhibit essentially comparable performances.

A possible explanation for the improved detection score of the QSVC for Higgs and Graviton
events—which are not explicitly present in the dataset of anomalies—could lie in lower overfitting on the
classification task and, hence, a better generalization power. However, we have observed that introducing a
bias to the classical SVC by fixing the hyperparameter of the classical kernel to γ= 0.5, only leads to a
minimal drop in its classification accuracy, but to a significant gain in the detection accuracy. The
corresponding figures are shown in appendix D.

For completeness, we also compare the obtained AUC scores in table 1 with SVCs that are trained in a
purely supervised setting. The sSVC-H classifier (see table 1) is trained to distinguish Higgs events from SM
events, while the sSVC-G classifier does the same for the Graviton events. For this evaluation, we additionally
create ten training datasets and one validation dataset for both types of BSM events, each having 1000
randomly selected samples per class. To validate the classifiers, we use the same test datasets as above. As
expected in a supervised setting, the SVC trained on SM/Higgs data achieves very high AUC for the detection
of the Higgs, and a slightly lower AUC for detecting Graviton events. The same is also true the other way
around when the classifier was trained on SM/Graviton data (see last row in table 1). However, the specific
generalizability to a different type of events is highly dataset dependent and has to be evaluated on a
case-by-case basis. Nevertheless, the proposed anomaly detection strategy applying the scrambling results in
comparable AUC scores, while having no physically motivated knowledge about the anomalies at the stage of
the training.

We find similar results for the detection of other types of BSM processes in appendix G.

4.3. Hardware experiments
For all the results presented in the previous sections, the quantum kernel values were computed via the
simulation of a perfect quantum computer, without errors due to finite measurement statistics or hardware
noise. While the former can be included in numerical simulations without much effort [68], the latter is
harder to capture, and it is therefore important to benchmark quantum algorithms directly on existing
quantum processors.

We perform all hardware calculations on the IBM Quantum superconducting device ibm_cairo, using the
same experimental setup as above (same training workflow and hyperparameters). We use 104 repetitions
(shots) for the estimation of the kernel values, and we apply a depolarization error mitigation method to the
obtained kernel matrices (see appendix F.1). To ease the requirements on the quantum device, we only use 50
events per class and only look at the classification between SM and artificial events. Additionally, we also just
consider the 6-feature case for medium scrambling strength. In appendix F.2, we have included an estimation
of the required quantum resources.

One instance of a kernel matrix calculated with the quantum device is displayed in figure 3(b). In figure 5,
we also report the average ROC-AUC curve of the QSVC trained on noisy kernel matrices. Performances are
compared with the simulated QSVC and the classical SVC. The test AUC of the QSVC is listed in table 1.

The ROC-AUC curve evaluated on hardware lies consistently below the curves obtained with the classical
SVC and the simulated QSVC (see figure 5). The most probable reasons for this discrepancy are the different
sources of error inherent to quantum computations. These include shot noise and various sources of
hardware errors, e.g. due to depolarization, decoherence, read out missassignment, or leakage. To improve
the results with respect to the measurement noise, we could apply a larger number of shots in the estimation
of the kernel values. Similarly, to reduce the effects of the hardware noise, we could either use a quantum
processor with better noise characteristics, or apply more elaborate error mitigation strategies. However, a
comparison between different quantum processors or different error mitigation techniques is beyond the
scope of this work.
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Figure 5. ROC-AUC curve of the classification between SM events and artificial anomalies. The kernel matrices for the
classification were provided by a classical kernel function (blue), a simulated quantum kernel (orange), and a quantum kernel
estimated using the quantum device ibm_cairo (green).

5. Conclusions

In this work, we proposed and successfully tested a supervised learning strategy for anomaly detection.
Instead of generating anomalies provided by a BSM theory we randomly generate them with a scrambling
process that is based on an initial dataset containing SM processes. We verify the feasibility of the proposed
anomaly detection strategy by identifying HEP processes that were not included in the SM dataset during the
training of a classifier. The success of the strategy can be confirmed with both classical and QSVCs
approaches.

Currently, the scrambling process generates events which have a high overlap with the initial data
samples, and reducing this overlap could improve the classification between SM and artificial events.
However, this does not guarantee that the detection of unknown events will also improve. A possible strategy
to reduce the overlap would be to use a scrambling distribution that is different from the Gaussian
distribution. The only constraints that the generated events have to respect are physical conservation laws
and requirements by the detection. Therefore, it would in principle be possible to construct a scrambling
process that generates events with less overlap to the initial data samples, or even generate events that lie in a
desired region of the ‘event space’. The proposed scrambling strategy can also be applied for anomaly
detection approaches applying different ML models, e.g. neural networks, which are typically employed in
the context of HEP when the number of events is very large (up to millions or even billions). Additionally, we
would like to stress that the proposed scrambling strategy is not limited to HEP datasets, and could in
principle be applied for any anomaly detection problem.

