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Abstract
Les Houches activities in 2021 were truncated due to the lack of an in-person
component. However, given the rapid progress in the field and the restart of
the LHC, we wanted to continue the bi-yearly tradition of updating the stan-
dard model precision wishlist. In this work we therefore review recent pro-
gress (since Les Houches 2019) in fixed-order computations for LHC
applications. In addition, necessary ingredients for such calculations such as
parton distribution functions, amplitudes, and subtraction methods are dis-
cussed. Finally, we indicate processes and missing higher-order corrections
that are required to reach the theoretical accuracy that matches the anticipated
experimental precision.
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1. Introduction

Identifying key observables and processes that require improved theoretical input has been a
key part of the Les Houches programme. In this contribution we briefly summarise progress
since the previous report in 2019 and explore the possibilities for further advancements. We
also provide an estimate of the experimental uncertainties for a few key processes. A sum-
mary of this sort is perhaps unique in the field and serves a useful purpose for both practi-
tioners in the field and for other interested readers. Given the amount of work that has been,
and is being, done, this summary will no doubt be incomplete, and we apologize for any
omissions.5 Even though Les Houches 2021 did not take place due to the COVID pandemic,
we felt that the tradition of updating the wishlist, and of summarizing the advances in LHC-
related calculations, should continue. The Les Houches wishlist has served as a summary/
repository/grab-bag for the state-of-the-art for the higher-order QCD and EW calculations
relevant to the LHC, and thus forms a useful resource for both LHC theorists and experi-
mentalists. If nothing else, this reduces the level of effort that will be required for an update in
the 2023 Les Houches report.

The present report is organised as follows: in section 2, several ingredients needed for the
calculation of higher orders are discussed. They range from parton distribution functions
(PDFs) to amplitude techniques and subtraction methods. In the second section 3, an
exhaustive review of the results that appeared since Les Houches 2019 is given with an
accordingly updated wishlist.

2. Higher-order techniques

While the years before the Les Houches 2019 report [1] had been marked by significant
progress in the production of NNLO results in an almost industrial manner with most useful
2→ 2 processes having been calculated, the last two years have seen a saturation due to the
unavailability of 2-loop amplitudes beyond 2→ 2 scattering. However, remarkable progress
was achieved in this direction by several groups and approaches culminating in the first 2→ 3
calculations of a hadron-collider process. Closely related is the huge progress in the calcul-
ation of 2-loop 5-point amplitudes, as well as 2-loop amplitudes for 2→ 2 processes invol-
ving internal masses. For a review of some recent developments see also [2].

However, it is not only the amplitude community that has seen impressive development.
There have also been significant steps forward on the side of subtraction schemes, and there
are in the meanwhile several subtraction and slicing methods available to deal (in principle)
with higher-multiplicity processes at NNLO (see below).

On the parton shower side, NLO QCD matched results and matrix element improved
multi-jet merging techniques have become a standard level of theoretical precision. The
automation of full SM corrections including NLO electroweak predictions has also seen
major improvements.

Another challenge is to make the NNLO 2→ 2 predictions or complex NLO predictions
publicly available to experimental analyses, and there has been major progress to achieve this
goal. ROOT NTUPLES have been a useful tool for complicated final states at NLO and allow
for very flexible reweighting and analysis. The cost for this is the large disk space required to
store the event information.

5 The Les Houches Disclaimer.
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Finally, an extension of APPLgrid [3] and fastNLO [4] to NNLO [5] offers a convenient
method to distribute higher-order predictions. Despite progress in this direction [6], there have
been only a limited number of these grids made publicly available. Once it is the case, they
will likely be used heavily in precision PDF fits as well.

Below, we discuss some aspects of higher-order computations.

2.1. Parton distribution functions

One of the elements in improving the accuracy of theoretical predictions at the LHC lies in the
determination of PDFs. PDFs are most commonly determined by global fits to experimental
data, taking into account the experimental errors in the data. The standard now is for the PDFs
to be determined at NNLO QCD, although fits at NLO QCD and LO are still available. It is
encouraged to use NLO QCD (or even NNLO QCD) PDFs where possible, even for com-
putation of lower perturbative accuracy. The results of the global fits are central values for
each flavour PDF, along with an estimate of the PDF uncertainty, dominated by the input
experimental errors for the data included in the fit. The formalism used in the fit can either be
Hessian [7, 8] or based on Monte Carlo replicas [9]. The number of data points included in the
global PDF fits is typically of the order of 3000–4000 from a wide range of processes.

