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Abstract

The DP-Note describes the DNN used for track selection in Run3 and shows the physics performance
in Run3 simulation. The tracking efficiency, fake rate and duplicate rate are shown as a function of
pT , η, pileup for tt̄ events and as a function of the track displacement for stop-antistop events.
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In memoriam
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We dedicate this DP-NOTE to our colleague Minxi Yang, who contributed to the 
development and optimization of the track selection DNN



Introduction
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Iterative Tracking at CMS

● The CMS track reconstruction follows an iterative approach  [1]:  the reconstruction algorithm is run several times 
starting starting from relatively easier tracks (higher pT, low displacement, 4 pixel hits in the seeds) and moving to 
more complex tracks in the later iterations

● Each iteration has 4 main steps:
○ Seeding
○ Pattern recognition
○ Track fit
○ Track selection

Track selection

● After the pattern recognition and the fit, based on Kalman Filter techniques, high purity tracks are selected and the hits 
belonging to those tracks are not used in the following iterations, thus keeping the complexity of the pattern 
recognition under control for later iterations.

● The track selection was gradually improved: starting with a parametric selection in Run 1 [1], moving to a BDT in Run 2, 
and to a DNN in Run 3.

● The track selection DNN is presented in this DP-NOTE



Disclaimer
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Several developments happened in parallel between Run 2 and Run 3

● Part of the tracking iteration were switched from the legacy CKF algorithm [1] to the mkFit algorithm  [2,3] for Run 3 
○ In the current default tracking the InitialStepPreSplitting, Initial, HighPtTriplet, DetachedQuad, DetachedTriplet iterations use mkFit. The rest, 

including PixelLess, uses CKF as in Run 2.

● The track selection was updated from a BDT to a DNN, while switching to mkFit
○ The DNN was developed initially for pure CKF reconstruction, but later for both mkFit and CKF tracks, which have slight differences, most 

notably in the total number of hits
○ In the current default tracking a DNN trained on mkFit tracks is used for the mkFit iterations, while a DNN trained on the CKF tracks is used for 

the CKF iterations
○ The BDT was trained on CKF only, but the conditions were different at the beginning of Run 2 (lower pileup and center of mass energy)

In the following slides, the Run 3 DNN and the improvement compared to BDT are highlighted. The DNN performance is 
shown in the current default tracking (mkFit +CKF Run 3) and compared to the result of the Run 2 BDT on the same tracks.

● The same comparison could be more coherent using pure CKF, but the conditions were also different and no training 
has been done on the same set of tracks, so the default tracking is preferred 



DNN Inputs and target
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Input Features

● the track pT, η, φ,  and their respective uncertainties δpT, δη, δφ
● px, py, pz, pT for the innermost and outermost state of the track
● the transverse and longitudinal impact parameters, d0, dz, computed both from the beamspot and from 

the closest primary vertex,  and their respective uncertainties δd0, δdz
● the track χ2 and number of degrees of freedom 
● number of Pixel hits, number of Strip hits 
● number of missing hits inside the innermost hit and outside the outermost hit 
● number of inactive layers crossed inside the innermost hit and outside the outermost hit 
● number of layers without hits overall
● the iteration flag (integer)

Target

● true/false flag: a true track must have more than 75% of its hits matched to a simulated track.



The track selection DNN
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the training is 
performed using the 
keras + tensorflow 
packages [6,7]DNN architecture

● Relatively simple feed-forward network, with 
5 iteration of “skip connection” and sum of 
the layer outputs in the downstream layers

● The “sanitizer” layer applies log/absolute 
value transformations to some of the inputs, 
while the “one hot encoder” converts the 
iteration flag into a boolean vector by 
category

● Activations: 
○ ELU [4] in hidden layers 
○ sigmoid for output 

● Loss function: binary cross-entropy



Training procedure and working points

7

Training procedure

● Training performed on tracks, including tracks from pileup vertices, from several simulated samples all generated at 
a center-of-mass energy of 14 TeV with pileup sampled from minimum bias events with Poisson mean distributed flat 
from 20 to 70 

○ QCD multijet production - generated with a flat hard-scattering  pT  from 15 GeV to 7 TeV
○ tt̅ production
○ Drell-Yan with Z decaying into electrons
○ Stop-antistop (      ) production in RPV SUSY, with stop masses             of 1 TeV and 1.8 TeV and stop decay lengths              of 10 or 100 cm. These 

samples are used to increase the amount of displaced tracks 

● The track selection is not applied to tracks used in training
○ All the tracks are labeled as “high purity” and the hit masking for the later iterations uses from the previous iterations
○ This is a reasonable approximation and it allows to train for all the tracking iteration in a single step

● Batch size 512, Adam optimizer [5]
● 5 training epochs over 1.3B tracks 

Choice of the working points

● The working point are chosen iteration by iteration in a validation sample similar to the training one
○ The efficiency is chosen to roughly match the BDT efficiency 

● The choice of the working point is validated in tracking with the hit masking applied



Tracking efficiency, fake rate & duplicate rate
● A reconstructed track is considered associated to a simulated particle if more than 75% of its hits have been originated from this 

simulated particle. If this is not the case, the reconstructed track is considered as a random combination of hits and marked as a 
misidentified (fake) track. 

● Simulated tracks coming from the signal (hard scattering) vertex are used in the efficiency computation. The tracking efficiency is 
defined as the fraction of simulated tracks associated to at least one reconstructed track

● All simulated tracks coming from any vertex (including pileup vertices) are used in the fake rate and duplicate rate computation. The 
tracking fake rate is defined as the fraction of misidentified reconstructed tracks; the tracking duplicate rate is defined as the fraction 
of reconstructed tracks associated multiple times to the same simulated track. 

