

Rachid Mazini

Institute of Physics, Academia Sinica Taiwan On behalf of the ATLAS and CMS collaborations

57th Rencontres de Moriond LaThuile, Italy March 25th, April 1st 2023

Introduction

The Standard Model is working as expected

Introduction

General gravity seems to work BUT!

3 Main issues from observations:

Missing mass

Missing mass Lack of dissipation Lack of dissipation Missing mass Over long time scales

Δ

Missing Mass ⇒**Dark Matter** "Inferred" through its gravitational interactions

Rachid Mazini, Academia Sinica Taiwan

Moriond, March 29th, 2023

3 Main issues from observations:

Most of the Universe seems to be **dark**! ~5% of (SM) interacting matter!

Rachid Mazini, Academia Sinica Taiwan

5

The quest for Dark Matter

The physics that we know cannot explain observations and the formation of the objects that we know \Rightarrow Major paradigm shift

Solutions

- Modify Gravity (astro-ph/0403694, astro-ph/0505519). Hard!

- Add Mass/particles

- Production/annihilation cross sections need to explain relic density
- > New particles could be light / heavy but with small interactions with SM particles

- > Many models predict such a weakly interacting massive particle
- SM-DM interact via mediator
- Might be produced in high energy pp collisions at the LHC
- Possible searches for both DM particles and mediators

6

The quest for Dark Matter

The physics that we know cannot explain observations and the formation of the objects that we know \Rightarrow Major paradigm shift

Solutions

- Modify Gravity (astro-ph/0403694, astro-ph/0505519). Hard!

Dark Matter Models

- Simplified models:
 - Describe the essential features of a variety of DM signals through a minimal set of parameters. (LHC DM Forum <u>arXiv:1507.00966</u>)
 - Parameters:
 - ✓ Mediator: Spin, Mass (M_{med}),
 - ✓ DM mass (M_{DM})
 - Mediator coupling to DM (g_{DM}), quarks (g_{α}), leptons (g_{ℓ})
- Higgs Portal
 - Higgs boson mediates the DM-SM sectors. Parameters: $m\chi$, χ -spin

 More complete models (more free parameters and better sensitivity) involving several Higgs-like (or scalar) bosons 2HDM+a, Dark Higgs,...

SUSY

 Provides good candidate for DM: Lightest supersymmetric particle (LSP). But Model-dependent limits.

Rachid Mazini, Academia Sinica Taiwan

Med(mmed

www

Dark Matter @ the LHC

- Searches at colliders could be complementary to Direct (DD) and indirect (ID) detection
- Favourite candidate: WIMP: heavy (?), stable

General collider strategy

- DM does not interact with the apparatus ⇒
 Final states with undetected particles
- Creates a transverse momentum p_T imbalance
- Missing transverse momentum E_T^{miss} signature

$$\sum_{\nu's \text{ or } \chi's} \overrightarrow{p_T} \longrightarrow E_T^{miss} \equiv |-\sum \overrightarrow{p_T}|$$

- Precise measurements needed to identify and reject sources of anomalous high E_T^{miss} (noise, beam halo, Energy resolution...)
- SM particles provide trigger and event topology

9

The ATLAS and CMS detectors at the LHC

This talk

Mono-X searches
 Examples
 DM summary plots

 Higgs portal Invisible

- Non-WIMP searches Semi-visible Higgs decays Dark Higgs Dark jets
- What about SUSY?

Mono-Z: $Z(\rightarrow \ell \ell) + E_T^{miss}$

Higgs-portal

simplified mode

- Final state: Two opposite-charge leptons (e^+e^- , $\mu^+\mu^-$)
 - Trigger: 1,2 leptons
 - Signal region defined with: \checkmark ATLAS: $m_{\ell\ell} \in [76,106]$ GeV, $\Delta R_{\ell\ell} < 1.8$. $E_T^{miss} > 90$ GeV, $\sigma(E_T^{miss}) > 9$ \checkmark CMS: similar selections plus $p_T^{\ell\ell} > 60$ GeV, $E_T^{miss} > 80$ GeV
 - Dominant background: ZZ and WZ
 3ℓ, 4ℓ CRs to constrain WZ/ZZ, eµ CR to constrain tt, WW

