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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald Centrality-dependent measurements of hadron and jet cross section attenuation in deep inelastic scattering 
on nuclei can shed new light on the physics of final-state interactions in nuclear matter, including the path-

length dependence of the in-medium parton shower formation and evolution. Recent simulation studies have 
demonstrated the feasibility of experimental centrality determination in 𝑒A reactions at the electron-ion collider 
via neutron detection in the zero-degree calorimeter. Motivated by these results, we present the first theoretical 
calculation of the production rate modification for hadrons and jets in central and peripheral 𝑒Pb collisions. We 
find that the variation in the suppression of inclusive jet cross section as a function of centrality is less than a 
factor of two. In more differential measurements, such as the distribution of hadrons versus the hadronization 
fraction 𝑧ℎ, the difference can be enhanced up to an order of magnitude.
1. Introduction

Reactions with nuclei have been an integral part of the study of 
quantum chromodynamics (QCD) for more than 40 years [1]. Cold 
nuclear matter (CNM) effects in particular have been investigated in 
electron-nucleus (𝑒A) [2,3] and proton-nucleus (𝑝A) collisions [4,5]. 
These studies include the modification of nuclear structure encoded in 
parton distribution functions (nPDFs) [6–8], the non-linear physics of 
high-gluon densities [9–12], and elastic, inelastic and coherent parton 
scattering in large nuclei [13–16].

Medium-induced radiative corrections have attracted a lot of atten-

tion as a natural mechanism of cross section modification in cold nu-

clear matter. Specifically, they have been applied to interpret [17–22]

Drell-Yan and 𝐽∕𝜓 suppression at large Feynman-𝑥 in minimum bias 
𝑝A [23,24], and jet modification in central 𝑝A at very high ener-

gies [25,26]. Furthermore, in the framework of different theoretical for-

malisms, including parton energy loss, in-medium evolution, a hybrid 
approach and renormalization group analysis [27–30], bremsstrahlung 
from final-state interactions was shown to lead to hadron cross sec-

tion attenuation in semi-inclusive deep inelastic scattering (SIDIS) on 
nuclei. The overwhelming majority of these calculations have focused 
on HERMES collaboration measurements on helium (He), neon (Ne), 

* Corresponding author.

krypton (Kr) and xenon (Xe) [31–33], but early EMC collaboration re-

sults [34,35] show the same type of nuclear modification using carbon 
(C), copper (Cu) and tin (Sn) as targets.

Final-state radiative corrections are not the only possible explana-

tion of HERMES and EMC results. Models on early hadron formation 
and absorption in nuclear matter have been developed [36,37] and the 
possibility of universal fragmentation function modification has also 
been suggested [38,39]. It was found that light hadron measurements at 
HERMES do not have sufficient discriminating power to uniquely vali-

date or exclude theoretical models [40,41].

The electron-ion collider (EIC) will provide flexible center-of-mass 
energies and the opportunity to access final states that have not been 
studied thus far in SIDIS on nuclei. Recently, significant progress has 
been made in extending the theory of light and heavy hadron suppres-

sion [29,30], and jet and jet substructure modification [42–44] in 𝑒A 
at the EIC. All of these studies have been limited to minimum bias col-

lisions. Centrality-dependent measurements can provide new insights 
into the physics of final-state interactions in nuclear matter and cen-

trality class determination has been shown to be feasible via neutron 
tagging [45,46]. To this end, we present theoretical results on hadron 
and jet modification in central and peripheral electron-lead (𝑒Pb) colli-

sions at the future facility.
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Fig. 1. Illustration of the concept of centrality in electron-nucleus collisions. 
The struck quark and the jet initiated by it will see nuclear matter of different 
mean interaction length ⟨𝑑⟩.

The rest of this paper is organized as follows: in Sec. 2 we briefly 
review the theoretical formalism for hadron and jet production on pro-

tons and nuclei. Discussion of centrality determination in SIDIS and 
phenomenological results in central and peripheral 𝑒Pb collisions are 
contained in Sec. 3. We present our conclusions in Sec. 4.

