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1 Introduction

The interest in Effective Field Theory (EFT) techniques have been gathering momentum
recently due to the lack of new physics at the weak scale. It seems to indicate that
the Standard Model (SM) should be supplemented by higher dimensional operators and
then considered itself as an EFT. The so-called matching between a UV theory and the
effective theory at a given energy scale was in the first place performed using Feynman
diagrams. However, the functional approach soon turned out to be quite elegant, powerful
and optimal. One formally integrates out a heavy degree of freedom within the path
integral to obtain directly the effective action at a given loop order. On top of being
less computationally involved, the functional approach is more systematic. It allowed to
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unravel the universal structure of the one-loop effective action, which is expressed in the
Universal One-Loop Effective Action (UOLEA) [1–5].

At one-loop, the effective action stemming from the integration of the heavy fields
arises in the form of a functional determinant. Different methods can be employed to
decipher this functional determinant, such as the heat kernel based on position repre-
sentation [6, 7], or more recently the Covariant Derivative Expansion (CDE) based on
momentum representation [1, 2]. The latter was enhanced to encompass mixed heavy-light
contributions [3], diagrammatic representation [8], integration of a heavy chiral fermion
(i.e. involving γ5 couplings) [5], UV theory involving derivative couplings [9], and even the
evaluation of generic QFT anomalies [10]. There are also prospects of beyond one-loop
functional methods [11, 12].

Functional methods are well fit to comprise the effects of the curvature of spacetime.
It was undertaken in both the heat kernel [6, 7, 13–19] and the CDE [20, 21]. As opposed
to a Feynman diagram approach (see for example [22, 23]), gravity needs not be linearised
to obtain the gravitational loop corrections. Even though they are more attainable, the
higher order corrections remain a computational challenge to obtain.

The previous CDE procedures in curved spacetime relied on the use of the so-called
Gaillard-Cheyette sandwish [24] to form covariant operators. Although it provides a man-
ifestly covariant expansion, it also makes the computation much more intricate. In the
CDE presented in this paper, this step is avoided. Together with the use of convenient
choice of gauge and coordinate system, it makes the computation of higher order correc-
tions in curved spacetime more systematic and thus easier to compute. For the first time,
the non-renormalisable corrections are obtained within the framework of the CDE, and on
a generic spacetime background.

Although a specific choice of coordinates can simplify the computation, our expansion
is coordinate independent. Particularly, the question of the Fourier transform in curved
spacetime is treated so as to obtain a diffeomorphism invariant expansion, whereas former
approaches were mostly relying on a specific choice of coordinate, the Riemann Normal
Coordinates (RNC), to define it [20, 25, 26]. As a result, the method can also be used to
obtain non-covariant results such as consistent gravitational anomalies.

Another novelty of this paper is the derivation of a fermionic CDE in curved spacetime.
Previous methods (heat kernel, CDE and more recently using the worldline formalism [27])
always relied on a generic bosonic form of the functional determinant. It can describe the
effective action after integrating out real and complex scalar fields, massless and massive
gauge bosons, the spin-2 metric field, and even vector-like fermions. Despite its generic
form, it cannot describe a chiral fermion, as was pointed out in [5]. For the first time, a
chiral fermion in curved spacetime is integrated out within the functional approach in a
universal form, and leads to new renormalisable and non-renormalisable operators that were
not computed before. It also provides a new alternative to the use of Feynman diagrams.
Besides the computational simplicity that is proper to the path integral approach with
respect to the use of Feynman diagrams, it has the advantage of not needing to perturb
the metric around a flat background, which significantly simplifies the calculations.
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Our result is the one-loop action in curved spacetime up to six dimensional operators
in the bosonic CDE, and up to five in the fermionic CDE, given in a close form universal
formula. Our systematic procedure can be used in practice to obtain much higher dimen-
sional operators. This Gravitational version of the UOLEA should be significantly useful
to study low energy consequences of the UV completion of gravity, or generical models
including heavy degrees of freedom in gravity (see for example [28]).

The paper is organised as follows. In section 2, we acquaint the reader with the
CDE and the UOLEA in flat spacetime. In section 3, we introduce our notations and
we derive the CDE in curved spacetime both bosonic and fermionic. We also provide
in details the systematic procedure to perform the CDE. We compute the operators up
to dimension 6 of the universal bosonic one-loop effective action in curved spacetime in
section 4, and of up to dimension 5 of the universal fermionic one-loop effective action in
curved spacetime in section 5. In this last section we connect our results with an example of
computation of the axial-gravitational anomaly. The appendix A outlines the computation
of the associated master integrals, and in appendix B we give details about the coordinate
independent Fourier transform on a generic manifold. The appendix C provides RNC and
Fock-Schwinger (FS) gauge formulae.

2 UOLEA in flat spacetime

In this section, we outline the UOLEA and CDE methods in flat spacetime. We start from
an action for the UV theory, S[ϕ,Φ], that depends on light degrees of freedom ϕ and heavy
ones Φ. The effective action after integrating out the heavy degrees of freedom is,

iSeff [ϕ] = log
∫

DΦeiS[ϕ,Φ] . (2.1)

To perform the path integral, we expand Φ around its background value Φ = Φc + η such
that δS

δΦ [Φc] = 0,

iSeff [ϕ] = log
∫

DηeiS[ϕ,Φc]+ i
2 η· δ2S

δΦ2 [Φc]·η+O(η3)

≃ iS[ϕ,Φc]−
1
2Tr log

δ2S

δΦ2 [ϕ,Φc] ,
(2.2)

where the functional trace Tr is both over spacetime and internal indices.
There are several methods in the literature to expand the functional trace, but the one

we will employ is the covariant derivative expansion (CDE) [1, 24, 29]. We can then assume
a general form for the second derivative of the action to derive the so-called Universal One-
Loop Effective Action (UOLEA) [2–5]. The CDE can also be performed when the mass
matrix is non-degenerate [2], to encompass mixed heavy-light loops [3, 4], to integrate out
massive chiral fermions [5, 9] and a diagrammatic approach also exists to help with the
expansion [8].

2.1 Bosonic UOLEA

We assume the following form for the second derivative of the action of the UV theory,

Seff
1loop = icsTr log

(
D2 +m2 + U

)
, (2.3)
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where D is the covariant derivative that bears the gauge connections, and U is some local
operator (it bears no open derivative). The constant cs depends on the heavy field that
is integrated out. If it is a real scalar, complex scalar, vector-like fermion, gauge boson or
Fadeev-Popov ghost then it takes the value 1/2, 1, −1/2, 1/2 and −1 respectively. Note
that the explicit form of U also depends on the nature of the heavy field.

We evaluate the trace over spacetime by inserting a complete set of spatial and mo-
mentum eigenstates,

Seff
1loop = ics

∫
ddx

ddq

(2π)d
e−iq·xtr log

(
D2 +m2 + U

)
eiq·x

= ics

∫
ddx

ddq

(2π)d
tr log

(
(D + iq)2 +m2 + U

)
= ics

∫
ddx

ddq

(2π)d
tr log

(
−∆−1(1−∆

(
D2 + 2iq ·D + U

) ))
,

(2.4)

where ∆ = 1/(q2 −m2) and the remaining trace is over internal indices (gauge, spin, . . . ).

An extra step introduced in [24, 29] can be undertaken. It consists in sandwishing,
e−iq·xtr log

(
D2 +m2 + U

)
eiq·x, with e±iD·∂q which has the advantage of stowing the co-

variant derivatives inside commutators, but at the cost of rendering the computation more
tedious. Besides, because ∂q ≡ ∂

∂q does not commute with ∆, the logarithm cannot be
expanded simply. One has to write the logarithm as the primitive of an inverse function
and expand the inverse, as we will do in curved spacetime.1

Since D2 + 2iq ·D + U and ∆ commute, we can expand the logarithm,

Seff
1loop = −ics

∫
ddx

ddq

(2π)d

∑
n≥1

1
n

[
∆
(
D2 + 2iq ·D + U

) ]n
. (2.5)

Conveniently, a factorisation between the momentum integrals and the operator part
occurs which is the origin of the computation of the UOLEA [1, 2], and allows to derive
the Wilson coefficients in terms of master integrals (appendix A). The UOLEA operator
structures, written in terms of the matrices D and U, become EFT operators when substi-
tuting in the specific forms of these matrices (in terms of the light fields and for a given
UV model) which can then be cast into the desired non-redundant EFT basis. In light of
its generality, this suggests that in future calculations of one-loop Wilson coefficients for
operators of dimension higher than four (in practice up to six dimensions) one can skip
the usual Feynman diagram or path-integral methods and proceed directly to the UOLEA
master equation as the starting point.

1It is also possible to use the Baker-Campbell-Hausdorff (BCH) formula to expand the logarithm.
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2.2 Fermionic UOLEA

If we integrate out a massive chiral fermion2 which UV action is,

S =
∫

ddxψ̄
(
i /D −m−Q

)
ψ , (2.6)

we obtain a one-loop effective action of the form,

Seff
1loop = −i log det

(
i /D −m−Q

)
. (2.7)

This determinant can be bosonised by squaring it.3 We split Q into Qe which has an
even number of Dirac matrices and Qo with an odd number,

log det
(
i /D −m−Q

)
= 1

2 log det
(
i /D −m−Qe −Qo

)
det

(
−i /D −m−Qe +Qo

)
= 1

2 log det
(
D2 +m2 + 1

4[γ
µ, γν ]Fµν + 2mQe

+Q(Qe −Qo)− [i /D,Qe] + {i /D,Qo}
)
,

(2.8)

where in the first line we used the vanishing of the trace of an odd number of Dirac matrices,
therefore the invariance under flipping their sign.

Eq. (2.8) reduces to a determinant of the form eq. (2.3) only if Qo = 0, with U =
1
4 [γ

µ, γν ]Fµν + 2mQe + Q2
e − [i /D,Qe]. However, the usual ansatz used in the heat kernel

method, previous CDE approaches [20, 21] and the worldline formalism [27] assumes that
e−iq·xUeiq·x = U (i.e. no open derivative), which is not always true depending on Qe (for
example if Qe ⊃ γ5).

In other words, the usual ansatz eq. (2.3) (used in heat kernel, CDE, worldline methods)
does not encompass chiral fermions since it is not equivalent to eq. (2.8). Eq. (2.8) is
cumbersome to work with, instead we choose to directly use the CDE on the fermionic
determinant eq. (2.7),

Seff
1loop = −i

∫
ddx

ddq

(2π)d
tr log

(
∆−1 (1−∆

(
−i /D +Q

)) )
= −i

∫
ddx

ddq

(2π)d
tr
∑
n≥1

1
n

[
∆
(
−i /D +Q

) ]n
,

(2.9)

where now ∆ = m/(q2 −m2)− /q/(q2 −m2) .
If we assume a general form for Q, namely a scalar W0, pseudo-scalar W0γ5, vector

γµVµ and pseudo-vector part γµAµγ5, we can derive the so-called fermionic UOLEA [5].
The case of UV theories involving derivative couplings (such as axion models) requires
extra care and is treated in details in [9].

2Let us make a comment on massive chiral fermions. The mass term is a hard breaking source of axial
symmetries (local or global). These symmetries can be made manifest at tree-level by implementing their
spontaneous breaking and introducing their associated Goldstone bosons. In this paper, we choose for
convenience to work within the unitary basis and loose manifest tree-level axial invariance.

