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1. INTRODUCTION

In the design and exploitation of modern high current proton linacs, 
it is essential for understanding the dynamics of the accelerated beam to take 
into account the strong repulsive forces due to space charge. Because of the 
complicated nature of this type of interaction, analytical computations do not 
seem to be possible unless many simplifying but unrealistic hypotheses are made.

On the other hand, the availability of bigger and faster electronic 
computers has rendered possible the use of sophisticated numerical calculations. 
As a consequence, in the recent past, several computer programs capable of 
describing the motion of dense beams of charged particles have been written in 
various Laboratories.

The purpose of this paper is to present two such programs+, MAPRO1 and 

MAPR02, written as result of a collaboration between CERN and Saclay, and to 
show some of the results which can be obtained from such powerful ar.d flexible 
tools. The outputs of these programs, which have been produced in connection 
with the CERN 3 MeV experimental linac [1], are compared between themselves. 
The emittance growths, matching techniques and transverse longitudinal coupling 
effects are presented with reference to similar results previously obtained 
by Mrs. R. Chasman [2], [}].

* European Organisation for Nuclear Research, Geneva, Switzerland.
♦♦ Centre d’Etudes Nucléaires, Saclay, Gif-sur-Yvette, France.
+ A program somewhat similar to MAPR02 is being developed at the University 

of Rennes, France, by B. Houssais.
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2. EQUATIONS OF MOTION

The principle of the method consists in transferring the six coordi­
nates defining each particle in phase space (x,x' = (dx∕dz), y,y*  = (dy/dz)9 
the cynetic energy w and φ) over finite intervals of the order of the cell 

length as distinct from small step integration techniques.

* The dynamical centre of the cell is defined by the point reached by the 
axial synchronous particle τ∕2 seconds after having entered the cell, 
if τ is the RF period.

In particular for each cell of the accelerator, the six coordinates 
are evaluated :

i) at the end of the first quadrupole, 
ii) at the dynamical centre of the cell , 

iii) at the "beginning of the second quadrupole, 
iv) at the end of the cell (which is the middle of the second quadrupole 

and the beginning of the next cell).

 

The set of formulae used to transfer the particle coordinates across 
a gap are given in [4]; a modified version of these equations, more suitable 
for computer use, can be found in [5]∙ The ’true’ trajectory of a proton is 
replaced by an ‘equivalent*  one, where changes in momentum-like coordinates 
are impulsive and therefore effectively separated from changes in position­
like coordinates.

Several coefficients appear in the equations of motion to take into 
account the shape of the electric field (transit time factor and similar para­
meters) . All these quantities have been calculated using a computer program 
CLAS [6] which solves numerically Maxwell’s equations in each cell.

The following simplifying hypotheses have been made in the present 
calculations :

i) the motion is supposed to be non-relativistic. Therefore magnetic 

field effects have been ignored.
ii) no beam loading effects have been taken into account.
iii ) quadrupole misalignments and fringing field effects have been, 

neglected.
iv ) neighbouring walls and bunches are ignored in the space charge 

calculation.
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3. THE SPACE CHARGE CALCULATION

According to the general philosophy of these calculations the space 
charge action is taken into account by giving, twice per cell, an impulsive 
change to the velocity of each of the N particles forming the beam. This is 
done in the middle of the drift-tubes and in the dynamical centre of the cells. 
To compute the space charge forces, one needs to know the three dimensional 
shape of the bunch. This is done by interpreting φ as a longitudinal 
distance (implicit is a change of the independent variable from z to t). 
Details are given in [1O].

If Fχ and F% are the overall transverse and longitudinal forces act­
ing on a proton due to the presence of the other (N-1) charged particles, the 
corresponding variations of x, and w are :

Δw=F∙Z (l)
z s

∆x, =---- -----(F - x’F ) (2)ττι p2 2 v r z' v ,mo p c
where l is either the gap or the drift-tube length* and the other symbols 

have their usual meaning. An analogous formula applies for y.

* This will make it easier to add image effects in the future

It is the way of computing Fχ (Fy) and F which differs in the two z
programs MAPR01 and MAPR02.

3.1. MAPR01
In MAPR01 a particle to particle interaction method is used : the 

space charge force acting at any point is simply the sum of the Coulomb forces 
due to all the other particles in the bunch.

Two problems must be solved to render this method really workable : 
the computation time must be kept within reasonable limits, 
particle collisions, which would give rise to infinitely big forces, 
must be avoided.

The solution which has been adopted in MAPR01 is similar to the one 
originally developed in [7].
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The space volume around a bunch is enclosed in a cage, divided into 
a great number of small cubic cells (up to 27 000 in MAPRO1) and the force 
between any two particles is taken as if they fell in the centre of two such 
cells. If the two cells coincide, the force is set to zero.