While our results establish empirically a successful application of quantum kernel methods to a HEP
anomaly detection task, we could not yet observe a generalized promise for quantum advantage. However, it
is not possible to rule out individual problem instances where a quantum classifier could outperform a
classical one, e.g. for different scrambling distributions, or a higher number of features. In fact, a similar
study on anomaly detection in HEP has found evidence for scenarios where a quantum model can
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outperform the classical counterpart [69]. Such results emerge from a combination of unsupervised learning
approaches applied to a dataset where the collision events are described by the 4-momenta of the involved
particles, hence using a representation closer to the physical ‘raw data’ compared to the dataset used in this
work. Generally, there is mounting evidence that quantum advantage on classical datasets can only be strictly
guaranteed when specific structure is present [52, 53, 70, 71]. An analysis of our classification problem via
the methods proposed in [54] is also not conclusive (see appendix E).

As the data constituting the target of our work originates from a quantum HEP process, the idea of using
a quantum technique for its classification seems rather natural. However, the features currently used to
describe the processes, collected from detector measurements, are fully classical. This loss of ‘quantumness’
could in fact represent an important limitation to the use of more sophisticated QML techniques for the
analysis and classification of quantum states [32, 72–74]. We therefore believe that a different setup bypassing
the extraction of classical features could be a promising road towards quantum advantage also in the context
of HEP. While for collision events at LHC such a setting is currently not possible, there already exist
experiments at CERN where quantum sensors are studied for information extraction [75]. In the future, it
could certainly be interesting to couple a quantum processor to quantum sensors embedded in detectors,
hence enabling direct manipulation and classification of quantum amplitudes produced in an experiment.
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Table 2.High-level features used as description of the events in the HEP datasets [57, 58]. The additional column indicates if the feature
is considered in the scrambling process. The abbreviation PF stands for Particle Flow, and is related to the event reconstruction
algorithm used to process the raw collision data. The output of the algorithm are the so-called PF candidates [58].

Feature Description Scrambled?

HT The scalar sum of the transverse momenta pT of all jets having pT > 30 GeV and |η|< 2.4. x
MJ The invariant mass of all jets entering the HT sum.
NJ The number of jets entering the HT sum. x
NB The number of jets identified as originating from a b quark. x
pµT,TOT The vector sum of the pT of all PF muons in the event having pT > 0.5 GeV. x
Mµ The combined invariant mass of all muons entering the sum in pµT,TOT.
Nµ The number of muons entering the sum in pµT,TOT. x
peT,TOT The vector sum of the pT of all PF electrons in the event having pT > 0.5 GeV. x
Me The combined invariant mass of all electrons entering the sum in peT,TOT.
Ne The number of electrons entering the sum in peT,TOT. x
Nneu The number of all neutral hadron PF-candidates. x
Nch The number of all charged hadron PF-candidates. x
Nγ The number of all photon PF-candidates. x
plT The transverse momentum of the highest pT lepton in the event. x
ηl The lepton pseudorapidity. x
ql The lepton charge (either−1 or+1).
Isolch The lepton isolation related to all other charged hadron PF-candidates. x
Isolneu The lepton isolation related to all neutral hadron PF-candidates. x
Isolγ The lepton isolation related to all photons. x
MET∥ The parallel component of the missing transverse energy with respect to the lepton. x
MET⊥ The orthogonal component of the missing transverse energy with respect to the lepton. x
MT The combined transverse mass of the lepton and the missing transverse energy system.
IsEle A flat set to 1 if the lepton is an electron, 0 if it is a muon.

Appendix A. HEP datasets

The events in the HEP datasets are described by 23 high-level features [57, 58]. The features are listed in
table 2, including a column which indicates if the feature is considered in the scrambling process.

Appendix B. Scrambling

With the scrambling process we randomly generate data samples that do not conform with the SM, without
relying on any BSM theory. The scrambling is done by replacing the feature values in the original dataset
with a new value chosen according to a Gaussian distributionN (µ,σ), where µ= f is the initial value of the
feature and σ is the standard deviation. Depending on the feature we apply different strategies on how to
choose the standard deviation, and also different post-processing methods to comply with conservation laws
and detector limitations. Therefore, the features are divided into four categories: momenta, isolations, jets
and particle numbers, each with their own scrambling strategy.

B.1. Momenta
There are two different types of transverse momenta we can scramble, the transverse momenta related to the
leptons and the transverse momenta related to the jets. In theory, due to conservation of momenta, these two
types of momenta would be related. However, for the jets we only have the scalar sum of the transverse
momenta as a feature in the dataset (HT). We therefore scramble the HT independently of the transverse
momenta of the leptons, and assume that the change in HT can be absorbed in an appropriate change in the
directions of the transverse momenta of the jets. The HT is updated according to the following equation,

(HT)
′ ∼ |N (HT,λHTHT)| . (B1)

