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INTRODUCTION

In this report a wide-band pick-up for very high frequencies is described, in which 

the essential part is a dielectrically loaded wave guide (Fig. 1).

Bl Longitudinal view.
(Cut of the wave guide side metal walls).
L - length of the loaded wave guide.

A) Cross section view of the pick-up. 
a - total wave guide width, 
b = total wave guide height, 
s = dielectric slab thickness, 
d = a-2s = distance between slabs.

Figure 1

The dielectric constant of the media filling the wave guide is a step function de­
fined by:

The main feature which makes this pick-up different from those usually employed is 
the continuous dielectric structure which is the support for the propagating signal. The 
simplicity of the structure makes the device eminently suitable for use in stochastic 
cooling systems either as pick-ups or kickers.

The physical effect underlying the power collection is the Cerenkov effect. It is 
briefly summarized in Section 1.

The approach used is to compute the beam-excited electromagnetic field through an ex­
pansion of this field over the normal modes of the dielectric-loaded wave guide. Coeffi­
cients of the expansion and power carried by the field are computed in Section 2. A defi­
nition for the sensitivity is also given in Section 2.

Equations obtained in Section 2 are employed to optimize the pick-up performance 
(Section 3) and lead to the design described in Section 4.

Parameters suitable for a pick-up which detects longitudinal beam structure in the 
Antiproton Accumulator are listed in Section 5.

This report summarizes the work carried out by the author on a technical studentship 
in the AA Group of the PS Division: it is part of a more extensive programme of research 
carried out by a CERN-Naples University collaboration1.
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1. THE CERENKOV EFFECT IN THE MICROWAVE REGION

The Cerenkov effect has been extensively studied in the literature2,3,4. The use 
of Cerenkov radiation for generating microwaves was proposed by Ginzburg in 1947. In the 
following years many attempts were made to build high-power generators for microwaves em­
ploying the Cerenkov effeet5,6,7,8.

Cerenkov radiation also appears to be suitable for detecting longitudinal beam 
structure when the beam is allowed to pass through a dielectrically loaded wave guide.

To understand how microwave power is produced when Cerenkov radiation occurs in a 
wave guide, one must recall the main features of the Cerenkov effect.

When a charged particle moves through an infinite dielectric medium, constructive in­
terference can occur from the wave fronts produced by the particle along its way (Fig. 2), 
only if the following conditions are satisfied:

where vp = particle velocity,
Vϕ = wave phase velocity,

Bp = Vp/C,
n = refractive index of the dielectric

medium,
(vϕ) = projection of wave phase velocity

on the axis of particle motion.

Under these conditions Cerenkov radiation is 
observed propagating over a cone whose axis lies 
on the particle trajectory, and whose semi­
aperture is B = arcos(1/Bpn).

Figure 2 
Huyghens construction to illustrate 
coherence of Cerenkov radiation.

Cerenkov radiation obviously depends on vp and n(w), where w is the frequency of the 

radiation.

The picture changes if the charged particle moves in a finite structure, for instance 

in a loaded wave guide, such as that sketched in Fig. 3.

Z

Figure 3 - Simplified view for capability to enhance Cerenkov power 
by a dielectrica11y loaded wave guide.

Reflections from the outer surface of the wave guide and from the air-dielectric 

interface must be taken into account.
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Cerenkov radiation occurs at the angle B given by cos0 = 1/Bpn, so (1.2) is fulfilled 
by Cerenkov radiation (Bp < 1), which remains trapped in the slab of dielectric.

A new wave produced at z = B by the passage of the particle adds to the reflected 
wave from A if (vϕ)z = vp. Power in the dielectric obviously increases with slab length.

It is worth noting that most of the published literature generally employs cylindric­
ally loaded wave guides, which fit the beam (or particle) geometry and simplifies the 
analysis.

Solutions for Cerenkov radiation by a charge passing along the axis of a rectangular 
loaded wave guide were not found in the literature.

Total internal reflection (as in Fig. 3) means no propagation in the air, or kx imagi­

nary. This occurs if in (1.1):

(1.2)

and

hence

Now

Referring to Fig. 3, radiation produced at z = A at the Cerenkov angle 8 = 
arcos(1/ppn) is reflected by the wave guide's outer conductor and is generally reflected 

again at air-dielectric interface with the incidence angle 8.

The condition for total internal reflection from the air-dielectric surface can be 

expressed in term of the field wave number k0.

If

2. FIELDS AND NORMAL MODES IN RECTANGULAR DIELECTRIC LOADED WAVE GUIDES

We look for the exact analytical expression of the electromagnetic field generated by 
a bunched beam moving along the z-direction (on the axis) into the empty (air or vacuum) 
region of the loaded wave guide (Fig. 1).

To this end we perform an expansion of the transverse components of the field over 
the normal modes of the wave guide.
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2.1 Beam Model

In order to simplify the analytical treatment a point configuration is assumed for 
the transverse dimensions of the beam, described by the 6(x - a/2)6(y - b/2) function.