In this manner, having discretized the positions, the number of poss­
ible space charge forces becomes finite and they can be precalculated and 
stored in the computer memory before one starts tracing the protons through 
the linac. Thereafter, during the motion of the beam, the interaction between 
any two particles is obtained by selecting the convenient approximate force 
from the entries in the space charge table. This can be done in a very fast 
manner, particularly if assembler language routines are used.

Also, the symmetry of the beam with respect to the x-z and y-z planes 
and the reciprocal character of the Coulomb force are exploited to speed up the 
calculation. For 500 particles actually traced (representative of 2000 since 
to each particle three images with respect to the z axis can be associated) 
and 37 space charge computations the CDC 6600 Central Processor (CP) time was 
4.5 minutes.

Particle collisions are also avoided using this method, because the 
minimum distance between two particles which do not occupy the same cell is 
equal to the side of a cell. A convenient value for this quantity was found 
to be - 1 mm.

If the beam is traced over a very wide range of energies and its 
geometrical dimensions vary by a great amount, one might have to recompute the 
space charge force table several times using different sizes for the cage and 
the cells. Anyway this was not the case for the 3 MeV linac. The CDC 6600 
CP time for one such computation is - 2 seconds.

3.2. MAPR02
In MAPR02, only for the sake of computing space charge forces, the 

basic assumption is made that the particle distribution in real space can be 
approximated by an ’equivalent’ Gaussian density function. The criterion for 
equivalency is that the two distributions must have the same second moments 
with respect to cartesian coordinate planes with origin in the barycentre of 
the bunch.



- 5 -

Setting :

(3)

where ρ0 is a number of particles∕meter3, x,y and z are coordinates in the 
frame of reference defined above, the ’equivalent’ Gaussian will satisfy the 
equation

(4)

where N is the number of particles effectively traced, with similar results 
for y and z.

Also,because the total amount of charge in the bunch must be the same :

P dxdydz = 4N (5)

Solving (4) and (5) one obtains :
N N
Σ x2 Σ y2

4 N 2 i i 2 i 1
Po = -----7 --- ; a -------- ; b ---------

(2π)3/2 abc N N 

(6)

Therefore, knowing the r.h.s. of Eqs. (6) one can easily compute the parameters
of an ’equivalent’ Gaussian distribution.

The electric field, at all points of space, is then given by [8] :

(7)

where Q is equal to the total charge of a bunch divided by ⅛N. Analogous 
formulae hold for E^ and Ez∙ The integrals on the r.h.s. of Eq. (7) can be 
evaluated quickly and precisely enough (within 1% in most practical cases) by 
using Gauss’ numerical integration method with ten points.

The practical sequence of operations performed by MAPR02, wlιich is 
designed to treat up to 5000 particles (representative of 20 000), to trace the 
bunch through the n-th cell is as follows :
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i) starting from the middle of the n-th drift-tube the particles are 
allowed to move, one by one, to the dynamical centre of the n-th cell, 

ii) the three sums appearing in Eqs.(6) are incremented as each particle 
arrives at the centre of the gap. Thus at the end of step i) they 

are known.
iii) the particles are now traced through the complete cell, until the 

middle of drift-tube (n+1). In passing through the centre of the gap 
an impulsive correction is given to the velocities, calculated from 
Eqs. (-∣) and (2). The space charge force is computed from Eqs.(6) 
and (7) ∙

iv) from the knowledge of the coordinates in the middle of drift-tube 
(n+1), the required second order moments and thus the space charge 

velocity corrections can be computed at this same section. The 
sequence is then repeated for the next cell.

The fact that only overall quantities like moments of distribution 
are needed to compute space charge forces, makes it possible to store, in the 
computer memory, the six particle coordinates only at one section at a time» 
This is important when so many particles are traced.

The corresponding time for MAPR02 for the same case as for MAPR01 
is 34 seconds, i.e. about 1∕8 the time.

4. THE INITIAL FILLING

For the sake of comparison all the results given below (except for 
Fig. 6) were computed using exactly the same ’matched’ initial filling as 
described in [2] . That is a uniform random filling of a four-dimensional 
hyperellipsoid in x,x,,y,y, and an independent random filling (also uniform) 
of an ellipse in w-φ plane was employed. However, a more realistic way of 
simulating the emittance of the pre-injector output beam was developed. Details 
are given in [9].