For the transverse momenta related to the leptons we only scramble the transverse momentum plT of the
chosen lepton l with the highest transverse momentum. The features describing plT, are the transverse
momentum plT and the pseudorapidity ηl, where l ∈ {e,µ} is either an electron or a muon. Changing these
two features has an effect on other features, which have to be adapted accordingly. Specifically, the parallel
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and orthogonal component of the missing transverse momentum (MET∥, MET⊥), and the sum of the
transverse momenta of the leptons plT,TOT. The total momentum of the lepton l can be written as

pl = |pl|

sinθ cosϕ

sinθ sinϕ

cosθ

=

plT cosϕ

plT sinϕ

plL

 , (B2)

where the coordinate system is chosen such that the z-axis is along the beam line, and the transverse
momenta lies in the x–y plane. The polar angle θ is the angle between p and the z-axis, the azimuthal angle ϕ
is the angle between x-axis and the transverse momentum, plT is the transverse momentum, and plL is the
longitudinal momentum. The pseudorapidity ηl is defined as a function of the polar angle,
ηl =− log(tanθ/2). As an initial point we set ϕ= 0 as it is possible to align the x-axis with the transverse
momentum plT. In this case, the momentum pl is fully determined by the transverse momentum plT and the
pseudorapidity ηl,

pl = plT

 1
0
1

tan(θ(ηl))

 , (B3)

where the polar angle θ is determined by the pseudorapidity ηl. To sample a new momentum vector for
lepton l we randomly generate values for the following three quantities,

(
plT
) ′ ∼N

(
plT,λpp

l
T

)
,

ϕ ′ ∼N (0,λϕ) ,(
ηl
) ′ ∼N

(
ηl,ληση

)
.

(B4)

The sampled transverse momentum plT has to fulfil the requirement (plT)
′ > 23 GeV, and the sampling is

therefore repeated until this constraint is respected.
Assigning a new value to the momentum of lepton l has an effect on other quantities, which we have to

adapt accordingly:

• Missing transverse energy: The missing transverse energy MET is specified by a vector with two components

(
MET∥
MET⊥

)
=

(
−
∑

q p
q
T,∥

−
∑

q p
q
T,⊥

)
, (B5)

where the parallel and perpendicular direction are with respect to lepton l. Sampling a new transverse
momentum plT for lepton l also changes the definition of the parallel and perpendicular direction. To update
the components of the MET, we therefore first add plT to MET∥, rotate the MET by the sampled azimuthal
angle ϕ ′ and add (plT)

′ to the new parallel component, which results in the following equations,

(
MET∥

) ′
=
(
MET∥ + plT

)
cosϕ ′ +MET⊥ sinϕ ′ −

(
plT
) ′

,

(MET⊥)
′
=−

(
MET∥ + plT

)
sinϕ ′ +MET⊥ cosϕ ′ .

(B6)

• Sum of transverse momenta of leptons: In the SM dataset, the vector sum of the transverse momenta of all
leptons is only characterized by its absolute value. Therefore, we miss the directional information, required
for an accurate compensation of the change in plT, and we update the sum of transverse momenta in the
following way

(
plT,TOT

) ′
= plT,TOT − plT +

(
plT
) ′

. (B7)

This does not consider the direction of the momenta, however, usually plT is the dominant component of
plT,TOT and equation (B7) is a good approximation of the actual change in plT,TOT.
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Table 3. Factors determining the scrambling strength for low/medium/high scrambling.

Factor Low Medium High

λp 0.5 1.0 2.0
λϕ 0.05 0.1 0.2
λη 0.05 0.1 0.2
λHT 0.5 1.0 2.0
λIso 0.25 0.5 1.0
λJ 0.5 1.0 2.0
λb 0.5 1.0 2.0
λN,charged 0.25 0.5 1.0
λN,neutral 0.25 0.5 1.0
λN,photons 0.25 0.5 1.0
λN,electrons 0.5 1.0 2.0
λN,muons 0.5 1.0 2.0

B.1.1. Isolations
The isolation Iso of the leptons, photons and neutral atoms is randomly assigned a new value according to

Iso ′ ∼ |N (Iso,λIsoσIso) | . (B8)

The absolute value is taken, because the isolation is always positive. Additionally, as a requirement of the
reconstruction process of an CMS event, the isolation has to be smaller than 0.45. Therefore, the sampling is
repeated until this constraint is respected.

B.2. Jets
The total number of jets NJ and the number of jets involving a b-quark NB are randomly assigned a new
value according to

N ′
J,B ∼ |[N (NJ,B,λJ,BNJ,B)]| . (B9)

The number of jets is a non-negative integer, and therefore we round to the nearest integer (denoted by [·])
and take the absolute value. Additionally, the number of b-jets cannot exceed the total number of jets.
Therefore, the sampling is repeated until N ′

b ⩽ N ′
J .

B.3. Particle number
The particle number N for the neutral and charged hadrons, photons, electrons and muons are assigned a
new value according to

N ′ ∼ |[N (N,λNN)]| , (B10)

where the standard deviation is proportional to the original value. The particle number is a non-negative
integer, and therefore we round to the nearest integer and take the absolute value.

B.4. Scrambling factors
We create three different anomaly datasets each with a different strength of the scrambling. The strength of
the scrambling is controlled by the scrambling factors introduced in section 2. The three scrambling strength
are denoted as low, medium and high. The specific values of the scrambling factors are listed in table 3.