2. Theoretical formalism

Recent developments in perturbative QCD have allowed us to place 
the calculation of semi-inclusive hadron and jet production on the same 
footing. Using the formalism of jet functions [47,48], the collinear 
differential hadron and jet cross sections can be written in a similar 
factorized form
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Here, 𝑓𝑖∕𝑁 is the parton distribution function (PDF) of parton 𝑖 carry-

ing a fraction 𝑥 of the nucleon 𝑁 momentum. We use 𝜎̂𝑖→𝑓 to denote 
the lepton-parton scattering cross section producing a final-state parton 
𝑓 . The processes that we study as a function of 𝑝𝑇 receive contributions 
from electron scattering at small angles, where the lepton becomes a 
source of quasi-real photons. The corresponding 𝛾𝑞 → 𝑞(𝑔), 𝛾𝑞 → 𝑔(𝑞)
and 𝛾𝑔→ 𝑞(𝑞) processes contribute to the cross section at order 𝛼2em𝛼𝑠
and the Weizsäcker-Williams (WW) distribution of quasi-real photons is 
given by a perturbative distribution function 𝑓𝛾∕𝓁ren (𝑦,𝜇) [49,50] with 𝑠, 
𝑡, 𝑢 the lepton-parton Mandelstam variables. The analytical results for 
𝜎̂𝑖→𝑓 , 𝜎̂𝛾𝑖→𝑓 and 𝑓𝛾∕𝓁ren (𝑦,𝜇) up to (𝛼2em𝛼𝑠) are taken from Ref. [51]. 
𝐷ℎ∕𝑓 is the standard fragmentation function (FF) from parton 𝑓 to 
hadron ℎ, taking a momentum fraction 𝑧. 𝐽𝑓 is the semi-inclusive jet 
function (SiJF) initiated by parton 𝑓 . When the jet radius 𝑅 is small, 
logarithms of the type ln𝑅 can be resummed by evolving the jet func-

tion from the jet scale 𝑝𝑇 𝑅 to the factorization scale 𝜇.

In 𝑒A reactions initial-state effects parametrized via nPDFs can alter 
hadron and jet cross sections. Our main focus in this paper is the central-

ity dependence of final-state medium-induced radiative corrections and 
we consider observables that minimize or eliminate the cross section 
modification due to nPDFs. Parton branching in nuclear matter is de-

scribed by in-medium splitting kernels 𝑑𝑁med
𝑗𝑖

∕𝑑𝑧𝑑2𝐤⟂ for the 𝑖 → 𝑗+𝑘
2

channel. We use the results derived in the framework of soft-collinear 
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effective theory with Glauber gluon interaction (SCETG) [52,53] and 
verified using a lightcone wavefunction formalism [54,55].

We calculate numerically the real part of the branching processes,

𝑃
med,real
𝑗𝑖

(
𝑧,𝐤⟂

)
= 2𝜋 𝐤2⟂

𝑑𝑁med
𝑗𝑖

𝑑𝑧𝑑2𝐤⟂
, (3)

for averaged interaction length ⟨𝑑⟩ corresponding to different central-

ity classes, as illustrated in Fig. 1. The corresponding virtual correc-

tions 𝑃med,vir
𝑗𝑖

are obtained using flavor and momentum sum rules [56,

57]. Final-state in-medium radiation leads to additional scaling viola-

tions [58] in the fragmentation functions and we implement them in 
medium-modified DGLAP evolution equations [22,28,29,59]
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)
. (4)

We solve these equations numerically using HOPPET [60].