A single frequency of the Fourier spectrum is considered, expressing the (z, t) 
dependence through the factor ej(wt-kpz) where kp = w/Vp is the beam propagation constant 

along z, with vp = cBp the beam velocity (obviously c = free empty space light velocity) 
The expression given below is the Fourier transform of current into the frequency w and 
z-wave number domains.

(2.1)

where Y represents the generic z-wave number in the space-like frequency domain and Io is 
the d.c. beam current. The integral on the right of (2.1) converges if the finite length 
of the dielectric slab is taken into account, which is the same as assuming the model of a 
finite length L of current passing along an infinite slab of dielectric.

a) Real situation. b) The model.
The finite length pick-up sees An infinite dielectric slab, but
an infinite current. a "square" wave function current.

Figure 4

In Fig. 4b the signal of a fixed z-space frequency (kp) of Fig. 4a is multiplied by a 
"square" wave function of length L. This product can be decomposed into a Fourier spec­
trum. t is any harmonic of the "square" wave. The factor 2 . sin{(Y - kp)L/2}/(t - kp ) is 
the weight of each Fourier harmonic to reproduce the original signal over the finite 

length L.

Hence the current transform is:

2.2 Fields

We write and II in the w-frequency and z-space frequency domains:

(2.2)

(2.3a)
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(2.3b)

and solve Maxwell's equations for the transforms of ε and II, namely E(t, y, w) and H(t, y, 

w), where t represents a unitary vector in the transverse plane of the wave quide.

Transverse components of E and H can be expanded in term of eigenvectors of the wave 

guide we are treating, employing the normal mode functions emn(t), hmn (t) which are com­
puted in Appendix 1. It is easily understood from the Appendix that indices refer to the 
order of the kx and ky wave numbers, respectively, as is usual for the finite structure 
eigenvectors. From here onwards, for the sake of brevity, we choose to use one index only 
for the eigenvectors.

where k2 (x)= w2E(x)μ0. The magnetic permeabilities of the media are assumed to be constant 
and equal to free space permeability, μ0, 

e(x) = absolute dielectric constant of the medium wherein the above equations 
obtain.

and

A pair of equations like (2.5) but with no current terms hold for eigenvectors e, h of 
each normal mode.

(2.7b)

(2.4a)

(2.4b)

Separating between transverse and longitudinal components of fields and sources, and 
indicating them with a "t" or "z" subscript, respectively, we get Maxwell's equations 
valid in each continuous region of the wave guide:

(2.5a)

(2.5b)

(2.6a)

(2.6b)

(2.7a)
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where Ym is the propagation wave number of the m-mode, as appearing in Appendix 1, (A. 4).
Putting (2.4) into (2.5), taking into account 
eigenvectors and the equations (2.7), we can 
coefficients cm, dm of (2.4). Namely,

the orthogonal properties (A.13) of the 
get the analytical expression for the

(2.8a)

(2.8b)

The symbol serves to indicate the operation of complex conjugation.

This equality holds (see Appendix 3):

(2.9)

where ezm is the z-component of the eigenvector of normal mode em.

Expressing Iez through (2.2) and performing the integral on the right of (2.9) we
get:

(2.10a)

(2.10b)

where

and ez(a/2, b/2) means that the ez-function must be evaluated at the beam, on the axis of 

the wave guide.

To get reasonable values of dielectric slab thickness, Longitudinal-Section Magnetic 
(LSM) modes must be excited by the beam (see next section). Hence in expression (2.4) we 
restrict ourselves to LSM eigenvectors only. Moreover, we expect to keep below the cut-off 
frequency of the higher order LSM modes, so that only the first LSM mode is excited.

If this condition is satisfied the summation in (2.4) reduces to:

(2.12a)

(2.12b)

:2.11a)

:2.11b)
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Fields expressed by (2.12) are maintained under the integrals in (2.3). Integration 
over y of fields expressed by (2.12) affects only factors C, (t) and D, (y) for Et and , 
respectively. Allowing for poles appearing in (2.11), we perform the integrals over y and 

obtain:

The expressions for the fields are valid in the range z € [-L/2, L/2] (coordinates refer 
to Fig. 4).

Manipulation of (2.14) yields fields which can be written in the form, where sine x = 
sinx/x:

(2.15a)

(2.15b) 

where, for the generic m-mode:

(2.13a)

(2.13b)

(2.14a)

(2.14b)
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where q and p are the lowest order roots of the LSM dispersion equation and Ao is the nor­
malization factor for odd LSM eigenfunctions, as shown in Appendix 1, (A.14).

The “sine" function requires the synchronism between the normal mode in the wave 
guide and the beam, to get the maximum response of the pick-up. This condition can be 
written = tkp, where the sign is referred to a beam propagating respectivelz along po­
sitive (as in our case) or negative z-axis.

By the choice = kp we can ignore the wave propagating along the negative z-axis, 
because of the small amplitude of sine {(kp + )(L/2 - z)/2}, and write the synchronous 
field as:

2.3 Cerenkov Comparison

The results of this approach are in agreement with the expectations from the classic­

al Cerenkov effect.