Appendix C. Evaluation of training workflow

In the following we present a detailed evaluation of the different steps in the training workflow of a QSVC.
The steps are shown as a flowchart in figure 6. A similar study can also be done for the classical SVC.
However, some steps of the preprocessing of the data for the classical SVC coincide with the steps presented
below, therefore we will only focus on the QSVC in the following.

We are going to evaluate the different options at each step of the training workflow. To reduce the
simulation times, all classifications are done with datasets containing 50 samples per class. Additionally, we
only consider the scrambled dataset with medium scrambling strength. In all evaluations, a QSVC is trained
on 10 different training datasets and validated on one validation dataset.
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Figure 6. Flowchart of the pipeline used for the training of a quantum or classical SVC.

Figure 7. Hyperparameter analysis for the training of a QSVC. Comparing different standardization transformations (a), feature
selection and feature extraction methods (b), and normalization transformations (c) for an increasing number of features,
searching for the optimal scaling factor (d), and comparing different entanglement strategies of the feature map (e). More
detailed information about the specific algorithms and evaluation settings can be found in the text of the corresponding sections.

C.1. Standardization
The standardization is applied to a dataset prior to the feature selection/extraction, and has the purpose to
balance the importance of the different features. We consider two different standardization transformations,
the transformation to mean zero and unit variance, and the transformation to the fixed interval [−1,1],
denoted as standard scaling and min-max scaling, respectively. As a reference, we also consider the training
without any standardization transformation. For all other steps of the training workflow we choose the
defaults given in figure 6. The results are shown in figure 7(a).

As expected, the AUC increases with the number of features for all considered standardization options.
Surprisingly, however, we get the best performance when we use no standardization transformation (green
curve). Therefore, we will use no standardization transformation prior to the feature selection/extraction in
the following experiments.

C.2. Feature selection/extraction
The principal component analysis (PCA) algorithm is a widely used algorithm for feature extraction. For
comparison, we also consider three feature selection strategies, the decision tree classifier, the gradient
boosting classifier, and the random forest classifier. We use no standardization transformation prior to the
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feature selection/extraction, and for the remaining steps in the training workflow we choose the defaults
given in figure 6. The results are shown in figure 7(b).

All feature selection strategies have about the same performance. However, all are out-performed by the
feature extraction with PCA. Therefore, we will use PCA to extract the features in the following experiments.

C.3. Normalization
The normalization transformation is applied after the feature selection, with a similar purpose as the
standardization transformation. We want to balance the importance of the features before inputting them to
the classification algorithm. We again consider the standard scaling and min-max scaling to the interval
[−π,π]. Additionally, we also consider a global min-max scaling, where the features are transformed to a
fixed interval with a joint transformation, instead of individual transformations for each feature. The
intuition behind the global min-max scaling is that the features retain their relative structure obtained
through the feature selection/extraction algorithm. As a reference, we again consider the training without
any normalization transformation. We use no standardization transformation, and PCA for the feature
extraction. For the remaining steps of the training workflow we take the defaults given in figure 6. The results
are shown in figure 7(c).

Using a normalization transformation is clearly beneficial. Without the normalization the trained
classifier has the same performance as a random classifier (AUC is 0.5). All other normalization
transformations have a similar performance, with the standard and min-max scaling having the highest AUC
values. In the following we will use the min-max scaling to the interval [−π,π], in order to have some control
over the range of values the features will take after the normalization.

C.4. Scaling factor
The scaling factor, as introduced in [65, 66], is interpreted as a hyperparameter of the applied quantum
kernel. This parameter should therefore be optimized. Here, we show an example of such an optimization,
and how the optimal scaling factor is chosen. For the preprocessing we apply the optimal steps found in the
previous sections, and for the feature map we use the default given in figure 6. The results are shown in
figure 7(d).

The figure shows a sweep over the scaling factor, for different number of features used for the
classification. Clearly, there is some region of scaling factor values, where the resulting classifier has the best
performance. Additionally, this region is similar for different number of features. Of the considered scaling
factor values, γ= 0.46 results in the highest performance for all considered number of features. For this
learning task and this specific choice of feature map a scaling factor of γ≈ 0.5 therefore leads to a good
performance. This values of the scaling factor ensures that all angles entering the feature map will effectively
be in the interval [−π

2 ,
π
2 ].

For a different dataset and/or a different feature map the optimal scaling factor may be different.

C.5. Feature map
We consider three different options for the entanglement layout of the feature map introduced in section 3.2.
We have full entanglement if we apply a two-qubit gates for each pair of qubits. We also consider linear
entanglement is we apply a ‘ladder’ of two-qubit gates only for neighbouring qubits (without periodic
boundary). For the RZZ rotation applied in the feature map, the linear entanglement is equivalent to a more
depth efficient layout, where at most two layers of RZZ are required (even and odd connections between
neighbouring qubits). We call this layout restricted entanglement, and apply it here instead of the linear
entanglement, which is favourable when running the circuits on hardware. The last type of layout we consider
is the separable encoding, without any entanglement between the qubits. For the preprocessing of the input
data, we use the optimized steps presented in the previous sections. The results are shown in figure 7(e).

