

B-physics highlights from ATLAS and CMS

Adam Barton

on **behalf on the ATLAS and CMS** collaborations

Moriond QCD 2023

Detectors

- Inner Detector: PIX, SCT and TRT, pT > 0.4 GeV, $|\eta| < 2.5$
- Run2: new IBL 25% improvement of time resolution with respect to Run1.
- Muon Spectrometer: triggering (|η|< 2.4), precision tracking (|η|< 2.7).
- B-physics: ~100 to 200 Hz trigger budget. 27/03/2023

The Compact Muon Solenoid (CMS)

- CMS has a similar design with stronger magnetic field.
- Muon Spectrometer: triggering ($|\eta| < 2.1$), precision tracking ($|\eta| < 2.4$).
- B-physics: ~100Hz out of 1kHz total budget.

Data Collection

- Unlike LHCb, ATLAS and CMS operate our detector at high instantaneous luminosity without dilution and a lot of trigger bandwidths have been allocated to high-pT physics programs (e.g. Higgs, BSM searches).
- With higher luminosity we have increasing difficulties collecting low-pT events within the bandwidth budget.
- ATLAS introduced *topological* triggers to keep lower thresholds and stay within the bandwidth budget.

meson

CMS

- 5 sigma+ observation of double-Dalitz decay $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Data from high-rate low-pt muon triggers saving only HLT-level info, corresponding to 101 fb⁻¹ (2017+2018). $\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \text{ (stat)} \pm 0.1 \text{ (syst)}) \times 10^{-3}$
- Using world average:

 $\mathcal{B}(\eta
ightarrow 4\mu) = (5.0 \pm 0.8 \, (\mathrm{stat}) \pm 0.7 \, (\mathrm{syst}) \pm 0.7 \, (\mathcal{B})) imes 10^{-9}$

• Branching fraction is higher than predicted but within uncertainty.

m₄₁₁ [GeV]

Measurement of the $B^0_s \rightarrow \mu^+ \mu^-$ decay properties

• Integrated luminosity of 140fb⁻¹.

CMS

• The relative uncertainty is reduced from 23 to 11% compared with previous CMS measurement.

$$\begin{aligned} \mathcal{B}(\mathrm{B}^0_{\mathrm{s}} \to \mu^+ \mu^-) &= \left[3.83^{+0.38}_{-0.36} \; (\mathrm{stat}) \, {}^{+0.19}_{-0.16} (\mathrm{syst}) \, {}^{+0.14}_{-0.13} \, (f_{\mathrm{s}}/f_{\mathrm{u}}) \right] \times 10^{-9}, \\ \tau &= 1.83 \, {}^{+0.23}_{-0.20} \, (\mathrm{stat}) \, {}^{+0.04}_{-0.04} \, (\mathrm{syst}) \, \mathrm{ps}. \end{aligned}$$

CMS is about 1.2 S.D. higher than LHCb Some tension with previously combined result

Measurer

Measurement of the $B^0_s \rightarrow \mu^+ \mu^-$ decay properties

The main challenge with $B^0 \rightarrow \mu\mu$ is the combinatorial background. It will require more data and analysis improvements to reach discovery level. Measurement of the dependence of the hadron production fraction ratio f_s/f_u on B meson kinematic variables

- 2018 Data an integrated luminosity of 61.6 fb⁻¹.
- The f_s/f_u ratio is observed to depend on the B p_T and to be consistent with becoming asymptotically constant at large p_T . Compatibly with unity.
- Efficiency-corrected yield ratio R, no significant rapidity dependence is observed but strong variation is observed in the 12 <p_T< 18 GeV range, followed by a flat trend.

CMS

Observation of $B^0 \rightarrow \psi(2S)K_{S}^0\pi^+\pi^-$ and $B_{S}^0\rightarrow \psi(2S)K_{S}^0$ decays

- Two decays are observed with > 5 S.D. with integrated luminosity of 103 fb⁻¹.
- Branching ratios measured for the first time:

$$R_{\rm s} = \frac{\mathcal{B}({\rm B}_{\rm s}^0 \to \psi(2{\rm S}){\rm K}_{\rm S}^0)}{\mathcal{B}({\rm B}^0 \to \psi(2{\rm S}){\rm K}_{\rm S}^0)} = (3.33 \pm 0.69\,({\rm stat}) \pm 0.11\,({\rm syst}) \pm 0.34\,(f_{\rm s}/f_{\rm d})) \times 10^{-10}$$

$$R_{\rm s} \frac{f_{\rm s}}{f_{\rm d}} = \frac{f_{\rm s}}{f_{\rm d}} \frac{\mathcal{B}({\rm B}_{\rm s}^0 \to \psi(2{\rm S}){\rm K}_{\rm S}^0)}{\mathcal{B}({\rm B}^0 \to \psi(2{\rm S}){\rm K}_{\rm S}^0)} = (0.69 \pm 0.14\,({\rm stat}) \pm 0.02\,({\rm syst})) \times 10^{-2}.$$

$$R_{\pi^+\pi^-} = \frac{\mathcal{B}(B^0 \to \psi(2S)K_S^0\pi^+\pi^-)}{\mathcal{B}(B^0 \to \psi(2S)K_S^0)} = 0.480 \pm 0.013 \text{ (stat)} \pm 0.032 \text{ (syst)}.$$

• the observed decay can be used to study dynamics of the intermediate states of $B^0 \rightarrow \psi(2S) K_{S}^0 \pi^+ \pi^-$.

CMS-PAS-BPH-21-003

CMS

Coming Soon

Observation of new structures in the J/ ψ -J/ ψ mass spectrum

- Studies were motivated by LHCb discovery of <u>resonant-like signal X(6900) in di-</u> <u>J/ψ spectrum</u>.
- Observation of the X (6900) structure is confirmed.