The SiJFs used to calculate the semi-inclusive jet cross sections also 
receive medium-induced radiative corrections. We implement them at 
next-to-leading order as shown in Refs. [42,43,61,62]. The results for 
quark and gluon initiated jets of transverse momentum 𝑝𝑇 and radius 
parameter 𝑅 read
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where we have denoted 𝑑𝑁med
𝑗𝑖

∕𝑑𝑧𝑑2𝐤⟂ ≡ 𝑓med
𝑖→𝑗𝑘

(
𝑧,𝐤⟂

)
for brevity. In 

Eq. (6)
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𝑧
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In the equations above all, singularities when 𝑧 → 1 are regularized by 
the plus-distribution function that has the standard definition.

3. Centrality dependent nuclear modification

To study the centrality dependent nuclear modification, we are mo-

tivated by recent simulations of constraints on nuclear geometry in 𝑒A 
reactions using the Monte Carlo event generator BeAGLE [46]. The idea 
behind this more differential approach is to measure the energy de-

posited in the zero-degree calorimeter [45] at the EIC and correlate it 

to collision centrality, and the effective path length ⟨𝑑⟩. A subset of 
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Table 1

Selected centrality classes in 𝑒Pb collisions at the EIC, the corresponding effective length of cold 
nuclear matter seen by the scattered parton, and the ratio relative to the one in minimum bias (0 – 
100 %) collisions.

Centrality 0 – 1% 0 – 3% 0 – 10% 60 – 100% 80 – 100% 90 – 100% 0 – 100%⟨𝑑⟩[𝑓𝑚] 9.09 8.48 7.61 2.88 2.71 2.71 4.40⟨𝑑⟩∕⟨𝑑⟩min.bias 2.07 1.93 1.73 0.65 0.62 0.62 1.00

Fig. 2. Relative modifications of the inclusive jet cross section 𝑅𝑒A(𝑅)∕𝑅𝑒A(𝑅 = 1) for three radius choices 𝑅 = 0.3, 0.5, 0.8 in the rapidity interval 2 < 𝜂 < 4. The 
upper panels are for 10 GeV × 100 GeV 𝑒Pb collisions and the middle panels are for 18 GeV × 275 GeV 𝑒Pb collisions. Central reactions are on the left and peripheral 
reactions are on the right. The baseline 𝑒𝑝 cross sections for 𝑅 = 0.5 at the two different energies are also shown in the bottom panel.
effects, such as shadowing or assumed initial particle formation time, 
were studied and found to not significantly affect the energy distribu-

tion in the ZDC. The correlation between the centrality classes and the 
energy deposition remains robust when such effects are taken into ac-

count in simulation.

With this in mind, the average interaction length of a parton in a 
3

Pb nucleus as a function of centrality obtained in BeAGLE is given in 
Table 1. In the top 0-1% central events ⟨𝑑⟩ is twice as large as the 
one in minimum bias collisions. In the most peripheral 90-100% events ⟨𝑑⟩ is almost twice as small as the minimum bias one. In this paper, 
we pick two representative examples of centrality selection - a cen-

tral - 0-10% class and a peripheral 80-100% class. Next, we calculate 
grids of in-medium splitting functions [52–55] while constraining nu-
clear geometry to yield the enhancement or reduction of the average 
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interaction length relative to the minimum bias one as given in Table 1. 
We average over the position of hard scattering vertex along the line of 
parton propagation, but keep the splitting kernel differential in (𝑧, |𝐤⟂|)
as needed for the in-medium jet function evaluation and in-medium 
DGLAP evolution. While the grids are obtained numerically, recent an-

alytic advances [30] have allowed us to identify the leading medium 
size and kinematic dependencies of the branching

𝑓med
𝑖→𝑗𝑘

(
𝑧,𝐤⟂

)
∼

⟨𝑘2⟂⟩
𝜆𝑞,𝑔

𝐿2

𝐸
⋯ (8)

This implies that nuclear effects will increase from peripheral to central 
collisions, will decrease as the parton energy 𝐸 grows in the nuclear rest 
frame, and will depend on the medium transport properties ⟨𝑘2⟂⟩∕𝜆𝑞,𝑔 .