Recently, many differential cross section measurements from the LHC have been included
in the PDF determination. This was made possible by the NNLOQCD calculations of the
relevant 2→ 2 matrix elements that have been discussed in past iterations of the wishlist. For
use in calculations at N3LO, several of which are discussed here, nominally N3LO PDFs
would be needed. As they are not yet available, NNLO PDFs are used in their stead with an
unknown uncertainty introduced into the predictions as a result. This has a non-negligible
impact on the Higgs cross section at N3LO through gluon–gluon fusion, for example. There
are efforts to estimate the theoretical uncertainties due to (missing) higher-order terms These
would be in addition to the (dominant) experimental uncertainties from the data included in
the PDF fits. The theory uncertainties would be obtained by variations of the renormalization
and factorization scales that are used to evaluate the matrix elements at NNLO. Considering
separate scales of each type for each data-set calculation would add too many degrees of
freedom and remove much of the constraining power of the PDF fit. Connecting the renor-
malization or factorization scales, even for similar processes, may be treating those scales as
more physical than they deserve. Perhaps there is more justification for treating the factor-
ization scale in this manner than the renormalization scale. There is also the issue of whether
introducing additional uncertainties in the PDFs through scale variations, and then in addition,
performing scale variations in the predictions in the nominal manner, may lead to an over-
counting of the uncertainty. Reference [10] proposes using a physical basis (for example
structure functions or similar observables) rather than the PDFs themselves. Considering
correlated factorization scale variations in the PDF fit, and not in the resultant predictions,
may not be ideal but an acceptable solution for certain specific physical quantities.

Reference [11] proposes taking into account the missing higher-order uncertainties in the
cross sections included in the PDF fits by adding a theory uncertainty to the experimental
covariance matrix. Since the theory uncertainties are uncorrelated with the experimental ones,
the two uncertainties can be added in quadrature in the covariance matrix. The global fit
processes are divided into five separate types (DIS NC, DIS CC, Drell–Yan, jets and top),
with a hypothesis that calculations within a given type will be likely to have similar structures
of higher-order corrections. An assumption is made that the renormalization scale is only
correlated within a single type of process, while the factorization scale is fully correlated
across all processes. Resultant fits to the NNPDF3.1 data set (with some extra kinematic
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restrictions) do not substantially change the PDF uncertainties, but may relax some of the
tensions among the experimental data sets.

MSHT has carried out an exercise of parametrising the higher-order effects with nuisance
parameters based on a prior probability distribution (using the information currently available
regarding N3LO matrix elements and the approximate splitting functions). Where not
explicitly available, the N3LO/NNLO K-factors are parametrised as a superposition of both
NLO and NNLO K-factors, allowing the fit to determine the combination of shapes and an
overall magnitude. The result is a reduction in χ2 for the global fit greater than that expected
by the extra degrees of freedom.

Recently, there have been new iterations of the three main global PDFs (CT18, MSHT20,
NNPDF3.1/4.0). A benchmarking exercise has been conducted for these PDFs, and a
combination (PDF4LHC21 [12]) has been formed, using Monte Carlo replicas generated
from each of the three PDF sets. PDF4LHC21 PDF sets are available either in a 40-member
Hessian format, or a 100-member Monte Carlo replica format. The PDF4LHC21 PDFs show
a reduction in uncertainty from the combined PDFs determined in 2015, but perhaps not to
the extent that may have been expected through the introduction of a variety of new LHC
data. This is partially due to the central values of the three input PDFs not coinciding exactly,
and partially because the tensions between the data sets that limit the resultant possible
uncertainty.6 The PDF4LHC21 PDF sets are appropriate for use in general predictions for
state-of-the-art calculations, and indeed the prior PDF4LHC15 PDFs have been used in just
that way.

2.2. Development in amplitude and loop integral techniques

Computing fixed-order amplitudes for scattering processes remains one of the key challenges
and obstacles to producing precise predictions for the LHC. In this section, we will give a
partial introduction to the procedure and review a selection of some of the most interesting
recent advances in this area. For the purpose of this presentation, we can divide the com-
putation of multi-loop amplitudes into two broad categories:

1. Obtaining the amplitudes and simplifying (reducing) them.
2. Calculating the integrals which appear in the amplitudes.

They are discussed in sections 2.2.1 and 2.2.2, respectively. A thorough review of recent
formal developments can be found in [14].