Interpretation in '2HDM+a', simplified DM model (spin-1 mediator), Higgs-portal

g 0000

Rachid Mazini, Academia Sinica Taiwan

Moriond, March 29th, 2023 12

tt, tW, tq + E_T^{miss}

- Focus on DM with spin-0 mediator
- Combination of 0, 1, & 2 lepton searches
- Dominant background: tt, W/Z+jets
- Signal Region:

0,1 *e* / μ , 1 *b-jet*, E_T^{miss} > 250 GeV, large-R jets with W-tagging or two small-R jets for hadronic W candidate

- Discriminant: depend on target signature: mT, BDT...
- Set limits on $\sigma/\sigma_{\text{theory}}$ vs. $m_{\phi(a)}$

Model excluded up to m_a = 370 GeV and $m_{\mu^{\pm}}$ = 1500 GeV

Invisible Higgs interpretation

Analysis	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52\substack{+0.23 \\ -0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$
tt2L	$-0.09^{+0.22}_{-0.20}$	0.39	$0.42^{+0.18}_{-0.12}$
<i>ttH</i> comb.	$0.08^{+0.16}_{-0.15}$	0.40	$0.30\substack{+0.13 \\ -0.09}$

Mono-Higgs: $h(\rightarrow \tau_{had}\tau_{had}) + E_T^{miss}$

m_A [GeV]

- di- τ_{had} + E_T^{miss} trigger
- Dominant background: VV, VH, tt, V+jets
- Lepton & b-jet veto
- Data driven for fake factor jet
 →τ_{had}
- Discriminant variable: Sum of t -lepton transverse masses
- Strong dependance on mA
- Model-independent limits on BSM signal for every bin, $\sigma_{\rm vis}$ < 0.04 0.08 fb.

Mono-Higgs searches

200

/oth

0_{95%}

DM summary

ATLAS DM Summary: <u>ATL-PHYS-PUB-2022-036</u> CMS DM Summary: <u>Exotica Summary plots</u>

Vector Mediator in Simplified Models

Exclusions depend on coupling parameters Mediator searches in dijet resonances largely dominant.

DM summary

Pseudo-Scalar Mediator in Simplified Models

Combination of $H \rightarrow invisible$ searches

- Higgs boson as a mediator between SM and DM sectors
- SM BR(h \rightarrow inv) = 0.1% from h \rightarrow ZZ* \rightarrow 4v
- Invisible Higgs decay would increase BR(h→inv) w-r-t SM predictions
- Assume SM Higgs production, with different event topologies

Combination of $H \rightarrow invisible$ searches

arXiv:2301.1073

- <u>Full Run-2 H→inv combination</u> BR(H→inv) < 0.107 (0.077) @ 95% C.L
- Interpret in Higgs portal models to set limits on WIMP-nucleon cross section at 90% CL
- Complementary to direct searches

19.7 fb⁻¹ (8 TeV) + 140 fb⁻¹ (13 TeV) 10-37 $\sigma_{DM-nucleon}^{SI}$ (cm²) 19.7 fb⁻¹ (8 TeV) + 140 fb⁻¹ (13 TeV)

Constraints are compatible with SM H \rightarrow invisible branching ratio.

DM-neucleon cross-section

CMS

10⁻³⁸

10-39

10⁻⁴⁰

10-41

10⁻⁴²

10-43

10-44

 10^{-45}

10-46

10-47

95% CL upper limit on the in BR ($H \rightarrow invisible$) < 0.18 (0.10)