With the numerically evaluated splitting functions at hand and 
the theoretical framework described in Sec. 2 we now turn to phe-

nomenology. In our calculations for the baseline 𝑒𝑝 collisions we use 
CT14nlo PDF sets [63] with the strong coupling constant provided 
by LHAPDF6 [64]. For the case of semi-inclusive hadron production, 
fragmentation functions into light pions are taken directly from the 
HKNS parameterization in Ref. [65]. Heavy quark fragmentation into 
𝐷- and 𝐵-mesons at the scale 𝜇 = 2𝑚𝑄 is evaluated perturbatively 
using heavy quark effective theory (HQET) [66,67] and evolved to a 
higher scale. When we consider reactions with nuclei, such as the 𝑒Pb 
case of interest, we use the nCTEQ15FullNuc PDF sets [6]. In compar-

ison to Ref. [29], where we varied the transport parameters up and 
down by a factor of two relative to the nominal fit value to HER-

MES data, here we focus on the 𝜈 > 10 GeV region and reduce their 
range to 0.096 GeV2/fm < ⟨𝑘2⟂⟩∕𝜆𝑔 < 0.168 GeV2/fm, 0.043 GeV2/fm 
< ⟨𝑘2⟂⟩∕𝜆𝑞 < 0.075 GeV2/fm.

We first consider jets reconstructed with a radius parameter 𝑅
and define the centrality dependent nuclear modification in electron-

nucleus collisions through the ratio

𝑅eA(𝑅) =
1

Δ𝑏𝑇𝐴(𝑏)

∫ 𝜂2
𝜂1 𝑑𝜎∕𝑑𝜂𝑑𝑝𝑇 |𝑒A
∫ 𝜂2
𝜂1 𝑑𝜎∕𝑑𝜂𝑑𝑝𝑇

|||𝑒𝑝 . (9)

Here, the nuclear thickness function at impact parameter 𝑏 is

𝑇𝐴(𝑏) =

∞

∫
−∞

𝜌(𝑧, 𝑏)𝑑𝑧 , (10)

and Δ𝑏 = 2𝜋𝑏𝑑𝑏 is the differential area around the impact parameter 
𝑏 such that 

∑
𝑏Δ𝑏𝑇𝐴(𝑏) = 𝐴. In other words, 𝑅𝑒A(𝑅) is the per nu-

cleon cross section modification for the relevant impact parameters 
corresponding to the centrality class. Earlier work on hadron and jet 
production in minimum bias 𝑒A collisions has already provided useful 
guidance on how to study final-state interactions [29,42,43]. In particu-

lar, they can be separated from initial-state nuclear PDFs [6,7] by taking 
the ratio of nuclear modification for a small radius jet to the modifica-

tion for a large radius jet 𝑅𝑒A(𝑅)∕𝑅𝑒A(𝑅 = 1). This strategy works very 
well, eliminating initial-state effects to less than a few % [42,43].

In Fig. 2 we show the double modification ratio 𝑅𝑒A(𝑅)∕𝑅𝑒A(𝑅 = 1)
for three different choices 𝑅 = 0.3 (red band), 0.5 (blue band), and 0.8
(green band). The bands correspond to cold nuclear matter transport 
parameters in the ranges quoted above. The idea behind normalizing 
this observable to the 𝑅𝑒A for a large radius jet is that final-state effect 
for 𝑅 = 1 will be minimal. Even though the medium induced parton 
shower is broader than the vacuum one, most of it will be contained 
in a unit radius. Conversely, by choosing smaller radii an increasingly 
larger fraction of the shower energy will be redistributed outside of 
the jet cone, leading to cross section suppression. We also choose the 
forward proton/nucleus going direction 2 < 𝜂 < 4 since the jet energy 
in this kinematic region is the smallest in the rest frame of the nucleus, 
leading to larger final-state effects. The top row of panels shows 10 GeV 
4

(𝑒) × 100 GeV (Pb) collision and the bottom row of panels is for 18 GeV 
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Fig. 3. Ratio of per-nucleon jet cross sections in peripheral and central collisions 
for the jet rapidity interval is 2 < 𝜂 < 4 and R=0.3 (inset), 0.5 (red), 0.8 (blue), 
and 1.0 (green). The upper panel is for 10 GeV × 100 GeV 𝑒Pb collisions and 
the bottom one is for 18 GeV × 275 GeV 𝑒Pb collisions.