The figure shows the test AUC for an increasing number of features for different entangling strategies.
Against our expectations, the entangling strategy does not have a significant influence on the AUC of the
classification. Generally, adding entanglement between the qubits, is expected to reveal correlations among
the features, and we therefore would expect an improvement in the AUC for increasing entanglement.
Possible explanations why this can not be observe here, could be that the classification task is too easy, or
during the preprocessing step (especially the PCA) all correlations between the extracted features are
removed, and adding correlations in form of entanglement is therefore not improving the classification. It
could also be, that the dataset does not fall into the class of problems where using a quantum model could
lead to an advantage over classical models. We present a corresponding investigation in appendix E.

Although we do not see a practical advantage of using entanglement for the specific datasets used in the
evaluation, we still use the restricted entanglement for the experiments in the main text in order to keep the
anomaly detection scheme as general as possible, also across different datasets.
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Figure 8. Validation AUC for classification of BSM events among SM events with quantum and classical SVCs for different
scrambling strength and different number of features. Same experimental setup as in figure 4, except that the hyperparameter of
the classical RBF kernel (equation (1)) is fixed to γ= 0.5. Note: only the curves of the classical SVC changed (dashed lines)
compared to figure 4.

Appendix D. Restricting classical model

In the main text the hyperparameter of the classical RBF kernel (equation (1)) was optimized for each
combination of training and validation dataset. Here, the hyperparameter will be fixed to γ= 0.5. The
resulting classification and detection score are shown in figure 8. Compared to the results in figure 4 the drop
in the classification AUC is minimal, but the detection AUC is significantly improved. The classical SVC now
also outperforms the QSVC in the detection. However, this improvement is expected to be very specific to the
classification and detection problem at hand, and cannot be expected in general (especially when the real
anomalies are unknown).

Appendix E. ‘Power of data’ metrics

In [54] the authors introduce a strategy to check if a dataset falls into the class of problems where quantum
ML models may perform better than classical models. In the following, we will follow this strategy to check
the class of the studied HEP dataset. The metrics introduced in [54] were calculated using the code provided
in the software package QuASK [76]. First, we evaluate the geometric difference g, defined as a similarity
measure between two kernel matrices,

ggen =

√∥∥∥√K1

√
K2 (K2 +λI)−2√K2

√
K1

∥∥∥
∞
, (E1)

where λ is a regularization parameter. The geometric difference ggen is also related to a training error, which
is upper bounded by

gtra = λ

√∥∥∥√K1 (K2 +λI)−2K1

∥∥∥
∞
. (E2)

Similarly to [54] we report the geometric difference ggen for a λ such that the training error gtra ≈ 0.0045.
In figure 9(a) we show the geometric difference, calculated from kernel matrices obtained with the

workflow described in the previous sections, for the classification between the SM and anomalies (resulting
from the medium scrambling) for different numbers of features and different number of samples N in the
training and validation datasets. For each problem instance (specific number of features and samples), the
geometric difference is calculated between the corresponding classical and quantum kernel matrix. In the
figure, we additionally fit a function proportional to

√
N to the geometric differences (dashed lines),

specifically g(N) = a ·
√
N+ b. The fit is done separately for each number of features. Visually, there is good

agreement between the measured geometric differences and the dashed lines, which puts us in the regime
where the geometric difference scales proportional to

√
N.

After finding the scaling proportional to
√
N, the next step in the assessment is to calculate the model

complexity, defined as

sK (N) =
N∑
i=1

N∑
j=1

(√
K(K+λI)−2

√
K
)
ij
yi yj , (E3)
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Figure 9.Metrics for the characterization of the ‘hardness’ of classifying SM and artificial anomalies. (a) Geometric difference
between classical and quantum kernels for difference dataset sizes and increasing number of features. (b) Model complexity of
classical kernels for different dataset sizes and increasing number of features. The inset shows the model complexities for 13 up 17
features. (c) Model complexity of quantum kernels for different dataset sizes and increasing number of features. The inset shows
the model complexities only for 16 and 17 features.

where yi,j are the labels of the classification, K is the classical or quantum kernel matrix, and λ is again a
regularization factor. Related to the model complexity we can define a training error,

tK (N) = λ2
N∑
i=1

N∑
j=1

(
(K+λI)−2

)
ij
yi yj . (E4)

We choose the regularization such that this training error and the model complexity are both minimized. The
resulting model complexities for the classical kernel matrices and the quantum kernel matrices are shown in
figures 9(b) and (c), respectively. In both cases, we fit a function proportional to N to the model complexities
(dashed lines), specifically s(N) = a ·N+ b. Visually, we observe good agreement between the measured
model complexities and the dashed lines especially for the higher number of samples, at least for the classical
SVC. For the QSVC, the calculation of the model complexity is somehow not very meaningful. The model
complexity is orders of magnitude bigger than in the classical case, and the values also seem to converge for
larger numbers of features. However, they do not seem to be fully converged yet, and a fair assessment is not
possible. Therefore, based on the geometric difference and the classical model complexity, we could end up
either in the case with ‘Potential quantum advantage’ or the case where the problem is ‘Likely hard to learn’.