As is shown in expression (2.16) a bunched beam passing near a dielectric surface in 
a wave guide generates waves which propagate in the direction of motion of the beam. A 
discrete spectrum is selected at those frequencies for which synchronism between the beam 

and wave velocities occurs.

Expression (2.16) shows that the longer the dielectric slab, the greater is the quan­
tity of power generated, in agreement with what was stated in Section 1.

2.4 Power Flux

When the synchronous condition is satisfied, expression (2.16) enables us to compute 
the power flowing along z across the wave guide cross-section at z = L/2, due to the 

passage of the beam.

At a fixed harmonic, power flowing in the total cross sectional area is:

(2.17)

Similarly the power flowing in the dielectric slabs or alternatively in the empty region, 

can be computed.

The expressions for the power flowing in the total cross sectional area of the guide 

and in the two dielectric slabs are:

(2.18)

(2.16a)

(2.16b)
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(2.19)

where Go is expressed by (A.15b) of Appendix 1.

The ratio between power flowing in the dielectric medium and total power (used for 

pick-up design and optimization) is given by:

(2.20)

When the synchronous condition is not completely fulfilled, as can happen if the beam fre­
frequencies change, the time-average power flowing across the wave guide section at the 
end z = L/2, computed from (2.17), is:

(2.21)

To emphasize that all three wave numbers change when synchronism does not hold any 
more, we indicate them with the generic subscripts m.

2.5 Sensitivity

The sensitivity S of a pick-up may be defined as:

where Vo is the output voltage picked up on a probe antenna, placed suitably near to the 
dielectric, with characteristic impedance Z^, and Io is the d.c. beam current.

It is easy to write (2.22) in terms of the total power carried by the LSM1 mode. On

the antenna

and from (2.24)

(2.22)

where is the current flowing in the antenna; the output power can be written:

(2.23)

(2.24)

From (2.23):
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Making the assumption that the whole output power is carried by the LSM1 MODE (no 
higher order modes excited) and flowing entirely in the dielectric (as will be clarified 
later), Po can be written like (2.18), or (2.21) if the chosen mode is not synchronous, 
and the analytical expression for S can be obtained.

3. PICK-UP OPTIMIZATION

Optimization of the pick-up means choosing the parameters involved in the previous 
theory, so that the pick-up can give the best response to the beam passage. The pick-up 
must have two important properties:

1 . a large value of sensitivity: from the definition (2.26) this means that the beam 
must excite the largest possible quantity of total power in the wave guide.

2 . a very large value of power flowing in the dielectric slabs compared with the total 
power in the wave guide, since the former becomes the signal to be detected.

It is useful to describe in a few words the physical meaning of the two points above.

The first property means the beam needs to be strongly coupled to the field distribu­
tion of the first mode in the wave guide. This can be seen from (2.10) where, through 
(2.9), ez estimated at the beam appears.

The second property asks that the total power distributes itself mainly in the di­
electric rather than in air, this means decreasing the amplitude of e.m. field in the 
space between the slabs.

As these two properties are somewhat contradictory to each other, it is necessary to 
study them apart for the optimization process.

3.1  Optimization of Sensitivity

The key-relations for optimization of sensitivity are:

a) the expression (2.26) for the sensitivity,
b) the synchronism condition,
c) the dispersion equations (A.10a) or (A.11b), 
d) the wave number relations (A.9b), (A.9c).

The parity of modes has been selected so that, according to (2.10a, 2.10b), the z- 
component of the electric field of the excited mode is not zero at the beam. In this 
treatment, assuming a beam passing along the centre of the wave guide, we select those 
modes which give a symmetric ez- distribution around x = a/2 in the air region, namely odd 
LSM modes and even LSE modes (following the nomenclature in Appendix 1).

(2.25)

(2.26)

Thus expression (2.22) becomes:

so we can write:
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Like wise, from the symmetry, only LSM modes with odd “n” index or LSE modes with 
even "n" can be excited by the beam. Obviously a pick-up sensitive to the transverse dis­
placement of the beam position could be realized by employing the modes with anti-symme­

trical distribution of ez1.

The dispersion relation of LSE modes (A.10a) shows a cut-off frequency, because it 
has no roots until the argument "ps" is at least π/2. LSM modes have no cut off-frequency 
and may exist for the smallest of slab thicknesses. Hence they are most suitable for our 

needs.

For this reason we design the pick-up for operation in the first LSM mode (disp. 
equation A.11b). As was said in section 2, the main property to be "matched" for maximum 
response of the device is mode-beam synchronism, namely:

(3.1)

Using (3.1) in (A.9) we get:

(3.2a)

(3.2b)

while (A.9c) is still valid.

Converting to dimensionless parameters, namely wave number normalized to k0 (the un­
bounded empty space wave number) and length multiplied by k0(= 2π/λ0), let us optimize the 
pick-up while ignoring for the moment the working frequency.