PRD.105.092007

90% CL Limits

 $B(H \rightarrow inv) < 0.16$

Higgs portal models

-- · Fermion DM

Scalar DM

Direct DM Detection

LUX

Xenon1T 2018

Panda-X 41 CDMSlite

Cresst-II

Combination of $H \rightarrow invisible$ searches

Combination of Run 1 and Run2

Dark photon in VBF H $\rightarrow \gamma + E_T^{miss}$

- Final state: isolated γ , E_T^{miss} , 2 forward jets
- Trigger: single γ (ATLAS, CMS), E_T^{miss} (CMS)
- Dominant Background: $W(\rightarrow \ell v)(+\gamma)+jets, Z(\rightarrow vv)(+\gamma)+jets$
- Discriminant Variable:

$$m_{\rm T}(\gamma, E_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}^{\gamma}E_{\rm T}^{\rm miss}} \left[1 - \cos(\phi_{\gamma} - \phi_{E_{\rm T}^{\rm miss}})\right]$$

• ATLAS/CMS searched for $\gamma + \gamma_d$ decay from both SM Higgs or BSM Higgs-like bosons.

Dark photons in $\ell + \ell^2 + \gamma + E_T^{miss}$

 \sim

- Signal from SM ZH, $Z \rightarrow \ell + \ell -$, $H \rightarrow \gamma \gamma_d$, undetected dark photon $\rightarrow E_T^{miss}$
- Background estimation:
 - Fake E_T^{miss} : Z γ +jets, Z+jets. Data driven
 - e $\rightarrow \gamma$: fake photon. VV, VVV. Data driven fake factor
 - top, VVy, Wy, Higgs. MC estimated with validations in CR
- Binned BDT classifier to enhance signal sensitivity

The observed (expected) upper limits on BR(H $\rightarrow \gamma \gamma_d$) are at the level of **2.3% (2.8%)** for massless γ_d , and **2.5% (3.1%)** for mass (γ_d) of 40 GeV. The first limit on low mass γ_d from H $\rightarrow \gamma \gamma_d$ at the LHC

Production	ZH	VBF
ATLAS	2.3 (2.8)%	1.8 (1.7)%
CMS	4.6 (3.6)%	3.5 (2.8)%

More searches for dark photons

Er^{miss} > 200 GeV

- What about BSM Higgs? \Rightarrow Searches for high-mass $\gamma + E_T^{miss}$ resonances
- Final state with ggF and VBF production modes, with $H \rightarrow \gamma \gamma_d$

- E_T^{miss} trigger limits the reach for low masses.
- Analysis optimized in E_T^{miss} bins defining 4 SR for maximum sensitivity
- Main background: $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow I\nu)\gamma$, Fake γ from e or jets
- Independents results for ggF (first at the LHC) and VBF, + combination

Dark Higgs Models: $s(W^+W^-) + E_T^{miss}$

- Signature $s \rightarrow WW \rightarrow \ell v + qq$
- E_T^{miss} or single trigger
- Discriminant variable m_s^{min}
- Dominant Background:
- W+jets: Constrained using a CR with large $\Delta \phi(W_{had}, \ell)$
- ttbar: Constrained using a CR with a CR 2 b-quarks jets

arXiv:2211.07175

\bar{q} Z' X \bar{q}' Z' X \bar{q}' \bar{q}'

Moriond, March 29th, 2023 24

Dark Higgs Models: $s(W^+W^-) + E_T^{miss}$

- Signature $s \rightarrow WW \rightarrow \ell v + \ell v / \ell v + qq$
- Discriminant variable:
 - Dilepton: $m_{\mathrm{T}}^{\ell \min, p_{\mathrm{T}}^{\mathrm{min}}} = \sqrt{2p_{\mathrm{T}}^{\ell \min}p_{\mathrm{T}}^{\mathrm{miss}} \left[1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\ell \min}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})\right]},$
- Semi-leptonic:
- BDT based on `13 variables with S/B max. sensitivity
- Background CR regions for ttbar/tW, WW, DY, W+jets
- SR for Semi-leptonic optimized for 2016 and 2017-18

