Measurements of Higgs bosons decaying into bb or cc pairs, and how to improve them with GNN-based flavour tagging techniques

Martino Tanasini, on behalf of the **ATLAS Collaboration**

> Rencontres de Moriond EW 2023 Young Scientists Forum

di Genova

10.1140/epjc/s10052-022-10588-3

Search for VH(H \rightarrow cc) decays

Motivation:

 \rightarrow Higgs couplings to 3rd generation fermions (ttH, H $\rightarrow \tau\tau$, $H \rightarrow bb$) observed.

 \rightarrow Probing couplings to lighter 2nd generation fermions could open windows to new physics.

 \rightarrow H \rightarrow cc: one of the **most common** yet unobserved decay modes.

Goal:

 $\rightarrow \mu_{VH,Hcc}$ extracted with a fit on the invariant mass of the c-jet pair.

Focus of today:

 \rightarrow Deep learning based dedicated *c*-tagger with 27% c-jet efficiency, 8.3% b-jet efficiency, and 1.7% light jet efficiency (on a ttbar sample).

Results

10.1140/epjc/s10052-022-10588-3

 \rightarrow Upper limit is set on VH,H \rightarrow cc process of **26 times the SM prediction**.

 \rightarrow Results interpreted in the kappa framework constraining the coupling modifier $|k_c| < 8.5 @ 95\%$ CL (fixing the other couplings to the SM prediction, assuming no BSM decay modes, considering modifications to decays only).

GN1: flavour-tagging with Graph Neural Networks

Auxiliary Tasks

- \rightarrow GN1: state-of-the-art jet flavour-tagging algorithm in ATLAS.
- \rightarrow Represents jets as graphs of tracks of charged particles.

GN1: Improved *c***-tagging performance**

ATL-PHYS-PUB-2022-027

 \rightarrow Factor ~2 improvement for b and light-flavour jet rejection @ a 27% c-jet tagging efficiency.

 \rightarrow It will directly impact the sensitivity of the ATLAS experiment to the VH,H \rightarrow cc process.

Boosted VH \rightarrow bb

Motivation:

 \rightarrow VH \rightarrow bb process observed by ATLAS and CMS in 2018.

 \rightarrow High-p_T Higgs boson production sensitive

to BSM scaling with $\sim (\frac{p_T^H}{\Lambda})^2$

Goals:

 $\to \mu_{VH,Hbb}$ and cross section measurements in bins of p_{τ} of the vector boson.

Results

https://doi.org/10.1016/j.physletb.2021.136204

 \rightarrow Fit of the invariant mass m₁ of the Large-R jet:

- $\mu_{VHbb} = 0.72^{+0.39}_{-0.36} = 0.72^{+0.29}_{-0.28} \text{ (stat.)}^{+0.26}_{-0.22} \text{ (syst)}.$
- Cross section measurements in bins of $p_T^{W,Z}$ compatible with the SM (interpreted in an Effective Field Theory to constrain new-physics effects).

Truth-Tagging Technique

 \rightarrow Main backgrounds simulated with MC generators.

 \rightarrow **Truth-Tagging:** weighting events with their *probability* of passing the flavour-tagging cuts, instead of applying the cuts themselves.

 \rightarrow Important for light-jets (cuts discard most of simulated events).

The Truth-tagging technique strongly relies on the knowledge of the tagging efficiency ϵ for each jet.

Truth-Tagging with GNNs

 $\epsilon_{iet} = \epsilon_{iet}(\vartheta)$, with ϑ set of parameters (e.g. p_{τ} and η) of each jet/event.

VS

Flavour-tagging Efficiency Maps:

- \rightarrow Simple jet by jet approach.
- \rightarrow Limited in number of parameters.

GNNs:

 \rightarrow Events as graphs of fully-connected jets. \rightarrow Allow to scale the problem to higher dimensionalities.

 \rightarrow Can take into account dependence on event-level variables.

Performance

Good parametrization of $\epsilon_{jet} \rightarrow$ Good closure on cut-based **Direct Tagging**, and less **statistical uncertainty.**

 \rightarrow **GNN** better than **Maps** at low dR.