3Note that it can also be bosonised by multiplying by the hermitian conjugate, which amounts to
computing the modulus of the determinant. Compared to the square of the determinant, only a phase is
omitted. This phase is relevant for computing consistent anomalies [10, 30].
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3 Curved spacetime CDE

We now turn to the presentation of the CDE in curved spacetime. In the paper we adopt
standard conventions regarding gravity such as assuming the Levi-Civita connection. ∇
is the covariant derivative with the Christoffel connection only. We use the following
conventions,

∇µvν = ∂µ vν − Γλ
µνvλ, ∇µv

ν = ∂µ v
ν + Γν

µλv
λ . (3.1)

The Riemann tensor and Ricci tensor are defined by,

[∇α,∇β ]vµ = Rµ
ραβv

ρ , Rµν = Rλ
µλν . (3.2)

We define the general covariant derivative D and field strength Fµν = [Dµ,Dν ] which
include all the connections (Christoffel, gauge, spin-connection). Whereas the covariant
derivative and field strength that bear only the gauge and spin-connection are denoted by
D and F such that for a field Φ,

DµΦ = DµΦ , FµνΦ = FµνΦ . (3.3)

A scalar field behaves trivially when the curvature of spacetime is introduced. For a
scalar field charged under a gauge group associated to the gauge field V , we have,

Dµ = ∂µ +iVµ, Fµν = i(∂µ Vν)− i(∂ν Vµ)− [Vµ, Vν ] . (3.4)

The covariant derivative acting on a fermion is,

Dµ = ∂µ + iVµ + ωµ , (3.5)

where the spin-connection is ωµ = 1
8 [γ

a, γb]e ν
a (∂µ e

b
ν − Γλ

µνe
b
λ), with ea

µ the orthonormal
tangent frame vielbein such that gµν = ea

µe
b
νηab (latin indices referring to the tangent

frame). We follow [26] for conventions for the spin-connection. As a consequence, the
fermion field strength is,

Fµν = 1
4γ

ργσRµνρσ + i(∂µ Vν)− i(∂ν Vµ)− [Vµ, Vν ] , (3.6)

and,
/D2 = D2 − i

2σ
µνFµν where σµν = i

2[γ
µ, γν ]

i

2σ.F = 1
4R1Dirac ,

(3.7)

where 1Dirac is the identity in Dirac space.
The fermion can also couple to an axial gauge field Aµ. However, it proves convenient

in the computation to separate it from the covariant derivative as we will do in section 3.3.
In curved spacetime, the Dirac matrices are defined with respect to the Dirac matrices

in the tangent frame, and we have the Clifford algebra,

γµ = e µ
a γa , {γµ, γν} = 2gµν , (3.8)

that we used to derive eq. (3.7).
Finally, the general covariant derivative commutes with the Dirac matrices,

(Dµγ
ν) = (∂µ γ

ν) + Γν
µργ

ρ + [ωµ, γ
ν ] = 0 , (Dµγ5) = [ωµ, γ5] = 0 . (3.9)

– 6 –
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3.1 Fourier transform in curved spacetime

Previous litterature [20, 25, 26] involving momentum representation in curved spacetime
relied on a specific choice of coordinate, the RNC where spacetime is locally flat around
a point, to define the Fourier transform. However, we would like to define the Fourier
transform without relying on a specific choice of coordinate (which is of relevance when
dealing with quantum anomalies for example). It does not seem trivial to us that the usual
Fourier transform in curved spacetime leads to a coordinate independent result, since the
choice of momentum representation depends on the choice of coordinate. We explain our
procedure for defining the Fourier transform in curved spacetime, and show that it is indeed
independent of the choice of coordinate

A manifold M of dimension d is locally mapped to Rd by a coordinate system. On
a given subset of M, with coordinate xµ, we can use the momentum qµ associated to xµ

such that ∂ qν/ ∂ x
ν = 0, as we would do in the flat space Rd.

The issue is that x · q is not invariant under diffeomorphism, because xµ ∂µ does not
transform as a vector. Nonetheless, we show in appendix B that e−iq·xtrO(x(p), i ∂x)eiq·x

as well as the measure ddx ddq/(2π)d are diffeomorphism invariant, provided the operator
O is covariant.4

This allows us to write the functional trace in a diffeomorphism invariant manner using
the momentum representation,

TrO =
∫

p∈M
ddx(p) ddq

(2π)d
e−iq·x(p)trO(x(p), i ∂x)eiq·x(p)

=
∫

p∈M
ddx(p) ddq

(2π)d
trO(x(p), i ∂x −q) . (3.10)

Throughout the expansion of the functional trace, we will make use of,
∂ qµ

∂ xν
= 0 , (∂µ q

2) = (∂µ g
αβ)qαqβ , (3.11)

to commute the momentum dependence to left of the covariant derivatives.

3.2 Bosonic CDE in curved spacetime

We seek to compute a functional trace of the form,

Sboson
eff = ics Tr log

(√-g(gµνDµDν +m2 + U)
)
, (3.12)

where Dµ is again the general covariant derivative, and U is some local operator (i.e. it
doesn’t act on everything to its right, as opposed to an open derivative). The trace above
is both over internal spaces and spacetime. cs depends on the nature of the field that is
integrated out ( see section 2.1). As explained in section 3.1, the functional trace in curved
spacetime is written in a diffeomorphism invariant manner as,

Sboson
eff = ics

∫
ddx

ddq

(2π)d
e−iq·xtr log √-g(D2 +m2 + U)eiq·x . (3.13)

4If O is not covariant, the expansion provides the correct non-covariant quantity as opposed to an
expansion that would rely on a specific choice of coordinate.
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Similarly as in the flat spacetime case, we introduce the propagator ∆ = 1/(q2 −m2),

Sboson
eff = ics

∫
ddx

ddq

(2π)d
tr log √-g

(
−∆−1(1−∆(D2 + iq · D +D · iq + U)

)
, (3.14)

In curved spacetime one significant novelty and difficulty come from the fact that ∆ and
D do not commute anymore since,

[Dµ,∆] = −(∂µ q
2)∆2 . (3.15)

Therefore one cannot expand the log directly as in flat spacetime. We thus rely on the
following trick to perform the expansion:5 we rewrite the log as the primitive of the inverse
function and then expand it using,

1
A−1(1−AB) =

∑
n≥0

(AB)nA , (3.16)

which does not require the matrices A and B to commute.
To make an inverse function appear we write (see [1] for example),

log√-g(D2 +m2 + U(m)) =
∫ m2

dm′2 1
(D2 +m′2 + U(m)) . (3.17)

We thus obtain,

Sboson
eff = ics

∫
ddx

ddq

(2π)d

∫ m2

dm′2tr 1
−∆−1(1−∆(D2 + iq · D +D · iq + U)

= −ics

∫
ddx

ddq

(2π)d

∫ m2

dm′2tr
∑
n≥0

[
∆(D2 + 2iq · D − gµνΓρ

µνqρ + U)
]n

∆ ,

(3.18)

where now ∆ = 1/(q2 −m′2). Note that the spacetime measure √-g disappears in the ex-
pansion. If the masses are non-degenerate, we can multiply the mass matrix by a parameter
and integrate over this parameter instead (see [2] for example).

Note that when all the Lorentz indices to the right of a covariant derivative D are con-
tracted among themselves, the Christoffel connection cancels (e.g. (Dµv

νuν) = (∂µ v
νuν)).

In eq. (3.18) the only covariant derivative that has uncontracted indices to its right is Dµ

in D2 = gµνDµDν . Acting on a field ϕ we have,

D2ϕ = gµνDµDνϕ = gµνDµDνϕ− gµνΓρ
µνDρϕ . (3.19)

Once D2 is written as such, all the D have only contracted indices to their right, hence
they can be replaced by D,

Sboson
eff = −ics

∫
ddx

ddq

(2π)d
(3.20)

×
∫

dm′2tr
∑
n≥0

[
∆(gµνDµDν − gµνΓρ

µνDρ + 2iq ·D − igµνΓρ
µνqρ + U)

]n
∆ ,

5It is also possible to expand directly the log of non-commuting operators using the Baker-Campbell-
Hausdorf formula.
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Both eq. (3.18) and eq. (3.20) can be used for the expansion. In the former, D contracts
the Lorentz indices yielding Christoffel connections, but commutes with the metric. In
the latter, D does not contract the Lorentz indices but does not commute with the metric
(which in the end yields Christoffel connections in virtue of (∂µ g

αβ) = −Γα
µλg

λβ −Γβ
µλg

αλ).
Note that both in eq. (3.18) and Eq (3.20), if U ⊃ [γµ, γν ]Fµν from the bosonisation

of a vector-like fermion, it is possible to rewrite it as [γµ, γν ]Fµν since all the indices to the
right of Fµν are contracted.

The master integrals produced by the bosonic expansion are of the form,∫ ddq

(2π)d
qµ1 . . . qµ2l

∫ m2

dm′2 1
(q2 −m′2)n

= √-gJ [q2l]n gµ1...µ2l
, (3.21)

where gµ1...µ2l
is the fully symmetrised metric. They are related to the usual master inte-

grals in flat spacetime I (see appendix A).

3.3 Fermionic CDE in curved spacetime

The covariant derivative expansion can also be performed to expand a functional determi-
nant of the form,

Sfermion
eff = −i log Tr

(√-g(i /D −m−Q)
)
. (3.22)

The fermion may be chiral. In that case, it is convenient to put the axial field in Q ⊃ /Aγ5
and keep (Dµψ) = (∂µ +iVµ + ωµ)ψ.

The functional trace is expressed as in the bosonic CDE and leads to,

Sfermion
eff = −i

∫
ddx

ddq

(2π)d
tr log√-g

(
i /D − /q −m−Q

)
. (3.23)

We make the inverse function appear by integrating over the mass instead of integrating
over the mass squared as previously,6

Sfermion
eff = i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr 1
i /D − /q −m′ −Q(m)

= i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
∑
n≥0

[
∆
(
−i /D +Q

)]n ∆ ,

(3.24)

where now ∆ = −1/(/q +m′) , which can be split as,

∆ = m′

q2 −m′2 +
−/q

q2 −m′2 . (3.25)

Again if the mass matrix is non-degenerate one just has to multiply the mass matrix by a
parameter and integrate over this parameter instead.

This expansion will produce master integrals of the form,∫ ddq

(2π)d
qµ1 . . . qµ2l

∫ m

dm′ m′k

(q2 −m′2)n
= √-gK[q2l]kn gµ1...µ2l

, (3.26)

6Since all Lorentz indices are contracted, we could extract the Christoffel connection as previously and
perform the expansion with D instead of D after writing either /D = γµDµ or /D = Dµγµ +Γµ

µνγν . However
it does not simplify the expansion since [Dµ, γν ] ̸= 0.
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General covariant derivative: D
Gauge (and spin-connection) covariant
derivative: D

[Dµ, qν ] = −Γρ
µνqρ

[Dµ, q
ν ] = −gνσΓρ

µσqρ

[Dµ, γ
ν ] = 0

[Dµ, g
νρ] = 0

[Dµ,Γν
ρσ] = (∇µΓν

ρσ)

[Dµ, qν ] = 0

[Dµ, q
ν ] = (∂µ g

ρν)qρ

[Dµ, γ
ν ] = (∂µ γ

ν) + [ωµ, γ
ν ] = −Γν

µργ
ρ

[Dµ, g
νρ] = (∂µ g

νρ)

[Dµ,Γν
ρσ] = (∂µ Γν

ρσ)

[Dµ, δ] = [Dµ, δ] = (∂µ δ) = −(∂µ q
2)δ2 = −(∂µ g

αβ)qαqβδ
2

[Dµ,−/qδ] = −γα ((∇µqα)δ + qα(∂µ δ)) = −γα
(
−Γλ

µαqλ − qα(∂µ g
ρσ)qρqσδ

2
)

Table 1. Set of commutation rules. With the notation δ = 1/(q2 −m2).

with n ≥ k. gµ1...µ2l
is the fully symmetrised metric. They are related to the usual master

integrals in flat spacetime I (see appendix A).
As a remark, using the integration over the mass, it is also possible to use the Gaillard

and Cheyette sandwish mentionned in section 2.1 for the fermionic expansion without
relying on the BCH formula to expand the logarithm.