Before discussing recent advances in more detail, let us first recall the basic steps. Firstly,
the amplitude is generated either using Feynman diagrams or some other method, for
example, on-shell techniques. Next, the tensor structure of the amplitude is separated from the
Feynman integrals appearing in the calculation. The standard approach is known as the
projector method, the amplitude is expressed as a linear combination of all potential D-
dimensional tensor structures each multiplied by a scalar coefficient (form factor) containing
scalar integrals. Projectors are then constructed which, when contracted with the amplitude,
pick out the scalar coefficients. After this, the amplitude may contain a very large number of
scalar integrals. However, not all of these integrals are linearly independent, relations may be
found using integration-by-parts identities (IBPs) [15, 16] and Lorentz-invariance identities
(LIs) [17]. An algorithm for eliminating the linearly dependent integrals using these identities
was proposed by Laporta [18] and is now almost ubiquitously used. At this point, each form

6 [13] points out one problem that PDF fits may face is the bias that results from improper sampling in very large
data spaces. The bias can not only result in an underestimate of the true uncertainty, but also an incorrect central PDF.
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factor of an L-loop, n→m-point scattering amplitude can be expressed as

å=A C F , 1n m
L

j
j j ( )( )

where Cj are rational coefficients and Fj are scalar Feynman integrals. The amplitude has been
expressed in terms of fewer (and usually simpler) master integrals, the evaluation of which is
one of the biggest obstacles in obtaining multi-loop/multi-leg amplitudes.

For many state-of-the-art calculations, every step of the above procedure results in enor-
mously complicated expressions which almost exhaust the available computational resources
and take considerable time, see e.g. [19] for a review. However, it is often the case that the
resulting amplitude is vastly simpler than any intermediate expression encountered during its
computation. This phenomenon is well known in computer science and is called intermediate
expression swell. Thus, many recent breakthroughs essentially consist of finding ways to
circumvent handling these large intermediate expressions. For example, the number of
Feynman diagrams increases factorially with increasing loop order, they are also a very
redundant and gauge dependent representation of the amplitude. The projector method,
especially when applied in D space-time dimensions, can split the amplitude into more form
factors than helicity amplitudes present in 4 dimensions. The set of IBP or LI identities is
often over complete and may introduce a large number of integrals into the linear system
which do not appear in the amplitude and which are not master integrals. The goal, then, is
primarily finding smart and/or physical ways of avoiding these intermediate complexities and
writing down the amplitude in a compact, easy-to-evaluate form.

2.2.1. Amplitudes, generalised unitarity and reduction. At one-loop, the complexity of high
multiplicity processes and the gauge redundancy has greatly been reduced using on-shell and
recursive off-shell methods. These breakthroughs have led to the development of a wide
variety of, now commonly, used automated one-loop codes [20–31].

One complexity of the traditional projector method stems from the fact that external
particles are handled in D space-time dimensions. However, for on-shell/physical processes,
we can restrict the space-time dimension of the external particles to D= 4 and directly
construct projectors for individual helicity amplitudes. In [32–34], concrete procedures for
constructing such helicity projectors were proposed. The helicity amplitudes obtained using
four-dimensional projectors are often considerably simpler than the traditional (D-
dimensional) form factors. These techniques are now used quite widely in the literature,
for example, in the computation of the 2-loop γγγ [35] and γγj [36] amplitudes, the 3-loop
diphoton [37, 38], gluon-scattering [39], and four-quark [40] amplitudes as well as several
other recent computations, see e.g. [41–44].

A useful technique for avoiding intermediate expression swell is the use of finite fields,
typically integers modulo some prime number p, we use p to denote such a finite field. Finite
fields have long been used for this purpose in computer algebra systems and have thus been
implicitly employed in many fixed-order computations, for example, via the use of the
FERMAT program [45]. At the heart of this technique is the concept of black box interpolation.
Consider a univariate function that is known to be a polynomial over the integers x[ ] (i.e. all
coefficients are integer), imagine that we have no knowledge of what this polynomial is but
that we have an algorithm to evaluate it on integer input. By sampling the function on a set of
distinct interpolation points ¼ Îy y, , d0  the coefficients Îai  of the Newton polynomial

= + - + - ¼+ - -f x a x y a x y z y ad d0 0 1 1 1( ) ( )( ( )( ( ) ))
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can be recursively reconstructed starting from f (y0). The above algorithm can also be
recursively applied to reconstruct multivariate polynomials. One problem is that intermediate
integers (or rational numbers) appearing in the reconstruction can be large and their
manipulation (e.g. computing greatest common divisors) can be costly. Instead, by restricting
the interpolation points to a finite field ¼ Îy y, , d p0  and evaluating f (x) using modular
arithmetic, the maximum size of any intermediate expression is limited, largely alleviating the
issue of intermediate expression swell. The reconstruction can be performed using several
finite fields ¼, ,p pn0

  and the Chinese remainder theorem can be used to deduce
a p pmodi n0( ), with enough reconstructions the true value of Îai  can be determined.