The expression for sensitivity in terms of dimensionless parameters, from (2.26), is
given below: (3.3) 

where Zo (the unbounded empty space impedance) = ; the bars indicate normalized 
quantities, and wave numbers pm, qm, refer to a generic LSM mode. When synchronism is 
satisfied, (3.3) reduces:

(3.4)

where q, p are the wave numbers corresponding to the case when Ym = kp. Before optimizing 
we need to fix a few parameters: for instance the minimum distance between slabs (d), 
which is related to maximum beam horizontal size, and a convenient value of dielectric
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constant (εrε0); Bp is known. In order to choose the optimum value of slab thickness (s), 
synchronism must be imposed and the behaviour of sensitivity (3.4) versus normalized s 
must be investigated.

This can be done through a computer program: the plot of Fig. 9 refers to the case 
studied for the CERN antiproton accumulator AA; b depends on the value of s, through 
(3.2b), as do p and q.

When s is chosen, in order to get the maximum sensitivity, we can fix the working 
frequency and get the real dimensions for lengths and wave numbers. Once the pick-up 
cross-section is fixed, the bandwidth for a fixed slab length can be estimated through ex­
pression (3.3). p, q, change with frequency: they are solutions of the system of equa­

tions (A.11b), (A.9b) and (A.9c). Figure 11 shows sensitivity versus frequency for the 
case of the AA pick-up.

It can happen that the maximum sensitivity does not correspond exactly to the beam­
mode synchronization frequency: this happens because the synchronous condition occurs at 
the maximum of the "sine” (sinx/x) function, but this is not the only consideration when 
optimizing the sensitivity expression (see 3.3). Indeed this shift is visible in Fig. 11; 
it is worth noting that it is very small, 8’t and 6*»  for case a) and b), respectively. 
These small values indicate that the method of optimization is essentially correct.

Further improvement is obtained by scaling the parameters to move the centre-band 
frequency up to the synchronism frequency.

Referring to curves of Fig. 11, the case a) requires scaling and the case b) 6%. 
This means:

a b

s = 0.005m -» O.OO46m ; O.OO47m 
d = O.O65m -» 0.060 m ; 0.061 m

It should be mentioned that the optimization method is an iterative one.

3 .2 Optimization of the Ratio between Power in the Dielectric and Total Power

As previously outlined, power excited by the beam flows mainly between the slabs. We 
expect that increasing slab thickness will give a different power distribution, according 

to our needs.

With all other dimensions fixed an increased slab thickness changes the wave numbers 
P, q, T|> such that synchronism with the beam is lost, and this causes a transfer of the 
previously excited power from the air to the dielectric slabs, which tend to act like 
dielectric horn-antenna. This is evident from the plots of Fig. 8a); the curves refer to 
the case studied for the AA and are extensively described in Section 5.

Another interesting aspect of increasing the slab thickness is that we expect a 
change in the z-component of the electric field distribution over x. Results of 
computation for this change are shown in the curves of Fig. 8b). They refer to the same 

conditions as in Fig. 8a).
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The magnitude of Ez at the air-dielectric interface decreases when the slab thickness 

is increased. This is an interesting result from the practical point of view since at a 
certain point it will be necessary to have a metallic coating on the air-dielectric 
interface so that the power can coupled-out of the vacuum chamber.

4. PICK-UP DESIGN METHODS

The considerations described in the previous section suggest that the pick-up can be 

designed by distinguishing between three zones:

1) the synchronous zone (where the beam excites power), length = L,

2) the optimization zone (where the ratio Pdiel/Ptotal increased), length = l1,

3) the transition zone from hybrid to rectangular waveguide (where each slab comes into 
an empty rectangular wave guide of appropriately chosen dimensions), length = l2.

A diagram of the pick-up is outlined below.

Figure 5 - Longitudinal pick-up diagram.

Moreover, the guestion of matching between the rectangular wave guide at zone 3 and 
the coaxial output cable could arise: it involves the study of the performance and match­
ing of a pair "short antenna".

Below we list the main difficulties which can arise in each region.

Zone 1: parameters are chosen to work at a fixed frequency in synchronism with the 
beam. In this region only the chosen synchronous mode is above the cut-off. Problems can 
arise in zone 2 because computations have shown that the LSE1 mode is above the cut-off, 
starting from s > 9 mm. The LSM2 is also above cut-off but it can be neglected as it only 
starts from s > 20 mm.

The length of zone 2 is small compared to zone 1, and even if the LSE1 mode can be 
excited (not in synchronism) by the beam passage, it will carry very little power, as the 
field amplitude is proportional to the interaction length 2, through the factor 
2/2 . sine[k0( (1/P )-'rnl)2/2]. Moreover, the LSE fields do not interact with the principal 
mode of propagation, since they are orthogonal modes.

We expect that the power carried by the LSM mode is not greatly perturbed by the 
"smooth" change of slab sizes (see Section 5) in zone 2.

The behaviour of fields in the transition zone 3 can be estimated by performing the 
projection of the loaded wave guide normal modes (LSM and LSE) onto the empty rectangular 
wave guide modes (TE and TM).
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In this particular case, the LSM1 and the LSE1 are the only incident modes on the 
transition section, and the TE1O mode is the only mode above the cut-off in the empty 
rectangular wave guide; so the computation reduces into projecting the LSM1 and LSE1 modes 
onto the TE1O mode.