From the results we obtained in the sections above, we would have expected to be in the case where both,
classical and QSVCs, can learn well (either gCQ ≪

√
N or sC ≪ N). Therefore, the results obtained from the

measured metrics is not conclusive and this test cannot be used to argue for (or against) quantum advantage
in the studied classification problem.

Appendix F. Hardware experiments

For the hardware experiments we used the IBM Quantum device ibm_cairo. The qubit layout of the device is
shown in figure 10. To mitigate some of the hardware errors we apply a depolarization error mitigation
strategy to the obtained kernel matrices.

F.1. Depolarization error mitigation
Some of the errors occurring on the hardware can be modelled by a depolarization channel

Dλ [ρ] = λρ+(1−λ)
1

2n
, (F1)

where λ is the survival probability of the original quantum state ρ, and n is the number of qubits. To mitigate
the depolarization error we can exploit that in the noiseless kernel matrix K all diagonal entries are 1.
Therefore, if one measures the diagonal entries in a noisy settings one can gather information about the
device noise [77]. The survival probability λi of the noisy kernel matrix element K∗

ii is

λi =

√
K∗
ii − 2−n

1− 2−n
. (F2)

The mitigated kernel values can then be obtained with

Kij =
K∗
ij − 2−n

(
1−λiλj

)
λiλj

. (F3)
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Figure 10. Qubit Layout of ibm_auckland. The highlighted qubits are the ones used in the experiments. The colour of the qubits
denotes the readout assignment error, and the colour of the edges the CNOT error (colours obtained on October 04, 2022). The
highlighted 6 qubits are the ones used to estimate the kernel values.

For the experiment in the main text, we assume that all survival probabilities λi have the same value, which
can be estimated with

λ=
1

N

N∑
i=1

λi , (F4)

where N is the size of the symmetric training kernel matrix. This value can then also be used for the
mitigation of the non-symmetric validation kernel matrix.

The applied error mitigation strategy has a low overhead in terms of the required quantum resources.
Specifically, it requires O(N) additional kernel value estimations for measuring the diagonal elements of the
kernel matrix, compared to the O(N2)measurements to obtain the full kernel matrix. There also exist more
elaborate error mitigation strategies, e.g. read out error mitigation [78, 79], pulse-efficient transpilation [80],
zero-noise extrapolation [81–83] or probabilistic error cancellation [84]. However, a comparison between
different error mitigation strategies is beyond the scope of this work.

F.2. Resource estimates
In the following, we give rough estimates of the qubit and gate resources, as well as of the QPU execution
times. In particular, we consider the circuits resulting from the application of feature maps corresponding to
equations (4)–(6). After decomposing the Hadamard gates into H= RZ(π/2)

√
XRZ(π/2) and the RZZ gates

into two CNOTs and one RZ gate, the feature map with n qubits then consists of 2n
√
X gates, 8n− 2 RZ gates

and 4(n− 1) CNOT gates. The final circuit, comprises the feature map, its inverse, and a concluding layer for
the readout in the suited basis. Using the default transpilation in Qiskit [67], the corresponding pulse
schedule has an average duration of 12.75µs for n= 6 qubits (which corresponds to the number of qubits
used in the hardware experiment in section 4.3). The average is taken over the different available IBM
Quantum backends (calculated on August 30, 2023). Note that the rotation angles of the RZ gates does not
have an influence on the duration of the pulse schedule since the RZ gates are applied virtually on the IBM
Quantum hardware [85]. For the experiments with 50 data samples executed on the hardware (section 4.3),
the total time spend on the QPU would therefore amount to around 16.26 ms. Note that in practice, the total
execution time needed to run a quantum circuit includes additional ‘classical’ contributions such as the time
of initialization of the qubit register, the queuing time, and others.

Appendix G. Different BSM datasets

In the main text, we performed initial investigations about the generalization power of the scrambling
approach by looking at its performance in detecting Higgs and Graviton events among SM events. In this
section, we complement these results by considering four additional BSM datasets that were studied in [58].
These processes are:

• A→ 4l: Neutral scalar boson (with mass m= 50 GeV) decaying into two four leptons via two off-shell Z
bosons [86],

• LQ→ bτ : Leptoquark (m= 80 GeV) decaying into a b quark and a τ lepton [87],
• h± → τν: Charged scalar boson (m= 60 GeV) decaying into a τ lepton and a neutrino [88],
• h0 → ττ : Scalar boson (m= 60 GeV) decaying into two τ leptons [89].
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Table 4. Detection AUC for different BSM processes studied in [58].

Scrambling Number of A→ 4l LQ→ bτ h± → τν h0 → ττ
Algorithm strength features AUC AUC AUC AUC

Low 8 0.604± 0.015 0.610± 0.030 0.823± 0.017 0.728± 0.018
SVC Medium 6 0.611± 0.019 0.593± 0.023 0.801± 0.017 0.701± 0.015

High 6 0.611± 0.018 0.600± 0.023 0.804± 0.019 0.704± 0.019

Low 8 0.594± 0.013 0.545± 0.033 0.776± 0.020 0.692± 0.018
QSVC Medium 6 0.555± 0.017 0.514± 0.032 0.749± 0.031 0.658± 0.025

High 6 0.533± 0.010 0.555± 0.025 0.754± 0.028 0.659± 0.021

sSVCa 6 0.785± 0.006 0.843± 0.002 0.937± 0.001 0.854± 0.005
aReference calculation: supervised training for SM/BSM process classification.

