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Abstract

The equations of motion of the charged particle under the action of electric forces in the simple 
Electrostatic Quadrupole (ESQ) and in the Helical Electrostatic Quadrupole (HESQ) are 
solved. The HESQ electric Held is realized by the four pole tips forming concentric helices of 
pitch p. The transformation matrices for ESQ and HESQ are found as the basic elements for 
designing more complex optical systems.
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1 Introduction
Commonly, a system of magnetic lenses as, for example, solenoids and mag­
netic quadrupoles, is used for focusing and transport of particle beams. On 
the other hand, a system composed of electrostatic lenses forming a section of 
linac has been applied only in some cases. For example, a helical electrostatic 
quadrupole (HESQ) was used for transport and matching of an H~ beam to a 
RFQ [1]. Note that the beam must be azimuthally symmetric and highly con­
vergent to be matched to the RFQ acceptance. A similar system for focusing 
low energy and high current negative Cu~ and Au~ ion beams was developed 
at the National Laboratory for High Energy Physics (KEK) [2]. Reasons for 
such a choice exposed in [3] were the following:

1. Electrostatic focusing is more effective at lower particle velocities than 
magnetic focusing because of the velocity term in the force equation.

2. Difficulties concerning the beam emittance growth caused by large space 
charge forces in the beam are easily surmountable in the case of electrostatic 
focusing.

3. Electrostatic focusing is very flexible.
Because of the high voltage required for electrostatic focusing the problem 

of discharge breakdown arises and spherical as well as chromatic aberrations 
take place if Einzel lenses or electrostatic quadrupoles are utilized. The helical 
electrostatic quadrupole provides a more suitable system for the transport and 
focusing of the beam with low velocities. The focusing forces are continuously 
spread in space thus reducing the possibility of breakdown and also maintaining 
the beam size during the transport. This property of a helical electrostatic 
quadrupole influences favourably the aberrations. The helical electrostatic 
quadrupole represents a first-order focusing optical system with high focusing 
power.

The aim of this work is to calculate transformation matrices for a simple 
electrostatic quadrupole and a helical electrostatic quadrupole. They are the 
basis for designing much more complex optical systems for transport and fo­
cusing of heavy ion beams, which should become a topic of further theoretical 
studies.
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2 Simple electrostatic quadrupole
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and we obtain the projection of the particle trajectory and derivative in xz 
plane:

with constants A, B, which are determined by the initial conditions:

where m and e are mass and charge of the particle.
If G > 0, the solution of eq.(5) is

Let us first treat the case of the projection of the particle trajectory in the xz 
plane. Then, using (3), we find the equation of the motion to be

(V - d.c.voltage, a - distance of the vanes from the axis, x, y are the coordinates 
in the plane perpendicular to the optical axis z). The potential, Φ, is the 
solution of the Laplace equation with boundary conditions: for x = a,y = 0 
is Φ = V/2 and for x = 0,y = a is  Φ = — V/2. This represents electrostatic 
quadrupole field corresponding to the fixed geometry of the electrodes with an 
alternating potential.

From (1) x and y components of the electric field intensity are:

Let us consider the motion of a charged particle in the electrostatic field given 
bv the potential:



(9)

with K = [(eG)/(mv2)]11/2. In matrix notation the equations may be written

Evidently, if the sign of the gradient G is reversed we have:

It follows from eqs.(3),(4) that if the beam is focused in xz plane for G > 0 
then the beam is defocused in the yz plane and vice versa. Corresponding 
transformation matrices of the trajectory projection in the yz plane will be: 

and for negative G

If we let the particle pass through the two successive field regions with 
G > 0 and G < 0 we find that such system is highly astigmatic. The focal 
points in the xz and yz planes are at very different locations. The behaviour of 
the electrostatic quadrupole system is similar to the magnetic quadrupole but 
the action of forces is different. It follows directly from mathematically equal 
forms of the equations of motion (within an approximation of the first order). 
An analogous treatment of the magnetic quadrupole leads to the same form of 
the transformation matrices TF and Td with the constant K = where k 
is the magnetic quadrupole strength k = eg/p and g is the field gradient [4].

3 Helical Electrostatic Quadrupole
The Helical Electrostatic Quadrupole provides a stronger first-order focusing 
and it is also stronger than the alternating gradient focusing [3]. Electric 
focusing of this kind is a spatially continuous focusing. It is realized by a 



structure of four vanes with an alternating voltage bias ±V/2. The vanes form 
a helix with the pitch /3, which represents a free parameter of the focusing 
structure, f3 is defined as an angular rate per unit length along the axis. The 
helical quadrupole field can be described by the potential:

(10)

They are written in Cartesian coordinates having s direction along the optical 
axis.