This procedure gives an indication of the mode-matching; it furnishes an estimate for 
the percentage of transmitted field across the transition into the TE10 mode.

The transmitted power is computed from the transmitted field. The results of the com­
putation lead to the choice of transition length. A high percentage of transmitted field 
gives us confidence that the tapered section length 2? is not too critical a point of the 
pick-up design, as good matching exists between the hybrid modes and the TE10 mode; on the 
other hand, if only a very small quantity of the incident field is transmitted into the 
rectangular wave guide, particular care must be devoted to the study and the design of the 
transition section. In our case, the computations show that half of the LSM1 power is 
transferred into the TE10 mode, while no projection onto the TE10 mode is possible for the 
LSE1 mode. Hence, we estimate a 1 to 2 Ag-length for the tapered section (Ag is the wave 
length in the empty rectangular wave guide) is sufficient to guarantee the LSM1 power 
transmission and decay of higher order modes excited by the LS1 mode.

It is worth noting that the transmitted power value is only an estimation, namely a 
lower limit, as power radiated from the tapered section is not taken into account.

The final choice of the tapered section length must come from experimental tests, 
which can suggest the best compromise between smoothing the transition slope and mini­
mizing the total pick-up length. Computations are reported in Appendix 2.

Metallization of the inner surface starts at zone 3, so that the beam returns to its 
passage inside the vacuum chamber. This point is also critical as the tangential component 
of electric field must die out on the metal surface. Hence, increasing the slab thickness 
is very useful as, at the maximum thickness, the magnitude of Ez is greatly reduced at the 
air-dielectric interface with respect to its value in the interaction zone. This result is 

evident from the curves of Fig. 8b). It is also reasonable to ensure that the metal cover­
ing does not start in a straight line along y-coordinate, but is sloped diagonally (Fig.6)

Figure 6 - Top view of pick-up ends: suggested shapes
and estimation of slopes

Such a covering presents a gradually and continuously varying discontinuity to the 
propagating field. Anyway, the best shape and slope must be sought experimentally.
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The problem of matching the wave guide to the coaxial output line can be rather easily 

solved by using appropriate devices, generally supplied by specialized manufacturers. An 
alternative approach is to build a laboratory mock-up of this transition and then choose 
an antenna which introduces the least reflection in the wave guide for the best position 

of the shorted wave guide end face with respect to the antenna itself. Some suggestions 
can be found in literature12-14. Matching should be sought over a reasonably wide band, at 
least comparable with that of the pick-up.

For the AA pick-up the coaxial wave guide transition will be built in the PS Work­

shops. Most of the doubts concerning the end effects of the pick-up can be solved only by 
experimental tests in the laboratory. To this aim, work in the laboratory on an experi­
mental mock-up started at the beginning of June. The experimental results will be publish­
ed in another publication to follow.

5. A PICK-UP FOR THE ANTIPROTON ACCUMULATOR

The pick-up dimensions must fit the pre-existing geometry of the AA vacuum chamber 
(Fig. 7). Given the vacuum chamber dimensions all parameters of the pick-up can be deter­
mined as can the frequency at which beam-mode synchronism occurs. This frequency is expec­
ted to be in the neighbourhood of the maximum of the sensitivity versus frequency curve.

The fixed dimensions for the AA are:

b = d = 0.065 m
s = 0.005 m 
εr = 3.75 

Bp = 0.9659 
L = 0.3 m

The beam-mode synchronous frequency is obtained from the solution of the system of 
three equations (A.11b), (3.2a), (3.2b). The system is solved by computer calculation 

giving, for the above dimensions:

f0 = 5.42 GHz , k0 = 113.57 m"1 .

The behaviour of the pick-up may now be investigated as a function of slab thickness.

A search for roots in the LSE dispersion equation (A.10a) and for higher order roots 
in LSM dispersion equation (A.11b) is first carried out as a function of slab thickness. 
All pick-up parameters are kept unchanged, apart from the slab thickness, which is in­
creased up to 20 mm by steps of 1 mm each.

The system of equations (A.11b) or (A.10a) (depending on the mode under investiga­
tion), (A.9c) (A.9b) is employed: the wave numbers p, q, relating to each new value of 
thickness (s) are computed. The results are that LSE dispersion equation has no roots up 
to s = 9 mm and then no other root appears in the range of investigation up to 20 mm. The 
LSM dispersion equation has a second root at s = 20 mm. The propagation of these modes in 
the output wave guide are reported in Section 4.

As described earlier, the slab thickness is increased at the ends up to 20 mm in the 
hybrid wave guide, and the dielectric is inserted into the empty rectangular output wave
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Figure 7a - Antiproton Accumulator. General layout and location of the Cerenkov pick-up.