 $\overline{\mathcal{D}_{\mathrm{T}}^{\mathrm{miss}}}$], \overline{q}

Rachid Mazini, Academia Sinica Taiwan

 W^{-}

Semi-Visible jets

- Signature $s \rightarrow WW \rightarrow \ell v + \ell v / \ell v + qq$
- Signal Region
 - 2 semi-visible jets (SVJs), Leading/sub-leading jet p_T > 150/30 GeV
 - ≥1 additional jet to suppress multijet background
 - Veto e, μ , and \geq 2 b-tags to suppress other backgrounds
 - High $H_T = \Sigma_{jets} p_T$ and high $E_T^{miss} > 600$ GeV close to a jet
- Discriminant variables: p_T balance and $|\Phi_{max} \Phi_{min}|$

Exclusion of mediator masses up to 2.7 TeV

ATLAS-CONF-2022-038

Semi-Visible jets

- The scalar mediator Z' acts as a SM-DS portal
- Signature: 1 jet aligned to the E_T^{miss} direction
- **Backgrounds:** QCD multijet, rejected by $R_T = p_T^{\text{miss}}/m_T > 0.15$ and this reject t-channel as well
- 2 Signal Regions
 - Low R_T : 0.15 < R_T < 0.25
 - High R_T : R_T > 20,25
 - High $H_T = \Sigma_{jets} p_T$ and $E_T^{miss} > 600$ GeV close to a jet
- Discriminant variables: m_T and E_T^{miss}

• Excluding $1.5 \le m_{z'} \le 5$ TeV for

$$r_{Inv} = 0.3$$

- Excluding $0.01 \le r_{Inv} \le 0.77$ TeV for $m_{dark} = 20$ GeV
- Small excess around $m_{z'} = 3.5 \text{ TeV}$ with no real significance ($\sim 2\sigma \text{ local}$)

Searches for Electroweakinos

Examples of searches for direct neutralino/chargino production

Lepton+jet

ATLAS-CONF-2022-059

Same-sign/trilepton

ATLAS-CONF-2022-057

• Di-tau

ATLAS-CONF-2022-042

Electroweakinos in 122J

- Single lepton trigger
- Dominant background: V+jets, VV
- Signature: 1 isolated lepton, at least two jets, and missing transverse energy

ATLAS-CONF-2022-059

- WW: chargino masses 260-520 GeV can be excluded (for a massless neutralino)
- WZ: degenerate chargino/neutralino masses 260-420 GeV can be excluded (for a massless neutralino

top squark in 1*2*J

- Four-body decay of the \tilde{t}_1 : $bff'\chi_1^0$
- **Signature:** high p_T^{jet} , significant E_T^{miss} and low $p_T^{e||\mu}$
- Signal selected based on a multivariate approach (BDT) adapted to the $m(\tilde{t}_1) - m(\chi_1^0)$ mass difference that should not exceed the W boson mass.
- Leading background processes $(W + jets, t\bar{t})$ are determined from data.

Exclusion limits on the production cross section as a function of the and masses under the assumption of simplified models

Conclusion

- Extensive list of results on searches for DM signals
- Both ATLAS and CMS experiments probed a wide range of final states and models
- Large Run 2 datasets + improvements in analysis techniques, background modeling and estimation led to more stringent exclusions
- Still no sign from DM production at the LHC
- Ongoing Run 3, with expected double integrated luminosity could open a new era in DM searches
 - More precision to investigate existing "excesses"
 - Higher statistics to explore rare processes for potential anomalies
 - Possibility to identify not yet covered phase-space
 - New unexplored search strategies

Backup

Dark Matter Models

Need to balance between generality and completeness

- Simplified Models are used as guidance
- Few free parameters:
 - Masses, Couplings / lifetimes
 - Nature of BSM particles
 - Easy visualization and comparisons between
 - experiments

Monojet comparison ATLAS-CMS

ATLAS-EXOT-2018-06 CMS-EXO-20-004

Axial-vector mediator

CMS has significantly better limits in pseudo-scalar mass exclusion

> CMS and ATLAS pretty much similar limits for spin-1, exclude mediator mass upto 1.95 (2.1) TeV, for CMS(ATLAS), respectively

- CMS produces exclusion in coupling which ATLAS doesn't