3.4 A systematic procedure

In flat spacetime, the factorisation of the momentum integrals from the operator part is
key in deriving a universal formula. In curved spacetime, the momentum dependence does
not commute anymore with the covariant derivatives. Nevertheless, we can recover the
factorisation of the momentum integration after commuting carefully the momentum part
through the covariant derivatives. Using (∂µ qν) = 0, we derive a set of useful commutation
relations presented in table 1.

Once the momentum dependence is commuted to the left of the covariant derivatives,
the integration over momentum and mass can be performed.7 Then the different terms
have to be combined together to form covariant quantities. This last point may seem
a tedious task since our expansion is not manifestly covariant, but we will see in the
examples that the use of Riemann Normal Coordinates (RNC) and Fock-Schwinger (FS)
gauge effortlessly provide the result in terms of covariant quantities. Besides, the use
of RNC from the beginning of the computation greatly reduces the number of terms to
compute, and simplifies the commutations through the covariant derivatives.

7The mass integration variable commutes with every operators, so no difficulty arises in that regard.
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In the following, we give examples to illustrate the systematic procedure to perform the
CDE in curved spacetime: commute the momentum dependence to the left using table 1,
perform the mass and momentum integration, form covariant quantities. We will show that
the use of RNC is not only useful to form covariant curvature quantities, but also from the
first step of the procedure it reduces the number of terms that contribute at a given order,
and simplifies the commutation of the momentum.

Example of computation — bosonic CDE. We will compute the first order term
(m2) of the bosonic UOLEA in curved spacetime to illustrate the procedure.

We will use the expansion from eq. (3.20). For simplicity, we denote D2 = gµνDµDν ,
ΓD = gµνΓρ

µνDρ, and Γq = gµνΓρ
µνqρ, and we take U = 0. The contributions at order m2

are,

Lbos
eff

∣∣∣
O(m2)

= −ics

∫ ddq

(2π)d
(3.27)

×
∫ m2

dm′2 tr
(
∆D2∆+∆(2iq ·D − ΓD − iΓq)∆(2iq ·D − ΓD − iΓq)∆

)
.

The first step is to commute the momentum dependence to the left, that is to say,
commute the covariant derivatives to the right. For example, consider the first term of
eq. (3.27),

tr∆D2∆ = tr
(
∆(∆D2 + (D2∆) + 2gµν(Dµ∆)Dν)

)
. (3.28)

We then use the commutation relations from table 1,

tr (D2∆) = tr gµν(∂µν ∆) = tr gµν
(
−(∂µν q

2)∆2 + 2(∂µ q
2)(∂ν q

2)∆3
)

tr 2gµν(Dµ∆)Dν = −2gµνtr (∂µ q
2)∆2Dν . (3.29)

Now we can perform the integration over mass and momentum and express it in terms of
master integrals (appendix A).

The same procedure has to be applied for the 9 other terms from eq. (3.27). Once the
master integrals are explicited, all the terms can be combined together to form covariant
quantities.

As emphasised earlier, since our expansion is diffeomorphism independent we can
choose a specific coordinate system to simplify the computation. We will use the Rie-
mann Normal Coordinates (RNC) around a point x0. At x = x0 + y, the metric and the
Christoffel symbols can be expanded around as,

gµν(y) = ηµν − 1
3Rµανβ(x0)yαyβ +O(y3)

Γµ
νρ(y) = 0− 1

3(R
µ

νρa +Rµ
ρνa)(x0)ya +O(y2) .

(3.30)

We can use the RNC to help form covariant quantities after the expansion performed above,
but simplifications occur starting from eq. (3.27). The Christoffel symbols vanish at x0,

– 11 –



J
H
E
P
1
1
(
2
0
2
3
)
0
4
5

only their derivatives survive. We can already rule out from eq. (3.27) the terms that have
Christoffel symbols without derivative to their left,

Lbos
eff

∣∣∣
O(m2)

= −ics

∫ ddq

(2π)d

∫ m2

dm′2 tr
(
∆D2∆+∆2iq ·D∆(2iq ·D−ΓD−iΓq)∆

)
. (3.31)

We then commute the momentum dependence to the left in RNC. For the term ∆D2∆,
we obtained eq. (3.28). But the term including (Dµ∆) is proportional to a first derivative
of the metric hence it vanishes. We are left with,∫ ddq

(2π)d

∫ m2

dm′ tr∆D2∆ =
∫ ddq

(2π)d

∫ m2

dm′tr
(
∆2D2 + (D2∆)

)
=
∫ ddq

(2π)d

∫ m2

dm′tr
(
∆2D2 −∆2qαqβg

µν(∂µν g
αβ)
)

= √-g tr
(
J [q0]2D2 − J [q2]3 23R

)
.

(3.32)

The second term from eq. (3.31) is also rather simple. Using table 1 in RNC it reduces to,∫ ddq

(2π)d

∫ m2

dm′tr∆2iq ·D∆(2iq ·D − ΓD − iΓq)

=
∫ ddq

(2π)d

∫ m2

dm′tr
(
∆2(2i)2qµqνDµDν − 2iqµgαβ(∂µ Γρ

αβ)Dρ + 2qµgαβ(∂µ Γρ
αβ)qρ

)
= √-gJ [q2]3tr

(4
3R− 4D2

)
. (3.33)

Note that the integration with an odd power in q in the numerator vanishes.
The next step which is to combine the different terms to form covariant quantities

is avoided as far as the Christoffel part is concerned since the RNC provide directly the
covariant quantities. There remains to form covariant quantities with the covariant deriva-
tives, which can also by simplified using the Fock-Schwinger (FS) gauge (see details in
appendix C).

Combining eqs. (3.32) and (3.33), we obtain the one-loop effective action at order m2,

Lbos
eff

∣∣∣
O(m2)

= √-g cs

16π2m
2
(
1− log

(
m2

µ2

))
tr R6 . (3.34)

The remaining trace is over gauge and spin degrees of freedom. µ is the renormalisation
scale from dimensional regularisation. We used the MS scheme, and will do so throughout
this paper.

Example of computation — fermionic CDE. For completion, we briefly outline
the computation of the m2 term in the fermionic expansion, although it is similar to the
procedure of the bosonic CDE. We take Q = 0 and omitt the gauge sector for simplicity,
the contribution at this order is,

Lferm
eff

∣∣∣
O(m2)

= −i
∫ ddq

(2π)d

∫ m

dm′ tr∆ /D∆/D∆ . (3.35)
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We first commute the momentum dependence to the left, we can do it in RNC to keep it
simple. Let’s keep in mind that the propagators here bear a Dirac matrix,

Lferm
eff

∣∣∣
O(m2)

= −i
∫ ddq

(2π)d

∫ m

dm′ tr (∆γµ∆γν∆DµDν +∆γµ∆γν(DµDν∆)) . (3.36)

We split the propagators according to eq. (3.25), we denote ∆f = −/q/(q2 − m′2) and
∆b = m′/(q2 −m′2), and then commute the momentum dependence to the left. Since the
integration with an odd power in q in the numerator vanishes, we can only have an even
power in ∆f . We then perform the integration in terms of the fermionic master integrals.

An extra step that arises in the fermionic CDE is to perform the Dirac trace, or at least
simplify the contractions in-between Dirac matrices, in order to be able to form covariant
operators. Extra care must be taken for the terms that bear open covariant derivatives to
the right since they carry the spin-connection.

Let’s focus on the first term of eq. (3.36). After splitting the propagators we obtain,

− i

∫ ddq

(2π)d

∫ m

dm′ tr
(
(∆bγ

µ∆bγ
ν∆b +∆fγ

µ∆fγ
ν∆b

+∆fγ
µ∆bγ

ν∆f +∆bγ
µ∆fγ

ν∆f )DµDν

)
(3.37)

= i
√-g tr

((
K[q0]33γµγν +K[q2]13gαβ

(
γαγµγβγν + γαγµγνγβ + γµγαγνγβ

))
DµDν

)
.

The first possibility is to simplify the contractions among Dirac matrices using the Clifford
algebra, and then form covariant quantities,

i
√-g tr

(
K[q0]33 /D

2 + dK[q2]13 /D
2 − 4K[q2]13D2

)

= √-g −1
16π2

m2

2

(
1− log

(
m2

µ2

))
tr
(
/D2 −D2

)
= √-g −1

16π2
m2

2

(
1− log

(
m2

µ2

))
tr
(
−R4

)
.

(3.38)

The remaining trace is over gauge and spin indices. From the first to the second line we
discarded the pole 2/ϵ̄, although we took care not to forget the finite contribution obtained
when multiplied by d = 4 − ϵ in the first line. From the second to the last line we used
eq. (3.7).

Another possibility is, from eq. (3.37), to make explicit the spin-connection, directly
compute the Dirac trace, and then form covariant quantities with the explicit spin-
connections. When the open derivatives are on the far right we can write: DµDν =
(∂µ ων) + ωµων . In RNC it takes a simple form as explained in appendix C,

DµDν = −1
8γ

αγβRνµαβ . (3.39)

Using the RNC for the spin-connection is the fastest method to get covariant quantities
when the computation involves more terms.
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The systematic procedure is the same as for the bosonic CDE: commute momentum
dependence to the left, perform the mass and momentum integration, then form covariant
quantities. The last step is slighty more involved for the fermionic CDE, but with the use
of RNC it is straightforward.

4 Bosonic UOLEA in curved spacetime

As opposed to the fermionic CDE in curved spacetime, the results from the bosonic CDE
presented here are well-known. Indeed our results can be matched for example with those
from the heat kernel approach [19],8 or more recently using the worldline formalism [27].
Nevertheless, the CDE has the advantage of being systematic and in fact algorithmic, thus
the expansion is easy to automatise. In addition, the CDE being based on an inverse mass
expansion its physical interpretation is always enlightening compared to a quite formal
heat kernel approach.

The CDE in curved spacetime has already been approached in [20, 21]. However,
as opposed to our current method, these works use the Gaillard and Cheyette sandwish
mentionned in section 2.1. As explained earlier, it has the advantage of making the com-
putation manifestly covariant, but at the cost of making the expansion significantly more
complex. When the curvature of spacetime is introduced, such computation can quickly
become untractable. By avoiding this step, we make the computation simpler which allows
us to compute higher order corrections in a straightforward way. The computation of non-
renormalisable operators (order 1/m2) using the CDE in curved spacetime are presented
for the first time. More than that, our systematic method could easily be implemented
in a code which would allow to generate even higher dimensional operators associated to
generic UV theories involving gravity. The drawback of our method would then be to
form the covariant operators at the end, but thanks to the RNC and the FS gauge (see
appendix C for additional details) it turns out to be straightforward and algorithmic as
well. Another advantage of our method is that it is independent of a choice of coordinate
system, as opposed to [20], therefore it can be used to compute non-covariant quantities
such as consistent gravitational anomalies (see for example [10]).