The equations of motion for charged particle in electrostatic field can be 
derived from the principle of the least action or simply from Newton’s law. In 
the system of coordinates (x.y.s) they have the form
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if we restrict ourselves to the lowest order term r2. Using (13), the components 
of the quadrupole field are

For small value of the argument the Bessel function 72 (Br) can be expanded 
in a power series and the expression (10) is reduced to

(I2(Br) is the modified Bessel function of the second order) which satisfies the 
Laplace equation fulfilling the boundary conditions:



The task is to find the transformation matrix. That means we shall have to 
express the transverse amplitude and angle of an arbitrary trajectory at any 
point of the optical system as a function of the optical conditions at the begin­
ning of the system. It is seen that there is a coupling between the trajectory 
projections into perpendicular planes xz and yz. Thus, the transformation 
matrix will have 4x4 dimensions. To solve the system of equations (19), (20) 
, we define a new function

Calculating the third and fourth derivate of W from (22) and their combina­
tions yield final differential equation

(23)

In such a way we obtained the differential equation of the fourth order with 
constant coefficients, which is easily solvable. Its solution is:

where p = |\/1 4- 4K and q = — 47<. Taking into account the conditions
upon x, y the arbitrary complex constants in eq.(24) can be specified. To do it 
we divide the function W(x 4- iy) into real and imaginary parts in the complex 
plane x, iy:

(25)
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where p = mv , s = ds/dt and x', y' axe the derivatives with respect to 5 
variable.

Considering the particle moving near the axis, the approximative expression 
(13) can be used to describe the quadrupole field. Then the equation for 
transverse motion in the continuously rotated quadrupole system will be:

Differentiating (21) twice and using eq.(19),(20) gives



Performing the algebraic operations and after some rearrangement we obtain 
the system of four equations for x, y, x\ y1: 

with eight unknown real constants:

For determination of the constants we have four initial conditions:

The second and third derivatives of x and y provide the other four conditions:

(33)
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Here zero subscript indicates the initial values at z = 0.
Summarizing we get for the calculation of the constants (30) and (31) the 

system of eight equations:

After an amount of elementary but tedious algebra we find the following trans­
formation matrix:

Ti =
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Let us consider K reverse. It is equivalent to keeping K positive, but 
changing the signs in eqs.(19),(20). They take the form:

(K is again considered to be positive) from which it follows for the second and 
third derivatives of x and y at z = 0:
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Using these constants we obtain a new transformation matrix:

T2 =

The solution is:



Now we introduce the rotation matrix R for rotation of the coordinate 
system x,y by an angle a :

where

It is possible to demonstrate fairly simply that the change of sign of K in 
the equations of motion is related to a rotation by an angle tt/2. It follows 
from the relation:

RT2Rt = Ti

(where RT denotes the transposed matrix R) with the angle π/2 substi­
tuted for a in the matrix R. Performing the calculation of both the matrices 
T1,T2 we supposed K to be positive and less than 1/4. In this case the 
characteristic equation has imaginary roots and the matrices contain only the 
functions sin and cos of the arguments pz and qz in contrast to the behaviour 
of the simple electrostatic quadrupole. In case of K >1/4 the functions sin 
and cos in the matrices T1,T2 are replaced by sinh and cosh and the system 
is defocusing.
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4 Conclusion
It is seen from the foregoing results that the ESQ transformation matrices 
have the same forms as magnetic quadrupole matrices (see, for example, [4]). 
Consequently, the same mathematical formalism can be applied to designing a 
more complex beam transport lines. As an example, we can cite the work [5], 
in which a suitable mathematical formalism is briefly described and applied to 
configurations consisting of several rotated permanent magnetic quadrupoles. 
Clearly, making conclusions for any configurations constructed from ESQ disks 
and drift spaces one must keep in mind a different action of electric and mag­
netic forces on the moving particle.

The general features of the continuously rotated magnetic quadrupole sys­
tem for transport and focusing of high current beams were analyzed in [6]. If 
we extended this analysis to HESQ we should obtain similar results. HESQ 
exhibits the same features as rotated magnetic quadrupole and the similar 
conclusions about its transport and focusing properties as in [6] can be made 
if we account for the fact that the electrostatic focusing is more effective in 
case of small particle velocities than the magnetic one.

In this work we analysed the trajectory of a charged particle moving in an 
electrostatic field in the helical quadrupole geometry. The result is the trans­
formation matrix which should serve for design of more complicated transport 
lines of the high current beams of heavy ions. It is supposed that the TRANS­
PORT code will be used for this purpose. The resulting tranformation matrix 
is too complex to calculate the transport parameters of the configuration con­
sisting of HESQ analytically.
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