In fact, using the Extended Euclidean Algorithm, it is possible to reconstruct a polynomial
over rational numbers x[ ] from their images modulo integers. A similar set of considerations
apply to rational functions over integers xp ( ) and rational functions over rational numbers

xp ( ), such that they can also be interpolated from samples infinite fields.
An important observation is that finite field methods can be used more broadly in the

computation of amplitudes and in their reduction to master integrals. Some of the earliest
direct applications were made in [46], where they were used to remove redundant equations
from the system of IBPs, and in [47] where the use of the technique to solve the IBPs was
proposed, in [48] the finite field techniques were applied to the computation of scattering
amplitudes. Several codes now exist to facilitate the use of finite fields for computing
amplitudes, [49] presents FINITEFLOW a MATHEMATICA package that allows every step of
the calculation to be encoded in a graph and then performed using finite fields. The program
FIREFLY [50] provides a C++ implementation of many finite field algorithms and is
commonly used in conjunction with the KIRA [51, 52] program for IBP reduction. In [53] the
code CARAVEL, a framework for computing multi-loop scattering amplitudes using numerical
unitarity was presented, it supports evaluation using floating point or finite field arithmetic.
Some recent examples of processes computed using finite field methods include the two-loop
leading colour helicity amplitudes for: pp→Wγ+ j [43], pp Hbb̄ [54], gg tt̄ [55],

ud Wbb¯ ¯ [56], as well as the two-loop virtual corrections to gg→ γγ+ j [57] and the two-
loop four graviton scattering amplitudes [58]. In [59], a related method for extracting analytic
expressions from high-precision floating point evaluations was introduced. This technique has
been used to compute analytic one-loop amplitudes for H+ 4j [60], the pp→W(→ lν)+ γ

[61] process and ¢ ¢qqll l l g¯ ¯ ¯ [62]. In [63], a related approach to reconstructing analytic
expressions from evaluations using p-adic numbers was presented.

The use of IBP reduction identities [15, 16, 18], LIs [17], and dimension shift relations
[64, 65] remains a critically important tool in modern loop calculations, but can also present a
major bottleneck (see e.g. [66, 67] for a review). Several efficient codes exist to facilitate their
use, including: AIR [68], FIRE [69–72], LITERED [73, 74], REDUZE [75, 76] and KIRA

[51, 77]. The use of finite field techniques, as implemented in FIREFLY [50], FINITEFLOW [49]
and various private codes, has widely been adopted to speed up the reduction to master
integrals.

A promising approach to reducing Feynman integrals, without directly solving the
system of IBPs, is the use of intersection theory [78–90]. Rather than generating a large set of
linear relations between Feynman integrals and solving this system algorithmically,
intersection theory instead allows an inner product between pairs of Feynman integrals to
be defined. A basis of preferred Feynman integrals can then be selected (i.e. master integrals
are chosen) and then each Feynman integral in the problem can be projected onto this basis,
with coefficients given by intersection numbers. This procedure effectively side-steps the
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need for IBP reduction. Unfortunately, as of writing, the computation of (especially
multivariate) intersection numbers is itself a computationally expensive process.7 For an
introduction to the use of intersection theory for Feynman integrals we refer readers
to [91, 92].

Another observation is that often the coefficients of the master integrals can be expressed
in a simpler form using multivariate partial fractions, rather than bringing the entire
coefficient over a common denominator. Procedures for performing this partial fraction
decomposition, without introducing spurious denominators, were discussed in [93, 94].

Recently, several authors have also examined the use of neural networks to accelerate
various aspects of amplitude computation and evaluation. For example, the use of neural
networks to efficiently evaluate high multiplicity and multi-loop amplitudes has been studied
in [95–99]. A regularly updated review of the various applications of machine learning in
high-energy physics can be found in [100].

2.2.2. Loop integrals. A modern introduction to various techniques for computing multi-
loop Feynman integrals can be found in [92], and further details on recent developments can
be found in the SAGEX review [91, 101].