Note that the result from this section can apply to the integration of a (real or complex)
scalar, a vector-like fermion, massive and massless vector bosons, as well as ghosts [1]. The
factor cs and the content of U depend on the nature of the heavy field. One significant
asset of our approach is that one can straightforwardly incorporate all the improvements
on the CDE in flat spacetime EFTs, such as non-degenerate mass matrix [2], mixed heavy
light loops [3] and UV theories involving derivative couplings [9].9

8Note that due to the difference in conventions in the one-loop effective action of [19], we have m2
HK =

−m2
CDE and SCDE

eff = 2SHK
eff .

9The covariant diagrams [8] can also be used to enumerate the terms of the expansion, but it does not
account for the commutation of the momentum dependence to the left of the derivatives so most of their
properties must be dropped.
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We will now compute the terms of order m2 and m0, which consist in renormalisable
operators. We recall the bosonic one-loop effective action,

Sbos
eff = icsTr log(D2 +m2 + U)

= −ics

∫
ddx

ddq

(2π)d
(4.1)

×
∫ m2

dm′2tr
∑
n≥0

[
∆(gµνDµDν − gµνΓρ

µνDρ + 2iq ·D − igµνΓρ
µνqρ + U)

]n
∆ .

The terms that contribute at order m2 are,

Lbos
eff

∣∣∣
O(m2)

= −ics

∫ ddq

(2π)d

∫
dm′2

× tr
[
∆(D2 − gµνΓρ

µνDρ + U)∆ +
(
∆(2iq ·D − igµνΓρ

µνqρ)
)2
]
∆ .

(4.2)

As explained in section 3.4, we first commute the momentum dependence to the left,
and the covariant derivatives to the right. We then perform the integration in terms of
master integrals, and in RNC, we directly obtain,

Lbos
eff

∣∣∣
O(m2)

= cs

16π2
√-gm2

(
1− log

(
m2

µ2

))
tr
( 1
6R+ U

)
. (4.3)

We are now interested in the terms of order m0. For simplicity we note ΓD = gµνΓρ
µνDρ

and Γq = igµνΓρ
µνqρ. In RNC, the Christoffel symbols locally vanish unless a derivative acts

on them. Therefore the terms that contribute must have enough covariant derivative to the
left of the Christoffel symbols. The operators that contribute in RNC are listed in table 2.

For each of these terms, we follow the usual procedure: we commute the momentum
dependence to the left using table 1, it is helpful to form covariant quantities later to
fully commute the covariant derivatives to the right. We then perform the integration over
momentum and mass using the master integrals. Finally we can use the RNC formulae
provided in appendix C to make the covariant curvature quantities appear. As for the
covariant derivatives, they have to be combined together to form covariant quantities as
well, at order m0 is it straightforward so the use of FS gauge is not necessary.

The RNC expansions are required up to order four in the metric, and three in the
Christoffels. For example we have in RNC,

(DµDνDρDσ∆)=−(∂µνρσg
αβ)qαqβ∆2 (4.4)

+2
(
(∂µνg

αβ)(∂ρσg
γδ)+(∂µρg

αβ)(∂νσg
γδ)+(∂µσg

αβ)(∂νρg
γδ)
)
qαqβqγqδ∆3.

Finally, after using Bianchi identities, we simply obtain the following terms of order m0,

Lbos
eff

∣∣∣
O(m0)

= cs

16π2
√-g log

(
m2

µ2

)
tr
[
− 1

72R
2 + 1

180RµνR
µν − 1

180RµνρσR
µνρσ

− 1
30(□R)

− 1
6RU − 1

6(□U)− 1
2U

2 − 1
12F

2
]
,

(4.5)

where □ = D2.
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n = 2 tr∆(D2 + U)∆(D2 − ΓD + U)∆

n = 3

tr∆(D2 + U) (∆(2iq ·D − Γq))2 ∆ ,

tr∆2iq ·D∆(D2 − ΓD + U)∆(2iq. ·D − Γq)∆ ,

tr∆2iq ·D∆(2iq ·D − Γq)∆(D2 − ΓD + U)∆ .

n = 4

tr [∆2iq ·D]4∆ ,

tr [∆2iq ·D∆(−Γq)]2 ∆ ,

tr [∆2iq ·D]2 [∆(−Γq)]2 ∆ ,

tr [∆2iq ·D]3∆(−Γq)∆ ,

tr [∆2iq ·D]2∆(−Γq)∆2iq ·D∆ ,

tr 2iq ·D∆(−Γq)[∆2iq ·D]2∆ .

Table 2. Operators that contribute at order m0 in RNC.

Note that since we performed the expansion with the covariant derivatives in the field
representation D, we obtain at first gµν(DµDνU) which is not diffeomorphism covariant.
However, in RNC it is equal to (□U) which is diffeomorphism covariant. If we had per-
formed the expansion without RNC, we would obtain some non-covariant operators to
combine with gµν(DµDνU) to form (□U).

Note also that if we had performed the expansion keeping the general covariant
derivative D, we would obtain trF2 instead of trF 2. However, they are equal since
trF2 = trFµνF

µν = tr
(
F 2 +RµνF

µν −RµνF
µν
)
= trF 2.

We should comment on the fact that the terms of order m2 and m0 are divergent and
these divergences can be absorbed by the renormalisation as it is well known. We used
dimensional regularisation to compute the divergent momentum integrals with MS scheme,
and µ is the renormalisation scale. In practice, these contributions can conveniently be used
to compute the RGE running of the EFT operators at one-loop (see [31] for example).

We now outline the computation of the terms of order 1/m2, which consists in the first
order of non-renormalisable operators. For simplicity, we assume a weak gravitational field,
so we only consider term that are linear in curvature.10 We collect in table 3 the terms of

10There is no conceptual difficulty in obtaining the terms more than linear in gravity, the only difference
is that the next order of the expansion in RNC of the metric and the Christoffel symbols are required. We
are also interested in recovering the seminal result from [32].
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n = 3 tr∆(D2 + U)∆(D2 − ΓD + U)∆(D2 − ΓD + U)∆

n = 4

tr [∆(D2 − ΓD + U)]2[∆(2iq ·D − Γq)]2∆

tr∆(D2 + U)[∆(2iq ·D − Γq)]2∆(D2 − ΓD + U)∆

tr [∆(2iq ·D − Γq)]2[∆(D2 − ΓD + U)]2∆

tr∆(D2 + U)∆(2iq ·D − Γq)∆(D2 − ΓD + U)∆(2iq ·D − Γq)∆

tr∆(2iq ·D)∆(D2 − ΓD + U)∆(2iq ·D − Γq)∆(D2 − ΓD + U)∆

∆(2iq ·D)[∆(D2 − ΓD + U)]2∆(2iq ·D − Γq)∆

n = 5

tr∆(D2 + U)∆[∆(2iq ·D − Γq)]4∆

tr∆(2iq ·D)∆(D2 − ΓD + U)[∆(2iq ·D − Γq)]3∆

tr [∆(2iq ·D − Γq)]2∆(D2 − ΓD + U)[∆(2iq ·D − Γq)]2∆

tr [∆(2iq ·D − Γq)]3∆(D2 − ΓD + U)[∆(2iq ·D − Γq)]∆

tr [∆(2iq ·D − Γq)]4∆(D2 − ΓD + U)∆

n = 6 tr [∆(2iq ·D − Γq)]6∆

Table 3. Operators that contribute at order 1/m2 in RNC, and linear in curvature.

order 1/m2, discarding the terms that are not linear in curvature, and that vanish in RNC.
The terms that are linear in curvatures arise from second derivatives of the propagators ∆
(hence second derivative of the metric), and first derivative of the Christoffel connection.

Commuting in RNC the momentum dependence to the left, and performing the inte-
gration over mass then momentum, we obtain terms which are separately gauge variant.
The next step is to form covariant quantities.

Finally we have terms of the form D6, they have to be combined together again in
order to make the gauge invariant form explicit. There are two possibilities to easily form
covariant operators, the first one is to identify the covariant basis and then solve a system
to change basis, the second one is to use the Fock-Schwinger gauge (see appendix C).
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After recasting the operators in a covariant form, we simply obtain,

Lbos
eff

∣∣∣
O(1/m2)

= cs

16π2
√-g 1

m2 tr
[
− 1

72RF
2 − 1

90RµνF
µλF ν

λ − 1
180RµνρσF

µνF ρσ

+
( 1
90 − a

2

)
(DµF

µν)2 + aF ν
µ F ρ

ν F µ
ρ +

( 1
360 + a

4

)
(DµFνρ) (DµF νρ)

− 1
12U(□U)− 1

36R(□U)− 1
12RU

2 − 1
6U

3 − 1
12UF

2
]
, (4.6)

where □ = D2. The result is independent of the parameter a. It bears the freedom of the
choice of covariant basis since (DµFνρ) (DµF νρ), F ν

µ F ρ
ν F µ

ρ and (DµF
µν)2 are related by

integrations by parts and Bianchi identity.

As far as we know, this is the first time that this contribution to the one-loop effective
action, corresponding to non-renormalisable operators, have been derived via the CDE
methods in curved spacetime.

The result we obtain is invariant since the operator basis,

BD,F = {(DµFνρ) (DµF νρ) , F ν
µ F ρ

ν F µ
ρ , (DµF

µν)2} , (4.7)

is both diffeomorphism and gauge invariant. We recall that F is the gauge
and spin-connection field strength, while D bears the gauge connection and spin-
connection as well as the Christoffel connection. Note that the basis BD,F =
{(DµFνρ) (DµF νρ) , F ν

µ F ρ
ν F µ

ρ , (DµF
µν)2} is not diffeomorphism invariant, and the basis

BD,F = {(DµFνρ) (DµFνρ) ,F ν
µ F ρ

ν F µ
ρ , (DµFµν)2} is not gauge invariant.

The expansion was performed with the covariant derivatives D (i.e. eq. (3.20)). There-
fore, when forming the invariant operators, we actually obtain at first the basis BD,F .
However in RNC it is equal to BD,F . If the computation were performed without RNC, we
would obtain terms which are not diffeomorphism invariant, to combine with the operators
from the basis BD,F to form operators from the basis BD,F . Likewise, we obtain at first
gµν(DµDνU), which in RNC is equal to gµν(DµDνU) = (□U).

Similarly, if we employed the expansion keeping the general covariant derivatives D
(i.e. eq. (3.18)), we would obtain the basis BD,F which has to be combined with the terms
that are not gauge invariant to form operators from the basis BD,F .

However, if we use the FS gauge to form the covariant quantities, we directly obtain
the correct basis BD,F (see appendix C).