(𝑒) × 275 GeV (Pb) collisions. On the left we show the 0-10% centrality 
selection and the 80-100% centrality class is on the right.

Our calculations show that the nuclear modification is the largest at 
relatively small transverse momenta. At the same time, it depends on 
the steepness of the 𝑝𝑇 spectra (shown in the bottom panel of Fig. 2 for 
𝑒𝑝 collisions) and the effects become larger again close to the kinematic 
edges of phase space, as seen in the upper panels of Fig. 2. For large 
radius jets the relative modification 𝑅eA(𝑅 = 0.8)∕𝑅eA(𝑅 = 1) is small, 
≤ 5%. On the other hand, for small radius jets 𝑅eA(𝑅 = 0.3)∕𝑅eA(𝑅 = 1)
in central 𝑒Pb reactions can show up to 40% suppression. At higher 
center of mass energies the modification is smaller, as expected, and 
decreases monotonically with 𝑝𝑇 . By comparing the left and right panels 
of Fig. 2 we see clearly that final-state effects depend on the thickness 
of nuclear matter.

Another method to directly investigate the interaction length depen-

dence of final-state cold nuclear matter effects using jet production is 
to compare the cross sections in peripheral and central collisions. Thus, 
we define the ratio as

Peripheral
Central

(𝐽 ) =
1

Δ𝑏𝑇𝐴(𝑏)
∫ 𝜂2
𝜂1

𝑑𝜎

𝑑𝜂𝑑𝑝𝑇
|𝑒A,Peri.

1
Δ𝑏𝑇𝐴(𝑏)

∫ 𝜂2
𝜂1

𝑑𝜎

𝑑𝜂𝑑𝑝𝑇
|𝑒A,Cent. , (11)

where the initial-state effects are reduced and most of the contribution 
is from final-state interactions. In fact, the nPDF parametrization we 
use [6] does not include centrality dependence. In principle, nuclear 
effects on structure functions can depend on the path length seen by 
the struck parton [14]. Separation between such effects and global nu-

clear structure modification will be important to better understand the 
residual dependence in Eq. (13). As discussed above, the medium in-

duced energy loss is smaller and the per-nucleon cross section is larger 

for peripheral collisions. Thus, the ratio defined in Eq. (13) is expected 
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Fig. 4. In-medium corrections to 𝜋+ (top panels), 𝐷0 (middle panels) and 𝐵0 (bottom panels) production as a function of 𝑧 at the EIC in 5 GeV(e) × 40 GeV(A) 
collision. Red bands, blue bands, and green bands correspond to −2 < 𝜂 < 0, 0 < 𝜂 < 2 and 2 < 𝜂 < 4, respectively. Results for central collisions (0 − 10% centrality) 
are shown on the left, and results for peripheral collisions (80 − 100% centrality) are shown on the right.
to be larger than one. Fig. 3 displays our predictions for 10 GeV (𝑒) ×
100 GeV (Pb) and 18 GeV (𝑒) × 275 GeV (Pb) collisions in the forward 
rapidity region for various jet radii. The 𝑅 = 0.3 case is shown in the 
insets since, as expected, the ratio is much larger than in other cases 
and is very sensitive to the thickness of the nuclear matter in kinematic 
regions where the jet 𝑝𝑇 distribution is steeper in particular when the 
collision energy is small. For 10 GeV (𝑒) × 100 GeV (Pb) collisions the 
ratio can be around 1.1 for 𝑅 = 0.5 and 𝑅 = 0.8 in the small jet 𝑝𝑇 re-

gion. It shows only about a few percent deviation from one for 𝑅 = 1. 
The ratio in the large 𝑝𝑇 region is enhanced since jets are produced 
close to the edges of phase space. For 18 GeV (𝑒) × 275 GeV (Pb) colli-

sions, the ratio decreases with increasing jet 𝑝𝑇 and is smaller than 1.1 
for all of the cases. The 𝑅 dependence indicates that the energy loss for 
larger radii is smaller which is consistent with Fig. 2. In summary, the 
centrality class-dependent modification in matter is clearly observed in 
5