The use of the differential equations technique [17, 102], and particularly Hennʼs
canonical form [103] remains as one of the most important methods for computing Feynman
Integrals. New developments concerning the use of differential equations and their
application to cutting-edge multi-loop integrals can be found in, e.g. [104–110]. In [111], a
procedure for introducing an auxiliary dimensionless parameter into the kinematics of a
process and deriving differential equations with respect to this parameter, known as the
simplified differential equations approach, was described. This procedure has recently been
used to compute e.g. the 2-loop planar [112] and non-planar [108] 5-point functions with one
massive leg. For a review of the method of differential equations we refer to [113, 114].

For a certain class of Feynman integrals, namely finite and linearly reducible integrals,
the direct integration over the Feynman parameters has proved to be an extremely useful
method. The HYPERINT [115] package automates this procedure. This method has been used
in several recent calculations, some highlights include the 2-loop mixed QCD-EW corrections
to pp→Hg [41, 116], the quark and gluon form factors at four-loops in QCD [117, 118] and
the Hbb̄ vertex at four-loops [119].

Many scattering amplitudes computed in the last few decades can be expressed in terms
of multiple polylogarithms (MPLs). The mathematical properties of these functions are well
understood and public tools exist for their numerical evaluation. However, it has long been
established that not all Feynman integrals can be expressed in terms of MPLs. For example,
such integrals appear in γγ, +tt j¯ ( ), ttH¯ and H+ j production as well as Higgs decays and
many other processes of interest at the LHC. One obstruction is the appearance of elliptic or
hyperelliptic integrals. An enormous effort is ongoing to analytically tackle such integrals and
generalise the concepts and tools previously developed for MPLs. For a recent review of the
various developments, we refer the reader to [120].

For some processes, it is not straightforward to obtain a compact and easy-to evaluate
analytic expression for the Feynman integrals. In these cases, it is often convenient to use a
numerical or semi-numerical method for their evaluation. One method, that has recently been
systematised and used widely for the evaluation of multi-scale Feynman integrals, is the use
of generalised power series. The key insight is that, given the differential equations for a set of
master integrals,


F , with respect to some variable t (which parametrises a contour γ(t))

7 This is an example of the law of conservation of misery.
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t
F t t F tA, , , , 2t( ) ( ) ( ) ( )  

and the value of the integrals at some point t0 on the path, series solutions can be obtained
both in the vicinity of (regular) singular points (using the Frobenius method) and in the
vicinity of regular points (using Taylor expansion). The contour γ(t) can be chosen such that
solutions of the master integrals at one phase-space point (or for particular values of the
masses) can be transported along the contour to another phase-space point by matching series
expansions around regular and/or singular points along the path. This method was recently
described in detail and popularised in [121–123] and has been implemented in the code
DIFFEXP [124]. An obstruction to the use of this method is the requirement to know a priori
the value of the integrals at the point t0, i.e. the boundary conditions. One option is to obtain
these boundary conditions numerically in the Euclidean region, for example by using sector
decomposition, this approach was applied to 2- and 3-loop integrals in [125]. In [126–128],
an innovative solution to this problem, now known as the auxiliary mass flow (AMF) method,
was proposed. The Feynman propagators appearing in loop integrals can be generically
written as

h- +k m

1

i
, 3

2 2
( )

where k is the momentum of the propagating particle, m is the mass and η is an infinitesimal
parameter used to define the causal integration contour, ultimately we set η→ 0+. It
was noticed that if one instead chooses η=∞ , this corresponds to a large mass and it
is straightforward to obtain boundary conditions here via a large mass expansion, the contour
γ(t) can then be chosen along the η direction connecting the point at η=∞ to a physical
phase-space point at η= 0+. Tools for using the AMF method have recently been
implemented in the package AMFLOW [129] This technique has been used to calculate
amplitudes for gg→WW [130], gg→ ZZ and [131], t-channel single top production
[132, 133] and integrals relevant for a variety of processes at 2- and 3-loops [128].

Very recently, a method that iteratively combines propagators using ‘Feynmanʼs trick’
and then solves the resulting Feynman parameter integrals in terms of generalised series
expansions, using an associated system of simplified differential equations, was described in
[134]. This method was used to numerically obtain results for a two-loop non-planar double
pentagon family with 40 digits of precision.