The derivatives that are localised on curvatures are independent of this choice of using
D (i.e. eq. (3.18)) or D (i.e. eq. (3.20)) since they arise from the RNC formulae.
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Finally, the bosonic universal one-loop effective action in curved spacetime, up to
dimension 6 operators, reads,

Sbos
eff = cs

16π2

∫ √-gd4xtr
{
m2
(
1− log

(
m2

µ2

))( 1
6R+U

)

+log
(
m2

µ2

)[
− 1
72R

2+ 1
180RµνR

µν − 1
180RµνρσR

µνρσ − 1
30(□R)

− 1
6RU− 1

6(□U)− 1
2U

2− 1
12F

2
]

+ 1
m2

[
− 1
72RF

2− 1
90RµνF

µλF ν
λ − 1

180RµνρσF
µνF ρσ

+
( 1
90−

a

2

)
(DµF

µν)2+aF ν
µ F ρ

ν F µ
ρ +

( 1
360 +

a

4

)
(DµFνρ)(DµF νρ)

− 1
12U(□U)− 1

36R(□U)− 1
12RU

2− 1
6U

3− 1
12UF

2+O(R2)
]

+O(1/m4)
}
. (4.8)

The result is independent of a, and only the terms linear in curvature were computed at
order 1/m2. The remaining trace is over gauge and spin indices. This result is in agreement
with [19].

4.1 Integrating out the graviton

So far the computation were performed on a fixed spacetime background. It is of interest
to treat the metric as a dynamical field, and integrate over its configurations. As we would
do for a spin-1 gauge field, we use the background field method: the metric is split as
g + δg, where g is a fixed background, and δg is a fluctuation integrated over in the path
integral. Indices are lowered and raised with the background metric. The quantum field
δgµν inherites a gauge invariance from the diffeomorphism invariance of the background,
which is dealt with using the Fadeev-Popov procedure. The action is then expanded up to
quadratic order in δg so that the path integral can be performed.11

There is however a discrepancy when dealing with a spin-2 field with respect to fields
of smaller spin: the field-space has a non-trivial metric G. A consequence is that the second
derivative of the action is not a scalar under a redefinition of δg. This issue was solved
in [36] by introducing a field-space covariant derivative. For a generic field ϕ with kinetic
term ϕ̇aA

ab(ϕ)ϕ̇b, the field-space metric is Gab(x, y) = Aab(ϕ)δ(x − y) and the connection
is Γ̂a

bc = 1
2(G

−1)ad( δGbd
δϕc + δGcd

δϕb − δGbc

δϕd ). We can see right away that if the action is at most
quadratic in ϕ, then Aab is independent of ϕ and Γ̂ vanishes. Therefore, for spin 0, 1/2,

11The use of the saddle point approximation is only possible around a background g that is a saddle point
of the space of metric configurations. We assume g fulfills that requirement. The complete gravitational path
integral would then be the sum of the saddle point contributions, supplemented by other non-perturbative
configurations, such as instantons, which cannot be treated following the presented procedure. For recent
literature see for example [33–35].
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1 and 3/2 matter fields, the second derivative of the action is a scalar and no field-space
covariant derivative is needed.

The one-loop effective action is covariantly defined as,

iSeff[g] = log
∫ √

G [Dδg] eiS[g]+ i
2 δg(D̂2S)[g]δg+O(δg3) ≃ iS[g]− 1

2Tr log
(
−(D̂2S)[g] ·G−1

)
,

(4.9)
where the background g is solution to the equations of motion, that is (D̂S)[g] = δS

δgµν
[g] = 0.

D̂ is the field-space covariant derivative such that,12

(D̂2S) = δ2S

δgµνδgρσ
+ Γ̂µν,ρσ

αβ

δS

δgαβ
. (4.10)

The field-space metric and its inverse are,

Gµν,ρσ = 1
4 (gµρgνσ + gµσgνρ − gµνgρσ) and, (G−1

µν,ρσ) = gµρgνσ + gµσgνρ − gµνgρσ .

(4.11)
Eq. (4.10) evaluated on g solution to the equations of motion reduces to the usual second
derivative of the action. But if one wanted to vary the background g, then the variation
of D̂2S would cancel exactly against the variation of

√
G from the measure, making the

theory invariant under a redefinition of δg.
We consider the UV theory,

S =
∫

d4x
√-g

( 1
4κ (2Λ−R) + Lmat

)
, (4.12)

where κ = 8π/M2
P with MP the Planck mass, and Lmat is the matter Lagrangian. With

the background g on-shell, the second derivative of the action with respect to the metric,
including the ghosts cµ and c̄µ, and the gauge-fixing in harmonic gauge,13 reads,∫

d4x
1
2δg

δ2S

δg2 δg=−
∫

d4x
√-g c̄µ(gµνD2+Rµν)cν

−
∫

d4x
√-g δgαβ

(1
2g

α
(ρg

β
σ)D

2+Rα β
(ρ σ)−g

αβRρσ +Λgαβgρσ

)
Gγδ,ρσδgγδ

−
∫

d4x
√-gδgαβOαβ

ρσG
γδ,ρσδgγδ , (4.13)

where O corresponds to the matter part. The parenthesis around the indices denotes the
symmetrisation: T(µν) = Tµν + Tνµ. Including loops of graviton only, O is a local operator
and reads,

O ·G = κ
√-g(D̂

√-gT ) , (4.14)

with T the matter energy-momentum tensor such that √-gT = −2 δS
δg . More details about

the derivation can be found in [21, 37]. In practice, O can be computed by taking the
second derivative of the matter action with respect to the metric.

12We leave implicit the summation over spacetime indices in the second term. (D̂2S)(x, y) remains
proportional to δd(x − y).

13Note that it corresponds to the gauge invariance associated to δg. We still have the freedom to choose
the coordinate system, such as the RNC.
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According to eq. (4.9), the graviton piece must be contracted with G−1, which yields
the identity when contracted against G from eq. (4.13). Finally, we obtain the one-loop
effective action after integrating out the graviton (first line) and ghost (second line),

Sgraviton
eff = i

2Tr log
(1
2g

µ
(ρg

ν
σ)D

2 +Rµ ν
(ρ σ) − gµνRρσ + Λgµνgρσ +Oµν

ρσ

)
− iTr log

(
gµνD2 +Rµν

)
, (4.15)

Both are of the form Tr log
(
1D2 + U

)
, therefore they can be obtained from the bosonic

UOLEA derived previously. Note that the trace is also performed over Lorentz indices.
The graviton piece is traced over by contracting the indices with the identity for order 4
Lorentz tensors,

1µν
ρσ = Gµν,αβ(G−1)αβ,ρσ = 1

2g
µ
(ρg

ν
σ) . (4.16)

Note that since the ghost and the graviton are massless, the effective action contains
infrared divergences. They can be regulated by inserting a mass term D2 → D2 +m2 [1].
For loops of graviton only, O is a local operator and we can apply the results from the
bosonic UOLEA eq. (4.8), with,

cgraviton
s = 1/2 , Ugraviton = Rµ ν

(ρ σ) − gµνRρσ + Λgµνgρσ +Oµν
ρσ (4.17)

cghost
s = −1 , Ughost = Rµν . (4.18)

Note that if mixed species loops are allowed, then the bosonic UOLEA does not apply
to the graviton since O includes open derivatives, the CDE has to be performed from
scratch following the mixed heavy-light methods [3, 4, 21].

5 Fermionic UOLEA in curved spacetime

We now turn to the fermionic CDE in curved spacetime. The one-loop effective action that
we obtain after integrating out a fermion is of the form,

Sferm
eff = −iTr log

(√-g
(
i /D −m−Q

))
, (5.1)

In a similar manner as the bosonic determinant, it can be expanded as,

Sferm
eff = i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
∑
n≥0

[
∆
(
−i /D +Q

)]n ∆ , (5.2)

where ∆ = m′/(q2 −m′2)− /q/(q2 −m′2). The mass order is rather simple, since the n-th
term of the sum is proportional to m4−n.

We can split Q = Qe + Qo where Qe (resp. Qo) has an even (resp. odd) number of
Dirac matrices. Following [5], we can assume the general form,

Qe =Wo + iW1γ5, Qo = Xµγ
µ + iAµγ5γ

µ . (5.3)

We choose to limit ourselves to the case of a scalar, pseudo-scalar, vector and pseudo-vector
term, but the computation can be performed for any type of operator.
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For a chiral fermion, it is simpler to keep (Dµψ) = (∂µ +iVµ + ωµ)ψ where ω is the
spin-connection and V a vector gauge field, and put the axial field in Qo ⊃ − /Aγ5.

To compute the traces, we use the Breitenlohner-Maison-’t Hooft-Veltman (BMHV)
scheme for γ5 [38, 39]. The choice of scheme for γ5 can have consequences which should
not be disregarded, especially in the context of quantum anomalies [10].

We emphasise again that others approaches to compute one-loop effective actions in
gravity, such as heat kernel, CDE and worldline formalism [19–21, 27, 40], always applied
to a bosonic determinant, therefore were restrained to Q = W0 + γµXµ, as explained in
section 2.2. To our knowledge, the fermionic Universal One-Loop Effective Action on a
general spacetime manifold were never computed before.

Improvements on the CDE can also be applied (namely, non-degenerate mass ma-
trix [2], mixed heavy-light [3]). The covariant diagrams can be used to enumerate the
terms of the expansion [8], but it does not account for the commutation of the momentum
dependence to the left of the derivatives so most of their properties must be dropped.

5.1 Effective action operators

At order m3, discarding the terms with odd number of Dirac matrices which vanish under
the trace, we have,

Sferm
eff

∣∣∣
O(m3)

= i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr∆Qe∆ . (5.4)

There are no open derivatives, so the momenta can be commuted trivially to the left, and
after integration we obtain,

Lferm
eff

∣∣∣
O(m3)

= i
√-g tr

(
K[q0]22Qe +K[q2]02gµνγ

µQeγ
ν
)

(5.5)

So far we have not performed the traces, nor have we use trace cyclicity or anticom-
mutation relation between γ5 and a Dirac matrix. The result in eq. (5.5) is therefore
independent of the choice of scheme for γ5 in dimensional regularisation. From eq. (5.5)
we need to explicit Qe =Wo + iW1γ5 to perform the trace using the BMHV scheme for γ5.
Discarding the poles we obtain,

Lferm
eff

∣∣∣
O(m3)

= √-g −1
16π2 4m

3
(
1− log

(
m2

µ2

))
trW0 . (5.6)

The remaining trace is over gauge degrees of freedom.
The non-vanishing contributions at order m2 are,

Sferm
eff

∣∣∣
O(m2)

= i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
(
∆Qo∆Qo∆+∆Qe∆Qe∆ (5.7)

+∆Qo∆(−i /D)∆ +∆(−i /D)∆Qo∆+∆(−i /D)∆(−i /D)∆
)
.

Recall that if the fermion is chiral, we choose to put the axial field /Aγ5 in Qo and keep
(Dµψ) = (∂µ +iVµ + ωµ)ψ. We follow the systematic procedure from section 3.4, taking
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care of the spin-connection from the open derivatives to the right. In RNC we obtain
directly the covariant form,

Lferm
eff

∣∣∣
O(m2)

= √-g −1
16π2m

2tr
[
4
(
1− log

(
m2

µ2

))
AµAµ + 2

(
1− 3 log

(
m2

µ2

))
W 2

0

+ 2
(
3− log

(
m2

µ2

))
W 2

1 − 1
6R

(
1− log

(
m2

µ2

))]
.

(5.8)

The remaining trace is over gauge degrees of freedom. We remark that no cross term
between curvatures and Q appears (no covariant operator can be written).