ZONE ASYNCHRONOUS ZONE
ZONE 2 : DOUBLE • TAPERED TRANSITION
ZONE 3 ; SINGLE - TAPERED TRANSITION

figure 7b - Layout of the Cerenkov pick-up m the AA vacuum chamber.
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guide, where again the 
of Fig. 5, two lengths

slab thickness is smoothly decreased to zero. Referring to zone 3

are suggested for the latter transitions:

If the same slopes are accepted for zone 2, the overall transition becomes:

The dimensions for the empty rectangular wave guide are 50 ■ 20 mm; the cut-off fre-

guency for the first mode (TE10) is about 3 GHz.

The following are the values for the cut-off freguencies of higher order modes:

The 50 mm width of the rectangular wave guide requires a decrease in slab width, occurring 
over the length during which the thickness increases. An even smaller width would be 
better from the point of view of increasing further the cut-off frequency of TE20 mode. 
The 50 mm choice is a compromise to simplify manufacture.

The density distribution of power propagating along z (Pz) versus x and the distribu­

tion of the z-component of the electric field (Ez) versus x is calculable from the theory 
for increasing slab thickness. Figure 8a) shows plots of the function

(5.1)

versus x. From this expression, it is obvious that the dimensions of the ordinate axis in 
Fig. 8a) is [length]"’ while, for convenience, lengths on the abscissae axis are expressed 
in terms of the normalized variable xkQ = 2xir/Xfl = x. Figure 8b) contains plots of the 
z-component of the electric field, valid at y = b/2 (and normalized by an "excitation" 
factor) versus x. Dimensions of ordinate axis are Volt/m; the magnitude must be multiplied 
by the excitation factor, which is defined as follows:

(5.2)

In all of the above all parameters refer to the synchronous LSM1 mode; other symbols 
have already been previously defined. The zero of abscissae axis is assumed at the centre 
of the wave guide total width. The half distance between slabs corresponds to x = 3.69. 
For case 1 in Figs 8a) and 8b) the synchronous condition is satisfied and s = 0.57 (in 

reality s = 0.005 m).

The power and Ez distribution shown in the above figures confirm that good coupling 
with the beam requires a strong electromagnetic field in the air zone. Indeed for case 1 
it is evident that most of the power is to be found between the slabs: the ratio between
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and total power is 0.26. Case 2 refers to s = 1.14 (s = 0.01 m). This shows an already

significant change in power distribution: power ratio value is now 0.87.

As g increases with slab thickness, the dependence of Ez on x becomes more rapid (see 

A. 18c): it decreases its amplitude almost everywhere, except for the neighbouhood of air­
dielectric interface. Increasing the slab thickness even further decreases Ez at the die­
lectric-air interface as can be seen from case 3 and 4. The latter refer respectively to:

3: s = 1.7 (s = 0.015 m) 4: s = 2.27 (s = 0.02 m) .

These last two curves yield a very convenient shape for the power density distribu­

tion; the power ratio values are respectively c) = 0.97 and d) = 0.99.

Figure 9 Figure 10

The AA pick-up Sensitivity at sychronism 
versus normalized slab thickness.

Sensitivity at synchronism versus normalized 
slab thickness: the same cross section 
dimensions as the AA pick-up, but er = 2.55.

For the er and the distance between slabs chosen for the AA pick-up, the sensitivity 
versus normalized slab thickness is given in Fig. 9. The procedure used to obtain this 
figure is described in Section 3.

The function on the ordinate axis of Fig. 9 is the sensitivity in units of equivalent 
length of the slab L, divided by the constant factor /z^ : in other words the function 
plotted is the expression (3.4) divided by L/2 = Lk0/2 = Lir/A0 and by /z^.

Values of s = sk0, the equivalent slab thickness, are plotted on the abscissae of 

Fig. 9. Hence, due to the factor /Z^, the dimensions of sensitivity in Fig. 9 become ohms 
(Q).

The same function is plotted in Fig. 10, but for a different value of er.
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Figure 11

The AA pick-up Sensitivity for the LSM1 
mode versus frequency. Arrows indicate 
the 3 dB bandwidth: it is about 1.8 and 
1.4 GHz for case a) and b) respectively. 
The cross indicates the frequency for 
beam-mode synchronism.

Since q decreases with s, both figures 
show a minimum s, depending on the fixed 0p ; 
it is determined by the requirement of a real 
value of the ky wave number (= n/b) in equa­
tion (3.2b). It can be seen that the s value 
corresponding to the maximum of sensitivity 
increases with er decreasing. The star point 
on Fig. 9 is placed at s = 0.57; this is the 
working point of the design for the AA pick­
up; it is not too far from the optimum.

A maximum possible value of s also 
exists: it comes from the upper limit for 
q (q = 1.658 or 1.245 for er = 3.75 or 2.55, 
respectively), since q must always give a 
real p in (A.9c).

The graph of Fig. 11 is again sensitivi­
ty divided by the factor /Z^, but this time 
(from expression (3.3)) versus frequency.