Direct numerical evaluation of Feynman integrals can also be a useful technique. It is an
especially promising strategy for tackling multi-loop integrals with many internal masses and
where analytic results can not straightforwardly be obtained. The sector decomposition
algorithm [135] has seen a number of optimisations, implemented into the publicly available
updates of the codes (PY)SECDEC [136–139] and FIESTA [140, 141]. By numerically
integrating into Feynman parameter space, the virtual amplitude for gg→ ZZ [142] and
pp→ ZH [42, 44] at NLO including the full top quark mass dependence have been
completed. Recently, in [143], a method for finding an optimal integration contour for
numerical integration using neural networks was explored. In [144] a method for numerically
evaluating Feynman integrals using tropical geometry was shown to be very efficient for a
special class of (Euclidean) integrals.

Most of the approaches above rely on the explicit separation of real and virtual
corrections. Instead, in the Loop–Tree Duality framework, these contributions are treated
together, which can help to avoid having to separately treat the IR divergences arising in and
then cancelling between the amplitudes. Progress continues to be made in this direction with
several recent works continuing to develop and automate the technique as well as

J. Phys. G: Nucl. Part. Phys. 50 (2023) 043001 Topical Review

8



demonstrating its use for various higher-order calculations [145–152]. In [153, 154], the
utility of Groverʼs algorithm (a quantum computing algorithm) for Loop–Tree Duality was
highlighted. We also point the reader to a recent review [155].

2.3. Infrared subtraction methods for differential cross sections

Differential higher-order calculations must retain the full information on the final-state
kinematics, which also includes the regions of real-emission phase space that are associated
with soft and/or collinear configurations. While the associated singularities must cancel with
the explicit poles in the virtual amplitudes for any infrared (IR) safe observable, this entails
some form of integration of the unresolved emission to expose the singularity. IR subtraction
methods facilitate the explicit cancellation of singularities to obtain finite cross sections,

s =   +
-

 +d A A AN LO IR , , , , 4n
k

k n
k

n
k

n k2 2 2 1
1

2
0( ) ( )

where the function IRk represents an infrared subtraction technique that leaves the kinematic
information for each particle multiplicity intact.

While full automation of NLO subtractions has been achieved, this is not yet the case at
NNLO. Nonetheless, tremendous progress has been made in differential NNLO calculations,
essentially completing all relevant 2→ 1 and 2→ 2 processes. This puts the next frontier in
NNLO calculations to 2→ 3 processes, as well as revisiting prior approximations that could
potentially limit the interpretation of theory–data comparisons (e.g. combination of produc-
tion and decay subprocesses, flavoured jet definition, photon-jet separation and hadron
fragmentation, on-shell versus off-shell, etc). Lastly, we have observed remarkable progress
in the area of differential N3LO calculations with first results obtained for 2→ 1 benchmark
processes.

– Antenna subtraction [156, 157]:
Applicable to processes with hadronic initial and final states with analytically integrated
counterterms An almost completely local subtraction up to angular correlations that are
removed through the averaging over azimuthal angles. Applied to processes in e+e−,
deep-inelastic scattering (DIS), and hadron–hadron collisions: e+e−→ 3j [158, 159],
(di-)jets in DIS [160, 161], pp→ (di)− jets [162, 163], pp→ γγ [164], pp→ γ+ j/X
[165], pp→ V+ j [166–168], pp→H+ j [169], pp→ VH(+ jet) [170–172], and Higgs
production in VBF [173]. Extensions to cope with identified jet flavours [170, 174] and
the photon fragmentation function [175, 176].

– Sector-improved residue subtraction [177–179]:
Capable of treating hadronic initial and final states through a fully local subtraction that
incorporates ideas of the FKS approach at NLO [180, 181] and a sector decomposition
[135] approach for real radiation singularities [182–184]. Counterterms obtained
numerically with improvements using a four-dimensional formulation [185]. Applied
to top-quark processes [186–191], to pp→H+ j [192, 193], inclusive-jet production
[194], pp→ 3γ [195], pp→ 2γ+ j [196], pp→ 3j [197], pp→W+ j [198]. Extensions
to deal with flavoured jets [199] and B-hadron production [200].

– qT-subtraction [201]:
A slicing approach for processes with a colourless final state and/or a pair of massive
coloured particles. Applied to H [201, 202], V [203, 204] and ¢VV production processes
[205–215], which are available in the MATRIX program [216]. Predictions at
NNLOQCD for H, V, VH, Vγ, γγ, and ¢VV available in the MCFM program [217].
Further applications at NNLOQCD include VH [218–220], HH [221, 222], VHH
[223, 224]. Extended to cope with a pair of massive coloured particles [225, 226] and
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applied to top-pair production [227, 228] and bb̄ production [229]. The same
developments allowed the mixed QCD-EW corrections to Drell–Yan with massive
leptons to be tackled [230, 231]. Method extended to N3LOQCD with applications to
Higgs production [232, 233] and Drell–Yan production [234–238].