We ensured of the covariance of the result by conducting the expansion without RNC,
and then forming the curvature invariants by collecting the Christoffel symbols and their
derivatives together.

At order m we have the following terms,

Sferm
eff

∣∣∣
O(m)

= i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
[
∆
(
−i /D +Q

)]3 ∆ . (5.9)

At this order, there is no pure gravity terms because
(
∆(−i /D)

)3 ∆ vanishes under the
Dirac trace. After following the systematic procedure, we obtain terms involving only W0,
W1, Xµ and Aµ. They agree with the result from [5], therefore we do not write them down.
The only cross-term between gravity and Q that we obtain is,

Lferm
eff

∣∣∣
O(m)

⊃ √-g −1
16π2m

1
3 log

(
m2

µ2

)
trRW0 . (5.10)

This contribution was already known from previous one-loop computations in curved space-
time since the bosonisation can be performed with Q =W0. Once again, the computation
was performed without the use of RNC to ensure of the covariance of the result.

We consider now the terms of order m0. We apply the systematic procedure from
section 3.4. We omit again the terms that do not involve curvature, they agree with those
obtained in [5]. After using Bianchi identities we get,

Lferm
eff

∣∣∣
O(m0)

⊃√-g −1
16π2 tr

[
log
(
m2

µ2

)(
− 1
144R

2+ 1
90RµνR

µν + 7
720RµνρσR

µνρσ + 1
60(□R)

)
(5.11)

+ 1
3RW

2
0

(
1+ 1

2 log
(
m2

µ2

))
+ 1
3RW

2
1

(
−1+ 1

2 log
(
m2

µ2

))
− 2
3A

µAνRµν log
(
m2

µ2

)]
,

where again the remaining trace is over gauge degrees of freedom.
The pure curvature terms from the first line agree with those that arise after bosonising

a vector-like fermion. For example they can be obtained from eq. (4.5), if we include the
−R

4 1Dirac ⊂ U and the spin-connection from the field strength.14 However, the cross-terms
between gravity and W1 or A have not been computed before in any functional method.

14The pure curvature terms of the previous orders can be obtained from a bosonised vector-like fermion
as well.
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The first contribution to non-renormalisable operators occurs at the order 1/m. We
only display the terms that depend on the curvature to keep to expression compact. After
integrations by parts and use of Bianchi identities we obtain,

Lferm
eff

∣∣∣
O(1/m)

⊃ √-g −1
16π2

1
m
tr
(
W1

(
− 1
48εµνρσR

µν
αβ Rαβρσ

)

+W0

( 1
45R

µνRµν − 1
72R

2 + 7
360R

µνρσRµνρσ + 1
3(□R)

)
+Rµν

(
−4
3W0AµAν + i

4
3Aµ(DνW1) + 2iW1(DµAν)) +

2
3Aµ[Xν ,W1]

)

+R

(
−1
3A

µ[Xµ,W1] +
1
9W

3
0 + 1

3W0W
2
1 − i

1
3W1(DµA

µ)
))

, (5.12)

where εµνρσ = √-g ε̄µνρσ with ε̄µνρσ the Levi-Civita tensor in flat spacetime. The first
line of eq. (5.12) corresponds to the axial-gravitational anomaly if we take W1 = 2θm
arising from an axial field reparametrisation with parameter θ of the heavy fermion (see
section 5.2). Similarly, the second line corresponds to the Weyl anomaly. The last two lines
correspond to new operators that were not computed before (except for the RW 3

0 term).
Note that the covariant derivative bears the gauge vector field V , and X is a generic

vector field. It means that X can also be a gauge field X = V ′, and in that case it seems
that in the last two lines of eq. (5.12) the vector gauge symmetry associated to V ′ is broken.
In fact, this is not the case. If from the start we have a Lagrangian with two vector gauge
fields such that ψ̄(i/∂ − /V − /V

′)ψ, we can choose to proceed with the expansion by keeping
i /D ⊃ − /V and deal with the other gauge field with X = V ′ (recall that in eq. (5.1) Q comes
in with a minus sign already). Using i(DO) = i(∇O) − [V,O] + i[ω,O] for any operator
O, and the cyclicity of the gauge trace, one can show that the last two lines of eq. (5.12)
can be rewritten without the explicit X = V ′ terms and replacing V by V + V ′ in i(DW1)
and i(DA). Therefore, the vector gauge symmetry is preserved.

Finally, the universal fermionic one-loop effective action in curved spacetime, up to
dimension 5 operators, and including only curvature dependent operators, reads,

Sferm
eff ⊃ −1

16π2

∫ √-g d4x tr
{
−m2 1

6R
(
1− log

(
m2

µ2

))
+m

1
3 log

(
m2

µ2

)
RW0

+ log
(
m2

µ2

)[
− 1

144R
2 + 1

90RµνR
µν + 7

720RµνρσR
µνρσ + 1

60(□R)
]

+ 1
3RW

2
0

(
1 + 1

2 log
(
m2

µ2

))
+ 1

3RW
2
1

(
−1 + 1

2 log
(
m2

µ2

))

− 2
3A

µAνRµν log
(
m2

µ2

)
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+ 1
m

[
W1

(
− 1
48εµνρσR

µν
αβ Rαβρσ

)
+W0

( 1
45R

µνRµν − 1
72R

2 + 7
360R

µνρσRµνρσ + 1
3(□R)

)
+Rµν

(
−4
3W0AµAν + i

4
3Aµ(DνW1) + 2iW1(DµAν)) +

2
3Aµ[Xν ,W1]

)
+R

(
−1
3A

µ[Xµ,W1] +
1
9W

3
0 + 1

3W0W
2
1 − i

1
3W1(DµA

µ)
)]

+O(1/m2)
}
. (5.13)

The terms that involve only W0 and curvatures invariants can be recovered from eq. (4.8) by
bosonising the functional determinant involving vector-like fermions, they are in agreement
with [19]. The rest consist in new operators and involve the curvature invariants and the
fields A and W1, that chiraly couple to the integrated out fermion. To the best of our
knowledge, these operators are new and were never computed before in the path integral
approach.

5.2 An example: axial-gravitational anomaly

These results which have been derived and their associated procedure are quite powerful
and we give another example in the context of QFT anomalies. Indeed, the CDE in curved
spacetime can be used to compute gravitational anomalies. We follow [10] for the derivation
of the Jacobian.15 Let’s illustrate this by computing the axial-gravitational anomaly. Under
an axial reparametrisation of the fermions ψ → eiθγ5ψ and ψ̄ → ψ̄eiθγ5 , the path integral
measure transforms with a non-trivial Jacobian which can be written as,

J [θ] =
det √-g

(
i /D −m

)
det √-g

(
i /D −m− 2imθγ5 − (/∂θ)γ5

) . (5.14)

The Jacobian is therefore expressed as a ratio of effective field theories and, for θ infinites-
imal, it can be written as,

log J [θ] = −Tr log √-g
(
i /D − 2imθγ5 − (/∂θ)γ5

)∣∣
O(θ)

= − Sferm
eff

∣∣∣
O(θ)

,
(5.15)

where the subscript O(θ) means that only the terms linear in θ contribute.
The question of hermiticity of the Dirac operator and the choice of scheme for γ5 are

crucial in the computation of anomalies. More details can be found in [10].
The only contribution to the Jacobian is at order m0,

log J [θ] =
∫

ddx
ddq

(2π)d

∫
dm′ tr

( [
(−i /D + 2imθγ5)

]5 ∆+
[
∆(−i /D + (/∂θ)γ5)

]4 ∆)∣∣∣
O(θ)

.

(5.16)
15Another approach that relies on the insertion of a free parameter in the Fujikawa regulator can be

found in [41, 42].
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The contribution from 2imθγ5 is already computed in the term of order 1/m taking iW1 =
2imθ and according to eq. (5.12) we have,∫

ddx
ddq

(2π)d

∫
dm′ tr

[
(−i /D + 2imθγ5)

]4 ∆∣∣∣
O(θ)

= −iθ
384π2 εµνρσR

µν
αβ Rαβρσ . (5.17)

Note that this contribution involves only finite integrals, thus the computation is performed
in d = 4 dimensions.

The contribution from (/∂θ)γ5 is also already computed in the term of order m0 if we
take iAµ = (∂µ θ). Note that it is a divergent contribution, which thus depends on the γ5
scheme. A careful treatment, without using the RNC, reveals that it vanishes.16

Finally we obtain the axial-gravitational anomaly,

log J [θ] = θ
−i

384π2 εµνρσR
µν

αβ Rαβρσ , (5.18)

which corresponds to the well-known result [43, 44].

6 Conclusion

We presented a new method for deriving loop corrections in curved spacetime within the
path integral, based on the Covariant Derivative Expansion (CDE), with a coordinate
independent momentum representation. The proposed procedure is less computationally
involved compared to previous approaches. It allows to derive for the first time curved
spacetime EFTs incorporating non-renormalisable operators within the CDE approach.
This extends the so-called Universal One Loop Effective Action (UOLEA) so far available
in flat spacetime to curved spacetime. Our results are summarised in eqs. (4.8) and (5.13)
and correspond to gravity induced operators for the bosonic UOLEA and the fermionic
UOLEA, up to respectively dimension six and dimension five operators.

A significant novelty of the approach is the integration of a chiral fermion in curved
spacetime which was never performed before within the functional approach. This generates
new operators in the EFT, both renormalisable and non-renormalisable, that can be found
in eq. (5.13). To the best of our knowledge, this offers the only alternative to the use
of Feynman diagrams when dealing with a chiral fermion in curved spacetime, with the
advantage of not requiring an expansion in the metric.

In addition to these effective actions, one significant outcome of this work, is the sys-
tematic procedure which allows to straightforwardly evaluate even higher dimensional oper-
ators. Each term is computed following the same systematic procedure: commute the mo-
mentum dependence to the left of the covariant derivatives using table 1, in order to perform
the integration in terms of master integrals, then form covariant quantities, which can be
greatly simplified using the Riemann Normal Coordinates and the Fock-Schwinger gauge.

This method would very well fit in a code that performs CDE to achieve one-loop
matching (see for example [45–47]). It would allow to integrate out fields on a curved

16The derivative term can contribute for example in non-abelian anomalies. Although it is divergent, the
result is finite after regularisation. In other words, the pole 2/ϵ cancels.
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spacetime background at one-loop, and even spin-2 fields (for example the graviton) at
one-loop, which is not implemented so far in EFT matching codes [45–48].

The transparency of the expansion offers physical insight into the computation, which
is rather concealed under mathematical complexity in other approaches such as heat kernel
in position space and other attempts in momentum space.

The recent developments on the CDE technique which enable the derivation of EFTs
induced by loops of fields with non-degenerate mass, mixed heavy-light particles, and more,
can be easily combined with this new expansion in curved spacetime.

Our results could have multiple applications and we gave an example of how it can be
used to efficiently compute anomalies. The computational transparency and simplicity of
the presented method makes it a powerful tool to study for example inflation or low energy
effects of a UV completion of gravity.
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A Master integrals

Master integrals in curved spacetime. In flat spacetime (latin indices), we define
the master integrals I, J and K as,∫ ddq

(2π)d

qa1 · · · qa2nc

(q2 −m2)n
= ηa1···a2ncI[q2nc ]n (A.1)∫ ddq

(2π)d

∫ m2

dm′2 q
a1 · · · qa2nc

(q2 −m′2)n
= ηa1···a2ncJ [q2nc ]n (A.2)∫ ddq

(2π)d

∫ m

dm′m′k q
a1 . . . qa2nc

(q2 −m′2)n
= ηa1...a2ncK[q2nc ]kn , (A.3)

where in general the integral over the mass must be performed before the integral over
momentum. ηa1...a2nc is the fully symmetrised Minkowski metric.