135 fb⁻¹ recorded with the CMS

CMS-PAS-BPH-21-003

CMS

Coming Soon

Observation of new structures in the J/ ψ -J/ ψ mass spectrum

CMS

	BW1	BW2	BW3
m	$6552\pm10\pm12$	$6927\pm9\pm5$	$7287\pm19\pm5$
Г	$124\pm29\pm34$	$122\pm22\pm19$	$95\pm46\pm20$
Ν	474 ± 113	492 ± 75	156 ± 56

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 11$	$168\pm33\pm69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

- Hint on the signal at 7.3GeV is more prominent in • CMS data.
- Two LHCb models are fit and compared. •
- Tension in amplitudes and widths of structures. ٠
- Precise analysis of di-J/ ψ spectrum (including • angular information) is needed to shed light on structure of the threshold signals as well as exotic nature of X(6900) and X(7300) candidates.

ATLAS

Model A assumes that the

excesses observed in both

better characterize the

same interfering resonances

8.555			
observed in the di-J/ ψ channel	di- J/ψ	model A	model B
also decay into $J/\psi+\psi(2S)$.	mo	$6.41 \pm 0.08^{+0.08}$	$6.65 \pm 0.02^{\pm 0.03}$
Model B assumes a single		$0.41 \pm 0.00_{-0.03}$ 0.59 ± 0.35 ^{+0.12}	$0.05 \pm 0.02_{-0.02}$ 0.44 + 0.05 ^{+0.06}
resonance in this channel.	1 () m.	$6.63 \pm 0.05^{+0.08}_{-0.20}$	$0.44 \pm 0.03_{-0.05}$
No interference between signal	<i>m</i> 1 Γ	$0.05 \pm 0.05_{-0.01}$ 0.35 ± 0.11 ^{+0.11}	
and the SPS di-charmonium	I I mo	$6.86 \pm 0.03^{+0.01}$	$6.91 \pm 0.01 \pm 0.01$
background is assumed.	<i>m</i> ₂ Γ	$0.30 \pm 0.03_{-0.02}$ 0.11 ± 0.05 ^{+0.02}	$0.91 \pm 0.01 \pm 0.01$
In both channels, details of the	$\Delta s/s$	$+5.1\%^{+8.1\%}$	0.15 ± 0.05 ± 0.01
lower-mass structure cannot		±3.1 ⁷⁰ -8.9%	110
	$J/\psi + \psi(2S)$	model α	model β
be discerned directly from the	m_3 or m	$7.22 \pm 0.03^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
data.	Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
More data are required to	$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$
hard a shear and a shear deal	/ ~		

channels.

٠

٠

٠

ATLAS-CONF-2019-047

Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons

Moriond QCD

overlaid with FONLL predictions.

Comparison of various models with the data points

Non-prompt good agreement with Fixed-order-next-to-leading-log

11

Phys. Rev. D 102 (2020) 092007

B_c results from ATLAS and CMS

Measurement of $B_c(2S)^+$ and $B_c^*(2S)^+$ cross section ratios

$$\begin{split} R^+ &= (3.47 \pm 0.63 \, (\text{stat}) \pm 0.33 \, (\text{syst}))\%, \\ R^{*+} &= (4.69 \pm 0.71 \, (\text{stat}) \pm 0.56 \, (\text{syst}))\%, \\ R^{*+} / R^+ &= 1.35 \pm 0.32 \, (\text{stat}) \pm 0.09 \, (\text{syst}). \end{split}$$

No significant dependences on the transverse momentum pT or rapidity.

Bc pT > 15 GeV and |y| <2.4 may provide new important input to improve the theoretical understanding of the nature of the b-bar_c heavy quarkonium states and their production processes.

Study of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$

- New results consistent with earlier measurements.
- Using entire Run 2 dataset: aiming at more precise measurement of branching fractions and the final state polarization.
- QCD PM agrees very well while others deviate in some cases or lack precision.

CM

Prompt open-charm production cross sections

Quick selection of plots - see paper for more results

All models show good agreement – but no single model describes everything perfectly.

CMS

Moriond QCD

$B_s \rightarrow J/\psi \phi$ Combination Run2 + 1

- Used to measure CP-violation phase potentially sensitive to New Physics.
- Time dependent angular maximum-likelihood fit.
- Published with Run1 to 2017 data. Ongoing Full Run 2 analysis.

Moriond QCD

D0 8 fb⁻¹

CMS 19.7 fb⁻¹

LHCb 3 fb⁻

68% CL contours

 $(\Delta \log \mathcal{L} = 1.15)$

CDF 9.6 fb⁻¹

Eur. Phys. J. C 81 (2021) 342

sd][°]1∧

0.12

0.10

0.08

0.06

ATLAS Preliminary $\sqrt{s} = 14$ TeV, 3 ab⁻¹

from Run 1/2 data

Simulations and Projections

ATLAS 19.2 fb⁻

- Both ATLAS and CMS continues their B-Physics programs, publishing analyses from Run-2 and collecting new data in Run-3.
- I have presented the first observations of some resonances.
- I've presented a selection of results here, see published results pages for more <u>ATLAS</u> and <u>CMS</u> (preliminary).
- All measurements searching for new physics in B-flavour sector confirmed no violation of SM within a precision of data used since far.
- Measurements of Charmonia as well as the open-flavour hadronproductions, provide valuable tests to multiple QCD production models.

Backup

Combination of the ATLAS, CMS and LHCb results on the $B_s \rightarrow \mu^+ \mu^-$ decays

Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons

Good agreement with CMS and ALICE