Fig. 3.
Next, we discuss the cross-section modification for hadron produc-

tion at the EIC, including 𝜋+ and the heavy 𝐷0 and 𝐵0 mesons. As 
shown in [29], the following double ratio as a function of momentum 
fraction 𝑧 is a suitable observable for cold nuclear matter tomography 
at the EIC

𝑅ℎ
𝑒𝐴
(𝑧) =

𝑁ℎ(𝑝𝑇 ,𝜂,𝑧)
𝑁 inc(𝑝𝑇 ,𝜂)

|||𝑒A
𝑁ℎ(𝑝𝑇 ,𝜂,𝑧)
𝑁 inc(𝑝𝑇 ,𝜂)

|||𝑒𝑝 . (12)

Here, we use the shorthand notation 𝑁ℎ(𝑝𝑇 , 𝜂, 𝑧) ≡ 𝑑𝜎ℎ∕𝑑𝜂𝑑𝑝𝑇 𝑑𝑧 for 
the distribution of hadrons versus the hadronization fraction 𝑧 and 
𝑁 inc(𝑝𝑇 , 𝜂) ≡ 𝑑𝜎𝐽∕𝑑𝜂𝑑𝑝𝑇 for the distribution of large radius jets. In 
practice we integrate over suitably chosen rapidity and transverse mo-

mentum bins before taking the ratio. The idea behind normalizing by 

𝑁 inc(𝑝𝑇 , 𝜂) is to once again minimize initial-state effects and emphasize 
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physics of final-state interactions in nuclear matter. For 𝑒A collisions 
we can further define per-nucleon cross sections by dividing out the 
1∕Δ𝑏𝑇A(𝑏) geometric factor.

Our results for 𝑅ℎ
𝑒Pb(𝑧) are shown in Fig. 5. We consider electron-

proton/nucleus collisions with energy 5 GeV (e) × 40 GeV (A), and 
the transverse momenta of final-state hadrons are fixed in the range 
2 GeV to 3 GeV. Consequently, the momentum fraction 𝑧 distribution 
corresponds to the variation of 𝜈 constrained by the kinematics of the 
scattered electron in experiment. The left column of panels is for the 
0 − 10% central events, and the right column is for 80 − 100% periph-

eral events. For each hadron species, the red, blue and green bands 
correspond to the predictions in rapidity regions −2 < 𝜂 < 0, 0 < 𝜂 < 2
and 2 < 𝜂 < 4, respectively. Just as in the case of jet production, the 
bands reflect the variation of the nuclear matter transport parameter 
constrained by high 𝜈 HERMES data. Top to bottom rows show the dif-

ferential 𝜋+, 𝐷0 and 𝐵0 modification. Because lower energy partons 
receive larger medium corrections induced by the final-state interac-

tions in the nucleus, the medium modification is more significant in 
the forward rapidity region 2 < 𝜂 < 4. In this region the energy of the 
final-state parton is lower in the nuclear rest frame in comparison, for 
example, to backward rapidity. It is instructive to observe that for light 
hadrons at large 𝑧 the differential cross section suppression can reach 
a factor of two even in peripheral collisions. In central events the en-

ergy loss effect can lead to more than an order of magnitude reduction. 
For heavy flavor, just as in minimum bias reactions [29], 𝑅ℎ

𝑒Pb(𝑧) shows 
transition from suppression at large 𝑧 to enhancement at small 𝑧 be-

cause of the non-monotonic behavior of the heavy quark fragmentation 
function into heavy mesons [66,67]. In central reactions nuclear effects 
are noticeably larger.