A program, BUNCH [7]9 capable of tracing a beam through the buncher 
to the linac, was available so that it was only necessary to find a reasonable 
way of populating the four-dimensional phase space at a section just before 
the buncher. Thereafter, the output of BUNCH in six-dimensional phase space 
could be used. This simplified the problem a great deal.
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To start up BUNCH, the real distribution was approximated by a four­
dimensional Gaussian (normal) probability density function (p.d.f.) wnich 
best fitted the six marginal distributions (projections) onto the planes of 
any two of the four variables x,x,,y,y,. These projections are available 
experimentally and could be measured. The ’maximum likelihood’ criterion 
was used for the choice of the Gaussian p.d.f∙

Consider one of the two dimensional projections. The result of 
measurements will essentially be the amount of current falling into each bin 
of a mesh covering the plane. Now this same quantity can be calculated as 
function of the ten (as yet unknown) parameters of the distribution. Indicat­
ing with m. the measured value of current into a bin and with t. the theore- ι ι
tical expected one*in  the case of a normal p.d.f., the criterion used reduces 
to minimizing with respect to the parameters of the distribution, the sum :

7 = y <mi-ti)2 .

⅛<, ∕----------- - = mm

1 sι

where is the standard deviation of the error (which is also supposed to be 
normally distributed) on the i-th measurement and the sum is extended to all 
bins of all planes.

Note that, although for each plane the t^’s involve only three para­
meters, the minimization must be done for all planes at the same time because 
the ten parameters are linked together by the condition that the covariance 
matrix of the four-dimensional distribution be positive definite.

5. RESULTS AND COMMENTS

5.1 ∙ All the results given herewith refer to the CERN 3 MeV experimental 
linac [l]. It is a strong focusing (++— structure) 18 cell machine which 
reproduces almost exactly the first part of the CPS injector. In the calcula­
tions the quadrupole gradients have been kept to their theoretical values, 
originally computed neglecting space charge effects. 500 particles (represen­
tative of  2000) have been used throughout the computation except for the 
results of Fig. 5 where 4500 particles were traced. The injection energy is 
500 KeV.

*
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Figs. 1 and. 2 summarize the results obtained, with the two programs. 
The following should be noted.:

i) Qualitatively the same type of output emittance vs. input emittance 
curves as given by Mrs. R. Chasman [2] has been found..

ii) MAPR02 yields emittance growths some 20% higher than those given by 
MAPR01. This is an acceptable agreement given the differences between 
the two programs. Discretizing distances in MAPRO1 probably diminishes 
space charge forces. The discrepancy on beam envelopes seems of the 
order of 10%.

iii) No precise comparison can be done with the results of [2] and [3] 
because of the differences between the two linacs.

Fig. 3 shows emittance growths vs. input brightnesses. In Fig. 4 
output vs. input current is displayed, in the hypothesis of an input emittance 
proportional to the current. Higher output currents can probably be achieved 
by increasing the quadrupole gradients.

A typical output of MAPR02 is shown in Fig. 5. In Fig. 6 the initial 
radial and longitudinal emittances, obtained using BUNCH program (cf. Section ⅛) 
are given.

5.2. As in [2] , the importance of injecting a matched beam, particularly 
for minimizing emittance growths, has been verified. The matched initial 
dimensions of the bunch, as given by Eqs. 1a and 1b of [2], seem to fit rather 
well for longitudinal energy spread ∆w of order of 20 KeV but they deteriorate 
for smaller values of ∆w.

Fig, 1 shows that the output transverse emittance of a beam, for a 
given current, never decreases below a certain threshold, whatever the input 
emittance is. On the other hand, there is also an upper limit due to the 
presence of drift-tubes. Therefore, it seems that, for a fixed current, the 
output emittance must be comprised between two limits which become closer for 
higher intensities.

The transverse emittance growth can be considerably reduced by de­
creasing the longitudinal emittance area (cf. Fig. 1). This was already 
observed in [3].
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6. CONCLUSIONS

A new method, of computing space charge forces based, on the representa­
tion of the particle distribution by means of an analytical model has been 
introduced. This basic hypothesis has been tested by comparing the results 
obtained with those of a program which used a more general approach.

For a given number of representative particles, the basic advantage 
of the method is to speed up the computation time. Conversely, for a fixed 
computation time, roughly an order of magnitude more particles can be traced. 
This is particularly useful :

i) to obtain density marginal distribution onto one phase space axis.

With fewer particles there is a considerable noise on the statistics : 
attempts with 500 particles gave rather poor results, 

ii) to trace isodensity curves on the various two-dimensional projections.

Finally, concerning the comparison with the results of [2] and [3], 
the fact that calculations carried out completely independently, using different 
approaches, gave similar results, seems to suggest that these numerical 
techniques are trustworthy.
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