The two curves refer to the AA pick-up 
design, but they differ in the length of the 
"synchronous zone", which is respectively 
0.3 m for the case a) and 0.4 m for the case 
b). Both curves show a cut-off frequency at 
about 4 GHz, below which the LSM dispersion 
relation has no root. The main differences 

between the two curves in Fig. 11 arise from sine[k0((1/pp) - )L/2] term; the maximum
amplitude decreases for a smaller length because of the L/2 factor appearing in the ex­
pression for the sensitivity (3.3).

For the smaller L value, the sensitivity curve is broadened and the frequency of 
maximum response of the pick-up is shifted towards lower values.

Hence, bandwidth is inversely proportional to slab length: in the two cases 
described, estimated bandwidth values are respectively: a) '1.8 GHz and b) '1.4 GHz.

The frequency for beam-mode synchronism is indicated by a cross on each curve of 
Fig. 11: it does not correspond to the value for the maximum response of the pick-up. 
Following the method outlined in Section 3, scaling the cross-section dimensions of the 
pick-up can shift the maximum of the response nearer to the beam-mode synchronism 

frequency.

In conclusion, the energy lost by one charged particle passing once through the 

design adopted for the AA pick-up is:

case a) L = 0.3 m AE = 2.2 ■ 10'17 eV
case b) L = 0.4 m AE = 3.9 ■ 10'” eV
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This energy is spread throughout the bandwidth of around 1.4 to 1.8 GHz depending 

upon the length chosen. Figure 7 gives the dimensions and layout of the pick-up designed 
for measurements in the AA. The revolution frequency of a particle in the AA is 1.855 MHz 

so that the power generated in the pick-up may be calculated.
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APPENDIX 1

COMPUTATION OF THE NORMAL MODES FOR A DIELECTRIC SLAB-LOADED HAVE GUIDE

For the sake of completeness the method for computing the normal modes of a loaded 

wave guide and the related expressions used in previous sections are given below. Rectan­
gular loaded wave guides have been exhaustively studied both in text-books9'10 and 
papers11.

The normal modes propagating in such kinds of wave guides are hybrid modes, with both 
E and H components along the axis of the wave guide.

Following Collin we choose to classify the normal modes of the wave guide under 
examination (Fig. 1) as either LSE (longitudinal section electric) or LSM (longitudinal 
section magnetic).

^61Fields can be derived from the hertzian type potentials: the electric one n for LSM 
modes, and the magnetic one for LSE modes, through the following equations:

where k2 = w2eouo is the propagation constant of unbounded empty space.

The equations (A.1), (A.2) and (A.3) are valid in each region where er(x) is constant

Referring to the structure of Fig. 1, the solution of (A.3) is a hertzian potential 
with only an x-component, for both LSE and LSM modes:

Hertzian potentials must satisfy the equation:

(A.2a)

(A.2b)

(A.3)

In (A. 4) the propagation along z has been assumed according to e where 
refers to the propagation constant of a generic mode. In the empty region of the wave 
guide the general solution is a superimposition of an even and an odd solution with 

respect to x = a/2.

The expressions for the solution of (A.3) are given as:

(A.4)
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LSE modes

where e,o subscripts indicate even or odd solutions.

In the above expressions, the kx wave number (in the air- or vacuum-region) is as­
sumed to be imaginary, in accord with section 1; hence,

It is useful to replace (A.9) by

(A.9c)

Imposing the continuity conditions at the air-dielectric interface, the following

trascendental equations are obtained:

LSE modes

(A.5)

(A.6b)

(A.7)

(A. 10a)

(A.10b)
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LSM modes

(A.11a)

Equations (A.10) and (A.11) will be referred to as "dispersion equations".

Each of the dispersion equations together with (A.9c) determines an infinite number 
of solutions for the wave numbers p and q. So each mode will be marked by two subscripts 
m, n: the first referring to the order of the wave number along the x-coordinate, the 
other to the order of the wave number along y.

The following orthogonality relation holds for the transverse components of fields 
belonging to different modes:

where S is the wave guide cross-sectional area and z is the vector along the axis of the 

wave guide.

Imposing normalization of eigenvectors by (A.13), we can determine the unknown 

factors of (A.5) and (A.7).

LSM modes

(A.14)

(A.15a)

(A.15b)

(A.16)

(A.17a)

(A.17b)

For convenience we list below the relative expressions both for LSM and LSE modes:

(A.11b)

(A.13)

with

LSE modes

with
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LSH modes

(A.18a)

(A.18b)

(A.18c)

(A.19a)

(A.19b)

(A.19c)

(A.20a)

(A.20b)

(A.20c)

(A.21a)

(A.21b)

(A.21c)

LSE modes
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APPENDIX 2

PROJECTION OF THE HYBRID MODES

ON THE EMPTY RECTANGULAR NAVE GUIDE NORMAL MODES

1. OUTLINE OF THE METHOD

The incident field is written as an expansion of the normal modes of the empty 
rectangular wave guide. From previous theory, the incident field is a sum of the principal 
beam-excited mode (LSM1) and the higher order mode (LSE1), which arises in zone 2 (see 
Section 4). Hence,

(A.22)

where eron represents the generic normal mode function in the empty rectangular wave guide 
and Eb is the beam excited field.