The master integrals, I are defined by the general expression,

I[q2nc ]n = i

16π2
(
−m2)2+nc−n 1

2nc(n− 1)!
Γ( ϵ

2 − 2− nc + n)
Γ( ϵ

2)

(2
ϵ
− γ + log 4π − log m

2

µ2

)
,

(A.4)
where d = 4− ϵ is the spacetime dimension, and µ is the renormalization scale. In the MS

scheme, we replace,
(2
ϵ
− γ + log 4π − log m

2

µ2

)
by
(
− log m

2

µ2

)
in the final result. We
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Ĩ[q2nc ]n nc = 0 nc = 1 nc = 2

n = 1 m2(1− log m2

µ2
)

m4

4
(3

2 − log m2

µ2
)

m6

24
(11

6 − log m2

µ2
)

n = 2 − log m2

µ2
m2

2
(
1− log m2

µ2
)

m4

8
(3

2 − log m2

µ2
)

n = 3 − 1
2m2 −1

4 log
m2

µ2
m2

8
(
1− log m2

µ2
)

n = 4 1
6m4 − 1

12m2 − 1
24 log

m2

µ2

ni = 5 − 1
12m6

1
48m4 − 1

96m2

Table 4. Commonly-used master integrals with degenerate heavy particle masses. Ĩ = I/ i
16π2 and

the 2
ϵ − γ + log 4π contributions are dropped.

factor out the common prefactor, I = i
16π2 Ĩ and present a table of Ĩ[q2nc ]n for various nc

and n, needed in our computations, in table 4.
I and J are related by integrating the mass,

J [q2nc ]n = 1
n− 1I[q

2nc ]n−1 . (A.5)

The fermionic master integrals K are trickier to compute. The dimensionful integrals
are computed in eq. (A.15). The dimensionless integrals (i.e. ∝ m0) can however be
obtained using eqs. (A.19) and eq. (A.20).

We can relate the integrals in curved spacetime to those in flat spacetime using a
tangent frame that is orthonormal everywhere in the whole manifold. We relate the flat
metric η and the metric g using the vierbein,

gµν = e a
µ e b

ν ηab . (A.6)

The latin indices refer to the orthonormal frame, while the greek indices refer to the initial
frame. The momenta are expressed in the orthonormal frame using the vierbein and its
inverse E,

pµ = e a
µ qa qa = E µ

a pµ . (A.7)

We can now relate the master integrals with momenta pµ to the master integrals in flat
spacetime by doing the change of variable pµ = e a

µ qa. The momentum space measure
is defined with the covariant vector pµ, thus the jacobian of the change of variable is
det(e) = √-g. We thus have,

∫ ddp

(2π)4

∫ m2

dm′2 p
µ1 · · · pµ2nc

(p2 −m′2)n

=
∫

det(e) ddq

(2π)4

∫ m2

dm′2Eµ1
a1 · · ·E

µ2nc
a2nc

qa1 · · · qa2nc

(q2 −m′2)n

= √-gEµ1
a1 · · ·E

µ2nc
a2nc

ηa1···a2ncJ [q2nc ]n

= √-g gµ1···µ2ncJ [q2nc ]n ,

(A.8)

and likewise for K and I.
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Momentum and mass integration. The master integrals with integration over the
mass should be computed by integrating over the mass first, and then over momentum.
In general commuting the integration is not true for divergent integrals. However, we will
show that it stands true for dimensionful integrals.

The discussion below is not very relevant for the bosonic integrals J since we are able
to perform the integration over the mass and then over momentum, as it should be done.
However, it is not so simple for the fermionic integrals, therefore commuting the integrals
will prove useful.

Let’s reason on the bosonic integrals which are simpler to compute explicitly. Without
commuting the integrals, we can perform the integration over the mass to obtain the correct
result,

J [q2l]n = 1
n− 1I[q

2l]n−1 . (A.9)

If we commute the integrals, then we obtain for 2 + l − (n− 1) ̸= 0,

J ′[q2l]n =
∫ m2

dm′2I[q2l]n(m′) (A.10)

= i

16π2
(m2)2+l−(n−1)

2 + l − (n− 1)
(−1)l−n

2l(n− 1)!
Γ( ϵ

2 − 2− l + n)
Γ( ϵ

2)

(
1

2 + l − (n− 1) +
2
ϵ̄
− log

(
m2

µ2

))
.

Note that the integration constant vanishes by dimensional analysis since by definition it
must be independent of the mass, but the integral is dimensionful for 2 + l − (n− 1) ̸= 0.
We defined 2/ϵ̄ = 2/ϵ− γ + log 4π.

If (n − 1) − l − 2 > 0, then both I[q2l]n−1 and J [q2l] are finite in d = 4 dimensions.
The commutation of the integral is thus correct, and we can indeed verify that eqs. (A.9)
and (A.10) are equal.

However, we can show that the commutation of the integrals remains true if (n− 1)−
l − 2 < 0. Using for N ≥ 0,

Γ( ϵ
2 −N)
Γ( ϵ

2)
= (−1)N

N !

(
1 + ϵ

2

N−1∑
k=1

1/k +O(ϵ2)
)
, (A.11)

and the expression of I in eq. (A.4), we can show that eqs. (A.9) and (A.10) remain equal.
A discrepancy between J [q2l]n and J ′[q2l]n however happens when (n− 1)− l− 2 = 0

since we have,

J [q2l]n = i

16π2
1

2l(n− 1)!

(
2
ϵ̄
− log

(
m2

µ2

))
, (A.12)

whereas,

J ′[q2l]n = i

16π2

∫ m2

dm′2 −1
2l(n− 1)!m′2 +O(ϵ) = i

16π2
−1

2l(n− 1)! log
(
m2

µ2

)
+ F , (A.13)

where F is an integration constant that cannot be ruled out by dimensional analysis like
before.

– 29 –



J
H
E
P
1
1
(
2
0
2
3
)
0
4
5

Now eqs. (A.12) and (A.13) are not equal. Note however, that the coefficient of the
logarithm in eq. (A.13) is correct, and the difference lies in the undetermined integration
constant.

As explained earlier, commuting the integrals is not useful for the bosonic integrals
since we are able to easily perform the integration over the mass then over momentum.
However, some fermionic integrals are much easier to compute if we are allowed to commute
the integrals.

The fermionic integrals K are more cumbersome to compute in general because the
integration is over the mass instead of the mass square. For example, after Wick rotation,
the integration over the mass of K[q2l]01 yields,

K[q0]01 ∝
∫ ddq

(2π)d
q2l
∫ m

dm′ 1
q2 −m′2 = −i

∫ ddq

(2π)d
q2l−1Arctan

(
m

q

)
, (A.14)

where q =
√
q2 is well-defined since q2 ≥ 0 in Euclidian. The integration over momentum

is then not trivial to perform in dimensional regularisation.
However, as shown for the bosonic integrals, the integration over mass and momentum

can be commuted provided K is dimensionful.17

Hence, for k + 2l − 2n+ 5 ̸= 0 (i.e. for dimensionful integrals), we have,

K[q2l]kn =
∫ m

dm′m′kI[q2l]n (A.15)

= i

16π2
(−1)l−nm5+k+2l−2n

2l(n−1)!(5+k+2l−2n)
Γ( ϵ

2 −2− l+n)
Γ( ϵ

2)

(
2

5+k+2l−2n+ 2
ϵ̄
− log

(
m2

µ2

))
.

The dimensionless integrals can be computed using recursion formulae which can be
obtained by integration by parts over the mass integration,

K[q2l]kn = mk−1

2(n− 1)I[q
2l]n−1 − k − 1

2(n− 1)K[q2l]k−2
n−1 (A.16)

K[q2l]kn = mk−1

2n− k − 1I[q
2l]n−1 − k − 1

2n− k − 1(d+ 2l)K[q2(l+1)]k−2
n (A.17)

K[q2l]kn = 2n
2n− k − 1(d+ 2l)K[q2(l+1)]kn+1 −

mk+1

2n− k − 1I[q
2l]n , (A.18)

where d is the dimension of spacetime.18

Using repeatedly eq. (A.16), we obtain,

K[q2l]2k+1
n = 1

2

k∑
i=1

(−1)k−ik!
i!
(n− 2− k + i)!

(n− 1)! m2iI[q2l]n−1−k+i

+ (−1)kk! (n− k − 1)!
(n− 1)! K[q2l]1n−k ,

(A.19)

17We do not prove it for the fermionic integrals, we assume it behaves similarly.
18It arises due to the scalarisation of the vectors q. In the momentum integrals, qµ1 . . . qµ2l is traded for

clq
2lgµ1...µ2l where c−1

l = d(d + 2) . . . (d + 2(l − 1)).
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and for n− k > 1,19 we have,

K[q2l]1n−k = 1
2(n− k − 1)I[q

2l]n−k−1 . (A.20)

Note however, that integrals of the form K[q2l]2k
n remain troublesome to compute even

using the iterative formulae. For example, using eqs. (A.17) and (A.18) repeatedly, K[q2l]2k
n

can be related to K[q2l′ ]01 from eq. (A.14), which is not trivial to compute.
The dimensionless integrals only occur in our expansion in the term,∫ ddq

(2π)d

∫ m

dm′ [∆(−i /D +Q)
]4 ∆ . (A.21)

Since the number of propagators is odd, and the power in q in the numerator must be even
lest the integral vanishes, then the power in m′ in the numerator is odd. Therefore, these
integrals can be computed using eqs. (A.19) and (A.20).

B Momentum representation in curved spacetime

In this appendix we present the difficulties that arise with the momentum representation
in curved spacetime, and how to define it in a coordinate independent manner.