– N-jettiness [239–241]:
A slicing approach based on the resolution variable τN (N-jettiness) that is suited for
processes beyond the scope of the qT method, i.e. involving final-state jets. Explicitly
worked out at NNLOQCD for hadron-collider processes with up to one jet. Applied to V
(+ j) [240, 242–249] and H+ j [250]. Colourless final-state production available in the
MCFM program [251, 252]. Same technique also used in the calculation of top decay
[253] and t-channel single top production [254]. Important steps towards the extension
for N3LOQCD calculations have been made in [255–261].

– ColorFul subtraction [262]:
Fully local subtraction extending the ideas of the Catani–Seymour dipole method at NLO
[263]. Analytically integrated counterterms for the infrared poles, numerical integration
for finite parts. Fully worked out for processes with hadronic final states and applied to

H bb̄ [262] and e+e−→ 3 jets [264–266].
– Nested soft–collinear subtraction [267–269]:
Fully local subtraction with analytic results for integrated subtraction counterterms
Worked out for processes with hadronic initial and final states [270–272]. Applied to
compute NNLOQCD corrections to VH [273] and VBF [274], as well as mixed QCD-EW
corrections to the Drell–Yan process [275–277].

– Local analytic sector subtraction [278–280]:
Local subtraction with analytic integration of the counterterms aiming to combine the
respective advantages from two NLO approaches of FKS subtraction [180, 181] and
dipole subtraction [263]. First proof-of-principle results for e+e−→ 2 jets [278].

– Projection to Born [281]:
Requires the knowledge of inclusive calculations that retain the full differential
information with respect to Born kinematics. With the necessary ingredients in place,
generalisable to any order. Applied at NNLOQCD to VBF [281], Higgs-pair production
[282], and t-channel single-top production [254, 283]. Fully differential N3LOQCD

predictions obtained for jet production in DIS [284, 285], H bb̄ [286], and Higgs
production in gluon fusion [287].

3. Update on the precision standard model wish list

The summary is broken up into four different parts which comprise: Higgs processes, jet
production, associated vector-boson production, and top-quark processes.

The perturbative corrections are defined with respect to the leading-order prediction in
QCD and the expansion with respect to the strong and electroweak couplings read as:

å å

å

s s a s a s

a a s

= + +

+

d d

d
= =

=

Ä

d d d d

d

1

. 5

X X
k

s
k

X
k

k
X

k l
s
k l

X

LO

1

N LO

1

N LO

, 1

N LO

k k

k l

QCD EW

,
QCD EW

(

) ( )
( )

The mixed QCD-EW corrections are singled out to distinguish between additive predictions
QCD+EW and mixed predictions QCD⊗EW. Equation (5) only applies to cases where the
leading-order process is uniquely defined. For cases with multiple types of tree-level
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amplitudes (requiring at least two jets at hadron colliders), it is customary to classify the Born
process as the one with the highest power in αs that is typically the dominant contribution. In
the following, the notation NLOSM is used to denote NLO calculations that include the
complete Standard Model corrections, i.e. all QCD and EW corrections to all leading-order
contributions.

Tremendous progress has been made in the field of resummation and parton showers,
however, we refrain from reviewing it here and instead point the interested reader to [288].
The present authors feel that this rich area of research certainly deserves a dedicated summary
and wishlist of its own.8

Below, a summary of the current status of higher-order computations within the Standard
Model is provided. The references retained are for the most state-of-the-art calculations
available at the time of submission. In that regards, superseded computations are not listed
here. Specifically, we provide a brief summary of the status of theory predictions as docu-
mented in the previous wishlist (LH19), followed by a description of the progress since then.
A short experimental motivation for the entries in the wishlist is given with the anticipated
precision target that should be achieved. Before turning to the actual wishlist, we discuss
some general aspects pertaining to higher-order calculations at the LHC.

Electroweak corrections
A naive estimate based solely on the size of the respective coupling constants, a a~ s

2,
already highlights that NLOEW corrections should be considered together with NNLOQCD for
any applications aiming at the percent level precision. Moreover, EW corrections can be
enhanced in specific kinematic regimes such as high-energy tails of distributions that are
prone to large logarithmic corrections, known as EW Sudakov logarithms, or observables that
are sensitive to final-state radiation effects. In such scenarios, NLOEW corrections can com-
pete with or even surpass the size of NLOQCD corrections and are essential to be included in
the theory predictions. For benchmark processes such as the Drell–Yan process, also NNLO
mixed QCD-EW corrections must be considered to match the precision targets of the
experimental measurements.