We perform the same anomaly detection procedure as for the Higgs and Graviton datasets in section 4.2. The
results are reported in table 4.

We additionally report the detection AUC of an SVC that was trained on the corresponding SM/BSM
classification task (sSVC in table 4). The results are similar to those reported in the main text: the SVC
performs slightly better than the QSVC, and the SVC trained with a supervised approach performs better
than the (Q)SVCs trained with the scrambling approach.

The classification tasks seem to be harder than the ones studied in the main text, since the AUC scores
generally are considerably lower. We attribute this finding to the larger similarity between the feature
distributions corresponding to the SM and BSM events, which is higher for the processes above than it was
for the Higgs and Graviton events. This can also lead to situations where the scrambling approach may even
fail.

However, by including some physically motivated biases into the scrambling process (instead of using a
purely agnostic approach) we expect to see an improvement of the AUC scores towards the values obtained
with a supervised approach.

All in all, these first results indicate that a classifier trained with the scrambling procedure can effectively
be used for the detection of different BSM anomalies, and therefore is able to generalize to different scenarios.
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[30] Havlíček V, Córcoles A D, Temme K, Harrow AW, Kandala A, Chow J M and Gambetta J M 2019 Supervised learning with

quantum-enhanced feature spaces Nature 567 209–12
[31] Schuld M and Killoran N 2018 Quantum machine learning in feature hilbert spaces Phys. Rev. Lett. 122 040504
[32] Cong I, Choi S and Lukin M D 2019 Quantum convolutional neural networks Nat. Phys. 15 1273–8
[33] Romero J, Olson J P and Aspuru-Guzik A 2017 Quantum autoencoders for efficient compression of quantum data Quantum Sci.

Technol. 2 045001
[34] Wu S L et al 2021 Application of quantummachine learning using the quantum kernel algorithm on high energy physics analysis at

the LHC Phys. Rev. Res. 3 033221
[35] Heredge J, Hill C, Hollenberg L and Sevior M 2021 Quantum support vector machines for continuum suppression in B meson

decays Comput. Softw. Big Sci. 5 27
[36] Terashi K , Kaneda M, Kishimoto T, Saito M, Sawada R and Tanaka J 2021 Event classification with quantum machine learning in

high-energy physics Comput. Softw. Big Sci. 5 2
[37] Gianelle A et al 2022 Quantum machine learning for b-jet charge identification J. High Energ. Phys. 2022 14
[38] Blance A and Spannowsky M 2021 Quantum machine learning for particle physics using a variational quantum classifier J. High

Energy Phys. JHEP02(2021)212
[39] Wu S L et al 2021 Application of quantummachine learning using the quantum variational classifier method to high energy physics

analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits J. Phys. G: Nucl. Part. Phys. 48 125003
[40] Belis V, González-Castillo S, Reissel C, Vallecorsa S, Combarro E F, Dissertori G and Reiter F 2021 Higgs analysis with quantum

classifiers EPJ Web Conf. 251 03070
[41] Chen S Y C , Wei T-C, Zhang C, Yu H and Yoo S 2022 Quantum convolutional neural networks for high energy physics data

analysis Phys. Rev. Res. 4 013231
[42] Chen S Y C et al 2021 Hybrid quantum-classical graph convolutional network (arXiv:2101.06189)
[43] Ngairangbam V S, Spannowsky M and Takeuchi M 2022 Anomaly detection in high-energy physics using a quantum autoencoder

Phys. Rev. D 105 095004
[44] Mott A, Job J, Vlimant J-R, Lidar D and Spiropulu M 2017 Solving a higgs optimization problem with quantum annealing for

machine learning Nature 550 375–9
[45] Zlokapa A et al 2021 Quantum adiabatic machine learning by zooming into a region of the energy surface Phys. Rev. A 102 062405
[46] Kim M et al 2021 Leveraging quantum annealer to identify an event-topology at high energy colliders (arXiv:2111.07806)
[47] Blance A and Spannowsky M 2021 Unsupervised event classification with graphs on classical and photonic quantum computers J.

High Energy Phys. JHEP08(2021)170
[48] Araz J Y and Spannowsky M 2022 Quantum-probabilistic hamiltonian learning for generative modelling & anomaly detection

(arXiv:2211.03803)
[49] Peixoto M C et al 2022 Fitting a collider in a quantum computer: tackling the challenges of quantum machine learning for big

datasets (arXiv:2211.03233)
[50] Cugini D, Gerace D, Govoni P, Perego A and Valsecchi D 2023 Comparing quantum and classical machine learning for vector

boson scattering background reduction at the large hadron collider Quantum Mach. Intell. 5 35
[51] Shashua A 2009 Introduction to machine learning: class notes 67577
[52] Liu Y, Arunachalam S and Temme K 2021 A rigorous and robust quantum speed-up in supervised machine learning Nat. Phys.