If we now take into account that only the TE10 mode is above cut-off in the 
rectangular wave guide, (A.22) reduces:

where e, (LSM or LSE) refers to the normal mode eigenvector in the hybrid wave guide, and 

F and F' are the mode excitation factors from the beam.

Remember that the wave numbers related to mode functions et depend on the maximum 
slab thickness, s = 20 mm, where the transition starts. The following orthogonality 
property holds for the rectangular wave guide mode functions:

where S is the wave guide cross-section and da is an indifinitesimal surface element.

Hence, we can perform a cross product with (h10)* on both sides of (A.23) and, em­

ploying (A.25), we can evaluate the coefficient a|0.

(A.23)

It holds (see Section 2) that:

(A.24a)

(A.24b)

(A.25)
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2. FIELD EXPRESSIONS

We are interested into the hybrid mode configurations in the dielectric region. In 
order to use the standard notation for the normal modes of rectangular wave guides, we 
write the hybrid mode fields (A.18 1 A.21) in a coordinate frame with the x-axis along the 

long side (b) of the dielectric slab and the y-axis along the short one (s) (Fig. 12). The 
complete set of expressions is given below:

• Z axis comes out of paper

a) Previously used hybrid wave guide frame bl Usual rectangular wave guides frame

Figure 12

LSM1 mode

LSE1 mode

(A.26a)

(A.26b)

(A.26c)

(A.26d)

(A.26e)

(A.26f)

(A.27a)

(A.27b)

(A.27c)
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TE10 mode

(A.27d)

(A.27e)

(A.27f)

(A.28a)

(A.28b) 

(A.28c)

(A . 28d)

(A.28e)

(A.28f)

e,u = the absolute dielectric constant and permeability of medium filling the wave guide 
(in this case the vacuum: e0, u0), 

f = the working frequency, 
A = the wavelength in the unbounded medium: for vacuum A = AQ = c/f.

3. EVALUATION OF THE COEFFICIENT 410
The computations described at the beginning of this Appendix can now be executed. 

From (A.23)

The amplitude of the TE10 mode is determined by the coefficient a10. The subscript 
"1" below the x and y coordinates indicates that the above expressions (A.26 r A.28) are 
written in the rectangular wave guide frame: they hold for x, C [0, b], y, C [0, s]. The 
subscript “m" in (A.26), (A.27) for p, q, Ao and Ee indicates that these values depend on 
slab thichness. An and EP refer to expressions (A.14) and (A.16) of Appendix 1.
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(A.29)

The integrals appearing on left-hand side of (A.29) are evaluated separately below.

The z-component of the cross product in (A.30) is zero, as it is hy1Q= 0 or ey1 (LSE) = 0, 

alternatively.

A complete mismatching occurs between the TE10 and LSE modes; hence, the latter 
excites only higher order modes.

4. TRANSMITTED POKER

Expressions (A.33) let us compute the transmitted power:

(A.34)

where F (the LSM1 mode excitation factor) is:

(A.35)

all the quantities are evaluated for the synchronous mode.

(A.30)

Hence, from (A.29):

(A.31)

(A.32)

and the transmitted field can be written:

(A.33b)
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In (A.34) we recognize that 

with P$(LSM1) the total power the beam excites in the LSM1 mode, while other terms in 
(A.34) give the power transmission factor T, written below in terms of non-dimensional 
(normalized) quantities, for computation convenience:

(A.36)

Numerical valuation of (A.36) gives:

(A.37)

Remembering that the previous analysis refers to one slab only, (A.37) must be multi­
plied by 2. Hence, we estimate that the power collected from both slabs is at least
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APPENDIX 3

PROOF OF EQUALITY (2.9)

Stoke's theorem is applied to the vector Iezhm : this is the product of a scalar 
function, the longitudinal component of current, and a vectorial one, the complex conju­

gate of the hybrid mode eigenvector hm.

(A.38)

where C is the boundary of the surface S, dl is an infinitesimal step on the integration 

path, oriented so that the vector in is normal to the surface, and da is an infinitesimal 
surface element. The vector t is inserted to indicate the transverse dependence of the 
quantities: from here onwards, however, it will be dropped. In our case, S is the cross­
section of the loaded wave guide and in = z.

Since 

we can write (A.38) as:

(A.39)

The z-component of a curl is involved on the right of (A.39), so no change is caused in 
the previous expression if the operator v is replaced by its transverse component, 

Vf. = ix(3/3x) + iy(3/3y). Hence,

(A.40)

The term on the left of (A.40) is zero, since Iz = 0 on the boundary C of the wave guide 
(see expr. 2.1 for the current).

Thus,

(A.41)
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Let us consider the equation for hm coming from Maxwell's equations projected onto 
the axis of the wave guide:

(A.42)

As before, e(x) depends on the wave guide region where (A.42) is written.

Now 

and 

as z is a constant vector .

We can write (A.42) as:

(A.43)

Hence,