To compare the cross section modification in central and peripheral 
collisions for differential hadron distributions quantitatively, we define

Peripheral
Central

(ℎ) =
𝑅ℎ
𝑒𝐴
(𝑧)|𝑒A,Peri.

𝑅ℎ
𝑒𝐴
(𝑧)|𝑒A,Cent. (13)

and note that the baseline 𝑒𝑝 cross sections will drop out. As we ex-

pect, central collisions result in more significant medium corrections 
than peripheral ones, as shown in Fig. 4. The steep fragmentation dis-

tribution when 𝑧 → 1 enhances the differences for light pions to an 
order of magnitude. As we go forward in rapidity the enhancement 
in Peripheral∕Central(ℎ) extends to smaller 𝑧. For 𝐷0 mesons this en-

hancement can also be very significant when 𝑧 → 1 but at intermediate 
fragmentation fractions the double ratio can dip below unity – a con-

sequence of the transition from suppression to enhancement in 𝑅ℎ
𝑒𝐴
(𝑧). 

The qualitative behavior is similar for 𝐵0 mesons.

4. Conclusions

We presented theoretical predictions for the nuclear modification of 
semi-inclusive hadron and jet production in 𝑒Pb collisions at the EIC as 
a function of centrality. We took advantage of recent simulations that 
were able to demonstrate robust correlation between centrality classes 
in 𝑒A and energy deposition in the zero-degree calorimeter, and to de-

termine the mean interaction length seen by partons. We constructed 
observables that minimize initial-state nPDF effects and are sensitive 
to the inelastic final-state interactions of the struck parton in the nu-

cleus. Future measurements of these observables at the EIC can provide 
essential information on the path length dependence of parton shower 
formation and hadronization in cold nuclear matter.

Our theoretical results indicate that the dependence of in-medium 
shower formation and energy loss on the transport properties and size 
of the nuclear medium can be easily identified and studied at the EIC. 
The exact sensitivity, however, depends on the choice of observables. 
We found that for inclusive jets of small radius at moderate center-of-

mass energies and at forward rapidities the per-nucleon cross sections 
6

variation between 0-10% and 80-100% collision can reach a factor of 
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Fig. 5. The ratio of 𝑅ℎ
𝑒𝐴

in peripheral to central collisions. The electron and 
proton/nucleus beam energies, 𝑝𝑇 and 𝜂 ranges are the same as in Fig. 4. We 
show 𝜋+ (red), 𝐷0 (blue) and 𝐵0 (green). From top to bottom panels cover 
backward to forward rapidities.

40%. Because of the high integrated luminosity that EIC is expected to 
deliver [3], such peripheral-to-central differences will be easily measur-

able, but they are smaller than the differences in the mean interaction 
length ⟨𝑑⟩ seen by the jet. The reason for this is that even for 𝑅 = 0.3
only a fraction of the medium-induced shower is redistributed outside 
of the jet cone.

Hadron measurements at forward rapidity can be performed at even 
lower center-of-mass energies. Our theoretical calculations showed that 
the per-nucleon differential particle distributions versus the fragmenta-

tion fraction 𝑧ℎ depend much more significantly on centrality. For light 
pions at large 𝑧ℎ the peripheral-to-central ratio can reach a factor of 5, 
exceeding the ratio of effective interaction lengths for these centrality 
classes. Furthermore, the nuclear modification due to final-state inter-

actions and its centrality variation are strong enough to be detected 

near mid rapidity and even at backward rapidity. The nuclear cross sec-
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tion modification also depends on the hadron flavor and has a predicted 
non-monotonic behavior for 𝐷- and 𝐵-mesons. We conclude by point-

ing out that in the future it will be important to explore the centrality 
dependence of other more differential jet observables such as jet sub-

structure.
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