17 1013–7
[53] Kübler J, Buchholz S and Schölkopf B 2021 The inductive bias of quantum kernels Advances in Neural Information Processing

Systems vol 34 pp 12661–73
[54] Huang H-Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H and McClean J R 2021 Power of data in quantum machine

learning Nat. Commun. 12 2631
[55] Glick J R et al 2021 Covariant quantum kernels for data with group structure (arXiv:2105.03406)
[56] Lloyd S et al 2020 Quantum embeddings for machine learning (arXiv:2001.03622)
[57] Cerri O, Nguyen T Q, Pierini M, Spiropulu M and Vlimant J-R 2019 Variational autoencoders for new physics mining at the large

hadron collider J. High Energy Phys. JHEP05(2019)036

20

https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1142/9789811234033_0004
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.21468/SciPostPhys.12.1.043
https://doi.org/10.21468/SciPostPhys.12.1.043
https://doi.org/10.1103/PhysRevD.99.015014
https://doi.org/10.1103/PhysRevD.99.015014
https://doi.org/10.1103/PhysRevLett.121.241803
https://doi.org/10.1103/PhysRevLett.121.241803
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1007/JHEP10(2019)047
https://doi.org/10.1103/PhysRevD.101.076015
https://doi.org/10.1103/PhysRevD.101.076015
https://doi.org/10.1140/epjc/s10052-019-6787-3
https://doi.org/10.1140/epjc/s10052-019-6787-3
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1103/PhysRevD.101.075042
https://doi.org/10.1103/PhysRevD.101.075042
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1209/0295-5075/134/10002
https://doi.org/10.1209/0295-5075/134/10002
https://arxiv.org/abs/2203.08805
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1007/s41781-021-00075-x
https://doi.org/10.1007/s41781-021-00075-x
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1007/JHEP08(2022)014
https://doi.org/10.1007/JHEP08(2022)014
https://doi.org/10.1007/JHEP02(2021)212
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1103/PhysRevResearch.4.013231
https://arxiv.org/abs/2101.06189
https://doi.org/10.1103/PhysRevD.105.095004
https://doi.org/10.1103/PhysRevD.105.095004
https://doi.org/10.1038/nature24047
https://doi.org/10.1038/nature24047
https://doi.org/10.1103/PhysRevA.102.062405
https://doi.org/10.1103/PhysRevA.102.062405
https://arxiv.org/abs/2111.07806
https://doi.org/10.1007/JHEP08(2021)170
https://arxiv.org/abs/2211.03803
https://arxiv.org/abs/2211.03233
https://doi.org/10.1007/s42484-023-00106-3
https://doi.org/10.1007/s42484-023-00106-3
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://arxiv.org/abs/2105.03406
https://arxiv.org/abs/2001.03622
https://doi.org/10.1007/JHEP05(2019)036


Mach. Learn.: Sci. Technol. 4 (2023) 045031 J Schuhmacher et al

[58] Knapp O, Cerri O, Dissertori G, Nguyen T Q, Pierini M and Vlimant J R 2021 Adversarially learned anomaly detection on CMS
open data: re-discovering the top quark Eur. Phys. J. Plus 136 236

[59] CMS collaboration 2016 Simulated dataset VBFHiggs0MToBB_M-125p6_7TeV-JHUGenV4-pythia6-tauola in AODSIM format
for 2011 collision data (BSM Higgs) CERN Open Data Portal (https://doi.org/10.7483/OPENDATA.CMS.3R3P.5JYR)

[60] Randall L and Sundrum R 1999 A large mass hierarchy from a small extra dimension Phys. Rev. Lett. 83 3370–3
[61] CMS collaboration 2016 Simulated dataset Graviton2BPqqbarToZZTo4L_M-125p6_7TeV-JHUGenV3-pythia6 in AODSIM format

for 2011 collision data (BSM Higgs) CERN Open Data Portal (https://doi.org/10.7483/OPENDATA.CMS.SZWT.H9MC)
[62] Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O and Skands P Z 2015 An

introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 159–77
[63] De Favereau J, Delaere C, Demin P, Giammanco A, Lemaitre V, Mertens A and Selvaggi M 2014 DELPHES 3: a modular framework

for fast simulation of a generic collider experiment J. High Energy Phys. JHEP02(2014)057
[64] Sjostrand T, Mrenna S and Skands P Z 2006 PYTHIA 6.4 physics and manual J. High Energy Phys. JHE05(2006)026
[65] Shaydulin R and Wild S M 2021 Importance of Kernel bandwidth in quantum machine learning Phys. Rev. A 106 042407
[66] Peters E , Caldeira J, Ho A, Leichenauer S, Mohseni M, Neven H, Spentzouris P, Strain D and Perdue G N 2021 Machine learning of

high dimensional data on a noisy quantum processor npj Quantum Inf. 7 161
[67] Abraham H et al 2021 Qiskit: an open-source framework for quantum computing
[68] Schuhmacher J, Mazzola G, Tacchino F, Dmitriyeva O, Bui T, Huang S and Tavernelli I 2022 Extending the reach of quantum

computing for materials science with machine learning potentials AIP Adv. 12 115321
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