●
● The performance has been measured in both a simulated tt̅ sample and in a sample with stop-antistop production in RPV SUSY, similar 

to the ones used in training, where the stops have a significant decay length and produce displaced tracks, i.e: 

                                                  with                                              ,                                            ,                         

with superimposed pileup events. The number of pileup events is sampled from minimum bias events with Poisson mean distributed flat 
from from 55 to 75. The detector conditions match the most recent Run 3 simulation. The efficiency, fake rate, duplicate rate are shown 
as a function of pT, η, pileup for the tt̅ sample, while the same quantities are shown as a function of the track displacement for the          
sample.

● The physics results are shown after applying the high purity BDT or DNN selection to each iteration and after merging all the tracks from 
the iterations  into one collection
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Tracking efficiency vs pT 
● The tracking efficiency is shown as a function of 

the simulated track pT for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for simulated 
tracks with |η|<3.0 and |d0 |<2.5 cm 

● The tracking efficiency when the DNN is used is 
consistent or slightly higher than the one 
obtained using the BDT across the entire pT 
range. The efficiency improves the most at low 
pT, up to 5%
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Tracking efficiency vs η 
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● The tracking efficiency is shown  a function of the 
simulated track pseudorapidity η for the high 
purity tracks selected by the DNN (red) and for 
the high purity tracks selected by the BDT 
(black), for simulated tracks with  pT>0.9 GeV and 
|d0 |<2.5 cm 

● The tracking efficiency when the DNN is used is 
consistent or slightly higher than the one 
obtained using the BDT in all the η regions. The 
improvement is at most 2%                                



Tracking efficiency vs PU
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● The tracking efficiency is shown as a function of 
the event pileup (PU) for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for simulated 
tracks with  pT>0.9 GeV, |η|<3.0 and |d0 |<2.5 cm 

● The tracking efficiency when the DNN is used is 
consistent or slightly higher than the one 
obtained using the BDT independently of the PU. 
Overall the efficiency is increased by 1%



Tracking fake rate vs pT 
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● The tracking fake rate is shown as a function of 
the reconstructed track pT for the high purity 
tracks selected by the DNN (red) and for the high 
purity tracks selected by the BDT (black) 

● The tracking fake rate when the DNN is used is 
notably lower than the one obtained using the 
BDT, especially for very low and very high pT 
values. Overall the fake rate is reduced by about 
40%



Tracking fake rate vs η 

13

● The tracking fake rate is shown as a function of 
the reconstructed track  η  for the high purity 
tracks selected by the DNN (red) and for the high 
purity tracks selected by the BDT (black), for 
tracks with  pT>0.9 GeV

● The tracking fake rate when the DNN is used is 
lower or consistent with the one obtained using 
the BDT. The largest fake rate reductions are in 
the tracker endcaps (|η|>2) and in the barrel 
(|η|<1). The discontinuities follow the tracker 
regions



Tracking fake rate vs PU
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● The tracking fake rate is shown as a function of 
the event pileup (PU) for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for tracks with  
pT>0.9 GeV

● The tracking fake rate when the DNN is used is 
lower than the one obtained using the BDT 
across the full PU range, with a reduction up to 
about 30% for higher PU values



Tracking duplicate rate vs pT 
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● The tracking duplicate rate is shown as a function 
of the reconstructed track pT for the high purity 
tracks selected by the DNN (red) and for the high 
purity tracks selected by the BDT (black) 

● The tracking duplicate rate is slightly increased  
when the DNN is used instead of the BDT. The 
overall increase is around 20%

● A slightly higher duplicate rate is expected due to 
merging of mkFit and CKF tracks selected by 
different DNNs



Tracking duplicate rate vs η 
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● The tracking duplicate rate is shown as a function 
of the reconstructed track  η  for the high purity 
tracks selected by the DNN (red) and for the high 
purity tracks selected by the BDT (black), for 
tracks with  pT>0.9 GeV

● The tracking duplicate rate when the DNN is used 
is higher or consistent with the one obtained 
using the BDT. In particular the increase is visible 
in the endcap and transition regions (|η|>1). The 
increase is up to 20%



Tracking duplicate rate vs PU
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● The tracking duplicate rate is shown as a function 
of the event pileup (PU)  for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for tracks with  
pT>0.9 GeV

● The tracking duplicate rate when the DNN is used 
is higher than the one obtained using the BDT. 
The increase of about 20% is consistent across 
the entire PU range



Tracking efficiency vs radius in 
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● The tracking efficiency is shown as a function of 
the simulated track production radius for the 
high purity tracks selected by the DNN (red) and 
for the high purity tracks selected by the BDT 
(black), for simulated tracks with  pT >0.9 GeV, 
|η|<3.0 

● The tracking efficiency when the DNN is used is 
consistent or slightly higher than the one 
obtained using the BDT at all radii. Notice the 
higher statistics for high radius values (>1cm) in 
the stop-antistop production with long stop 
decay lengths, as evident in decreasing statistical 
uncertainties for the corresponding bins



Tracking fake rate vs radius in
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● The tracking fake rate is shown as a function of 
the radius of the track point of closest approach 
to the beamline (or d0) for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for tracks with  
pT>0.9 GeV

● The tracking fake rate when the DNN is used is 
lower than the one obtained using the BDT 
across all the radii values, with a reduction of 
about 30%



Tracking duplicate rate vs radius in 

20

● The tracking duplicate rate is shown as a function 
of radius of the track point of closest approach to 
the beamline (or d0) for the high purity tracks 
selected by the DNN (red) and for the high purity 
tracks selected by the BDT (black), for tracks with  
pT>0.9 GeV

● The tracking duplicate rate when the DNN is used 
is higher than the one obtained using the BDT for 
all the radii, by about 20%
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