Momentum representation. We consider a manifold M of dimension d, provided with
an atlas {(Ui, ϕi)}. Let p be a point in M. There exists a chart (U, ϕ) in the atlas such
that p ∈ U . ϕ(p) ∈ Rd is the coordinate representation of p, we note ϕµ(p) = xµ(p). We
can choose a set of d functions from Rd → R: qµ(x), µ ∈ {1, . . . , d}, such that,

∂ qµ

∂ xν
= (∂ν qµ) = 0 . (B.1)

This is simply the momentum conjugate to x in the flat space Rd. We can thus provide
the points in U with a momentum representation with,

e−iq·x ∂

∂ xµ
eiq·x = ∂µ +iqµ . (B.2)

One would be tempted to define the 1-form Q = qµdx
µ and the vector X = xµ ∂

∂ xµ

so that q · x is coordinate invariant. But X does not define a vector: suppose we have a
second chart such that p ∈ V with a coordinate φµ(p) = yµ(p), then x and y are related
by a diffeomorphism yµ = fµ(x) and we do not have in general yµ = xν ∂ yµ

∂ xν .
The second chart (V, φ) provides another momentum representation rµ such that ∂ rµ

∂ yν =
0. Consider a vector T = Tµ ∂

∂ xµ = T̃µ ∂
∂ yµ . We can write,

e−ir.yTeir.y = T̃µe−irνyν ∂

∂ yµ
eirνyν = T̃µ

(
∂

∂ yµ
+ irµ

)
. (B.3)

19In our expansion, the integrals K[q2kl]pn are such that n ≥ p, so if p = 2k + 1, n − k = 1 can only be
realised for n = 1 which contributes as a tadpole to the effective action.
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On the other hand,

e−ir.yTeir.y = Tµe−irνfν(x) ∂

∂ xµ
eirνfν(x)

= Tµ
(

∂

∂ xµ
+ i

∂ rν

∂ xµ
fν(x) + irν

∂ fν(x)
∂ xµ

)
= Tµ

(
∂

∂ xµ
+ irν

∂ fν(x)
∂ xµ

)
,

(B.4)

where we used,
∂ rν

∂ xµ
= ∂ yρ

∂ xµ

∂ rν

∂ yρ
= 0 . (B.5)

Since we defined the vector Q = rµdy
µ = qµdx

µ, qµ transforms covariantly: qµ = rν
∂ yν

∂ xµ =
rν

∂ fν(x)
∂ xµ . Hence,

e−ir.yTeir.y = Tµ
(

∂

∂ xµ
+ iqµ

)
= e−iq·xTeiq·x . (B.6)

In summary, if we have two coordinates {xµ} and {yµ} for a given point p ∈ M, we
can define the vector Q = qµdx

µ = rµdy
µ such that ∂ qµ

∂ xν = ∂ rµ

∂ yν = 0, and we have for a
vector T = Tµ ∂

∂ xµ = T̃µ ∂
∂ yµ ,

e−iq·xTeiq·x = Tµ
(

∂

∂ xµ
+ iqµ

)
= e−ir·yTeir·y = T̃µ

(
∂

∂ yµ
+ irµ

)
.

(B.7)

Note however that q · x ̸= r · y,

q · x = qµx
µ = rν

∂ yν

∂ xµ
xµ ̸= rνy

ν . (B.8)

Besides since y = f(x), we have,

ddy = dy1 ∧ · · · ∧ dyd = d(f1(x)) ∧ · · · ∧ d(fd(x))

= ∂ f1(x)
∂ xµ1

dxµ1 ∧ · · · ∧ ∂ fd(x)
∂ xµd

dxµd = det
(
∂ f(x)
∂ x

)
ddx ,

(B.9)

and,

ddq = d
(
∂ fµ1(x)
∂ x1 rµ1

)
∧ · · · ∧ d

(
∂ fµd(x)
∂ xd

rµd

)
= det

(
∂ f(x)
∂ x

)
ddr . (B.10)

We thus have the invariance of the measure,

ddxddq = ddyddr . (B.11)

Finally, consider a vector T and the two charts (U, ϕ) and (V, φ)with respective coor-
dinate and momentum (x, q) and (y, r). If they have an intersection V ∩ U ̸= ∅, we have,∫

U∩V
ddx

ddq

(2π)d
e−iq·xTeiq·x =

∫
U∩V

ddy
ddr

(2π)d
e−ir·yTeir·y . (B.12)

This result can be generalised without difficulty to any tensor H = Hµ1...µn ∂µ1 . . . ∂µn

by inserting 1 = e−iq·xeiq·x between each derivative and using the transformation of a rank
n tensor under a diffeomorphism.
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Functional trace. We now seek to write the functional trace of the logarithm of an
operator O that is covariant. O is quadratic in covariant derivatives, it can be written
under the form O = Aµν ∂µ ∂ν +Bµ ∂µ +C where A, B and C depend on the connections
in the covariant derivative. The logarithm can be expanded in a serie,

logO =
∑
n≥0

Tµ1...µn
n ∂µ1 . . . ∂µn . (B.13)

Since O is covariant, Tn must be a rank n tensor. According to the previous section,

e−iq·x logO(x, i ∂x)eiq·x =
∑
n≥0

Tµ1...µn
n (∂µ1 +iqµ1) . . . (∂µn +iqµn) = logO(x, i ∂x −q) ,

(B.14)
is coordinate independent.

By choosing a chart at each point of the manifold, we can write the functional trace,

TrO =
∫

p∈M
ddxi(p)

ddqi

(2π)d
trO(xi(p), i ∂xi −qi) , (B.15)

where i refers to a chart (Ui, ϕi) such that p ∈ Ui, xi(p) = ϕi(p) and qi is the associated
momentum. As shown above, the integration is independent of the choice of chart (i.e.
coordinate) for each point p, which allows us to define the functional trace on a generic
manifold M,

TrO =
∫

p∈M
ddx(p) ddq

(2π)d
trO(x(p), i ∂x −q) . (B.16)

∂µ qν = 0 versus ∂µ qν = 0. We have chosen to define the vector Q such that ∂ qµ

∂ xν = 0.
But we could have chosen ∂ qµ

∂ xν = 0, which is not equivalent. Suppose we make the second
choice: ∂ qµ

∂ xν = 0. We thus have,

e−iq·xTeiq·x = Tµ
(

∂

∂ xµ
+ iqν ∂ xν

∂ xµ

)
= Tµ

(
∂

∂ xµ
+ iqν ∂ gνρx

ρ

∂ xµ

)
= Tµ

(
∂

∂ xµ
+ iqν ∂ gνρ

∂ xµ
xρ + iqµ

)
,

(B.17)

which does not yield the desired outcome.

C Riemann normal coordinates and Fock-Schwinger gauge

In this appendix, we provide the expansion of the metric, the Christoffel symbols and the
spin-connection in RNC, as well as the expansion of the gauge fields in FS gauge, around
x0, with x = x0 + y.
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Fock-Schwinger gauge. In the FS gauge around x0, the gauge fields are expressed as
follows,

Vµ(x0) = −
∑
n≥0

1
n!(n+ 2)y

νyα1 . . . yαn

[
Dα1 ,

[
Dα2 ,

[
. . . [Dαn , Fµν ] . . .

]]]
(x0) . (C.1)

We must then upgrade the covariant derivatives D to the general covariant derivatives
D to have a diffeomorphism covariant expression. For example, in RNC and FS gauge we
have,

[Dµ, [Dν , Fρσ]]yµyνyσ = [Dµ,
(
[Dν , Fρσ] + Γλ

νρFλσ + Γλ
νσFνλ

)
]yµyνyσ

=
(
[Dµ, [Dν , Fρσ]] + (∂µ Γλ

νρ)Fλσ + (∂µ Γλ
νσ)Fρλ

)
yµyνyσ

=
(
[Dµ, [Dν , Fρσ]] +

1
3R

λ
µρ νFλσ

)
yµyνyσ .

(C.2)

We thus obtain for the first orders the combination of FS gauge and RNC as in [49, 50],

Vµ=−1
2Fµν(x0)yν− 1

3(DαFµν)(x0)yνyα− 1
8

(
(DαβFµν)+

1
3R

λ
αµ βFλν

)
(x0)yαyβyν+O(y4).

(C.3)
We do not consider the case of an axial gauge field in the covariant derivative as

throughout the computation we put the axial gauge field in Qo rather than in D. More
crucially, we expect the axial gauge invariance to be broken depending on the choice of
scheme for γ5 in dimensional regularisation, therefore it makes no sense to choose a gauge
for the axial gauge field.

Riemann normal coordinates. The metric and the Christoffel symbols are expressed
around x0 as,

gµν(x) = ηµν − 1
3Rµανβ(x0) yαyβ − 1

6Rµανβ;γ(x0) yαyβyγ

+
(
− 1
20Rµανβ;γδ +

2
45RαµβλR

λ
γνδ

)
(x0) yαyβyγyδ +O(y5) , (C.4)

gµν(x) = ηµν + 1
3R

µ ν
α β(x0) yαyβ + 1

6R
µ ν

α β;γ(x0) yαyβyγ

+
( 1
20R

µ ν
α β;γδ +

1
15R

µ
α βλR

λ ν
γ δ

)
(x0) yαyβyγyδ +O(y5) , (C.5)

and,

Γµ
νρ = −1

3
(
Rµ

νρα +Rµ
ρνα

)
(x0) yα

− 1
12
(
2Rµ

νρα;β + 2Rµ
ρνα;β +Rµ

αρβ;ν +Rµ
ανβ;ρ −R µ

ναρβ;

)
(x0) yαyβ

+
[
1
18R

µ λ
α βy

αyβ
(
−Rργλδ(∂ν y

γyδ)−Rνγλδ(∂ρ y
γyδ) +Rνγρδ(∂λ y

γyδ)
)

+
( 1
45RαρβλR

λ µ
γ δ −

1
40R

µ
αρβ ;γδ

)
(∂ν y

αyβyγyδ)
∣∣∣∣
sym µ↔ν

−
( 1
45RανβλR

λ
γρδ −

1
40Rανβρ;γδ

)
gµχ(∂χ y

αyβyγyδ)
]
(x0) +O(y4)

(C.6)

Higher order expansions in RNC can be found in [51].
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For example, in the limit y → 0, we have

(∂µ g
αβ) = 0

(∂ρσ g
µν) = 1

3R
µ ν

α β

(
gα

ρg
β

σ + gα
σg

β
ρ

)
= 1

3
(
Rµ ν

ρ σ +Rµ ν
σ ρ

)
.

(C.7)

It is also possible to apply the RNC to the spin-connection since it depends on the
vierbeins and the Christoffel connection. It boils down to using a FS gauge for the spin-
connection as if it were a regular gauge field,

ωµ =−1
8γ

α1(x0)γα2(x0)Rµνα1α2(x0)yν − 1
12γ

α1(x0)γα2(x0)(∇αRµνα1α2)(x0)yνyα

− 1
32γ

α1(x0)γα2(x0)
(
(∇αβRµνα1α2)+

1
3R

λ
αµ βRλνα1α2

)
(x0)yαyβyν +O(y4) . (C.8)

Note that the partial derivatives of ω only apply on y, since the Dirac matrices are at x0
they commute with ∂ = ∂

∂ y .

Example: DµDνDρDσ. Expanding open covariant derivatives in terms of the Christof-
fel connection, spin-connection and gauge connection and their derivatives can become
a heavy computation very quickly. Then forming the covariant quantities adds to the
complexity of the task. Using the RNC and the FS gauge drastically simplify this task.

Using eq. (C.3), we can express the partial derivatives of V in terms of field strengths,
and likewise for the spin-connection using eq. (C.8).

If we denote X = V + ω for simplicity, we have,

DµDνDρDσ = DµDνDρXσ

= DµDν

(
(∂ρXσ)− Γλ

ρσXλ +XρXσ

)
= (∂µνρXσ) + (∂µXν)(∂ρXσ)− (∂µ Γλ

νρ)(∂λXσ)− (∂µ Γλ
νσ)(∂ρXλ)

+
[
(∂µXρ)(∂ν Xσ)− (∂µ Γλ

ρσ)(∂ν Xλ)
]∣∣∣∣

sym µ↔ν

.

(C.9)

We can then explicit X = V + ω and use eqs. (C.3), (C.6) and (C.8) to form the covariant
quantities.

Finally we obtain the 4 open covariant derivatives DµDνDρDσ in a covariant form.
Obviously, DµDνDρDσ is not covariant by itself, but all the contributions to this operators
that arise in the expansion combine together so that the result is covariant. The use of
RNC and FS gauge is merely a shortcut to get to the final covariant form.

Open Access. This article is distributed under the terms of the Creative Commons
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