VH, H→cc: impact of uncertainties

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total		15.3	0.24	0.48
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Flavour tagging	<i>c</i> -jets	1.6	0.05	0.16
	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth-flavour tagging	ΔR correction	3.3	0.03	0.10
	Residual non-closure	1.7	0.03	0.10

Non-closure of map-based truth-tagging

Backup

Search for VH(H \rightarrow cc) decays

Motivation:

 \rightarrow So far, we observed directly only Higgs couplings to 3rd generation fermions (ttH, $H \rightarrow \tau \tau$, $H \rightarrow bb$).

 \rightarrow Probing couplings to lighter 2nd generation fermions could **open** windows on new physics.

 \rightarrow H \rightarrow cc is one of the **most common** unobserved decay modes of the Higgs boson.

Strategy:

 \rightarrow Overwhelming QCD background suppressed using leptonic decays of W and Z bosons.

 \rightarrow Deep learning based dedicated c-tagger with 27% c-jet efficiency, 8.3% b-jet efficiency, and 1.7% light jet efficiency.

 \rightarrow Dedicated control regions to constrain main backgrounds (ttbar and V+jets).

 \rightarrow Profile likelihood fit on the invariant mass of the *c*-jet pair to extract the three parameters of interest μ_{VHcc} , μ_{VWcc} and μ_{VZcc} . The VZ/VW \rightarrow cc signal strengths are extracted to validate the strategy.

Results

 \rightarrow The Diboson cross check measurement is in agreement with the SM.

- \rightarrow Upper limit is set on VH \rightarrow cc process of **26 times the SM prediction**.
- → Results interpreted in the kappa framework as constraining the coupling modifier |*k*_|<8.5 @ 95%CL.

15

Improved *c*-tagging towards HL-LHC

 \rightarrow GN1 outperforms its predecessors of factors up to 100% (80%) for b (light) flavour jet rejection @ a 27% c-jet tagging efficiency.

 \rightarrow The impressive improvement will directly impact the sensitivity of the ATLAS experiment to the VH \rightarrow cc process.

→ Extrapolations of the expected sensitivities of the ATLAS detector to the VH→cc process at the HL-LHC, assuming a dataset of 3000 fb⁻¹ of *pp* collisions, the presence of ITk and a *b* (light) flavour jet rejections improved of a factor of 1.5 (3), predict an upper limit on μ_{VHcc} of 6.4 x SM, corresponding to $|k_c| < 8.5$ @ 95%CL.

Truth-Tagging Technique

Direct Tagging (Pass or Fail): Define as "tagged" only jets passing a given cut on the flavour-tagging discriminant variable. Jets that don't pass the cut are discarded.

Truth Tagging: Weight jets with their *probability* of passing the cut and thus being tagged. No jet is discarded: **the statistical power of the simulated background samples is optimally exploited.**

The event weighting technique strongly relies on the *a priori* knowledge of the tagging efficiency ϵ for each jet.

 ϵ is a function of a set of parameters (e.g. the phase space coordinates) ϑ of each jet: $\epsilon_{jet} = \epsilon_{jet}(\vartheta)$.

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total		15.3	0.24	0.48
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modelling uncertainties				
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01
Z + jets		7.0	0.05	0.17
Top quark		3.9	0.13	0.09
W+jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01
Multi-jet		1.0	0.03	0.02
Simulation samples size		4.2	0.09	0.13
Experimental uncertaintie	es			
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
Flavour tagging	<i>c</i> -jets	1.6	0.05	0.16
	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth flovour togging	ΔR correction	3.3	0.03	0.10
Trum-navour tagging	Residual non-closure	1.7	0.03	0.10

Source of uncertainty	$\mu_{VH(car{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total	15.3	0.24	0.48
Statistical	10.0	0.11	0.32
Systematic	11.5	0.21	0.36

	<i>c</i> -jets	1.6	0.05	0.16
Flavour tagging	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
Truth-flavour tagging	au-jets	0.3	0.01	0.04
	ΔR correction	3.3	0.03	0.10
	Residual non-closure	1.7	0.03	0.10