Recent years have seen immense progress in the automation of NLOEW corrections, with
dedicated one-loop Matrix Element providers such as OPENLOOPS [22, 23], GOSAM
[25, 26, 289], RECOLA [29–31], MADLOOP [27, 28], and NLOX [290], enabling the calc-
ulation of NLOEW corrections to very complex off-shell processes with multiplicities up to
2→ 6 [291–296] and even 2→ 7 [297]. The universal EW Sudakov logarithms have further
been incorporated into automated frameworks [298, 299] based on [300].

These advances in fixed-order EW computations are therefore naturally accompanied by
the need of including them in global PDF fits. The LUXqed [301, 302] approach enabled the
precise determination of the photon PDF and the extension of interpolation grid technologies
to cope with arbitrary perturbative corrections (QCD, EW, or mixed) [6] paves the way for a
consistent inclusion of EW effects into global PDF fits. Beyond fixed-order corrections,
several attempts have been made to combine these with QCD and/or EW parton-showers. For
the latter case, there has been dedicated progress in incorporating QED/EW effects in parton
showers [303–306]. In the future, one can hope to have full EW corrections matched to
parton/EW showers for arbitrary processes. For several exemplary processes [307–309], an
exact QED matching along with QCD corrections have been already obtained at full NLO
accuracy (EW + QCD).

Another aspect of EW corrections that has seen recent progress concerns the definition of
PDF and fragmentation functions. For example, there has been substantial work in

8 The Les Houches-Wishlist.
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determining the photon [301, 302] and lepton [310–312] content of the proton. Similarly, the
quark and gluon content of leptons has been investigated using various approaches
[313–315]. The photon-to-jet conversion function has also been derived in [316] in order to
deal with EW corrections to processes with jets in the final state. Related work on the
treatment of isolated photons within higher-order EW corrections has been done in [317].

For further details on EW radiative corrections, we refer to the exhaustive review provided
in [318].

On-shell and off-shell descriptions
The treatment of unstable particles constitutes a subtle issue and can be approached at

different levels of sophistication. In the crudest approximation, the massive states, e.g. W and
Z bosons and the top quark, are considered stable and the production of on-shell states is
computed. In case of a narrow resonance, the decay can be included in a factorised manner
through the so-called narrow-width approximation (NWA), where the intermediate propa-
gator is approximated by an on-shell delta distribution. Several variants of the NWA exist that
further incorporate spin correlations between the production and decay sub-processes or
include some finite-width effects through the resonance shape. The intrinsic error of this
approximation is of the order G Mi i( ) , with Γi and Mi the width and the mass of the resonant
particle, respectively. This estimate holds provided the decay products are treated inclusively
and the resonant contributions dominate [319–322].

An improved treatment can be obtained using the pole approximation (PA) [323–327],
which performs a systematic expansion about the resonance pole. In this case, the resonant
propagator(s) are kept intact, while the residue is evaluated at the on-shell point. The full
phase-space kinematics can be accommodated together with an on-shell projection and spin
correlations between production and decay can be implemented. This approximation has the
advantage to describe the full resonant shape without reverting to an expensive off-shell
computation. It can also be used to infer the size of non-resonant contributions by comparing
it to a full off-shell computation. Finally, the PA is particularly suited for polarised predictions
given that these require intermediate on-shell states to define the corresponding polarisation.

Lastly, off-shell calculations refer to predictions that include all resonant and non-resonant
diagrams that contribute to a given final state as defined by the decay products. The drawback
of such predictions is that they are significantly more complicated than the previous
approximations and therefore more CPU intensive. While multiplicities up to 2→ 6/7/8 have
been achieved at NLO accuracy, NNLOQCD calculations are only starting to break into the
2→ 3 barrier.

In the following, off-shell effects are assumed to be taken into account when the status of
the wishlist is discussed. In the case of QCD corrections and purely EW decays, the different
treatment of the unstable particles in general does not significantly complicate the calculation.
For calculations where this is not the case, e.g. EW corrections and top-quark processes, the
off-shell effects are mentioned explicitly.

Fiducial cuts
The interplay between fiducial selection cuts and higher-order radiative corrections has

received increased attention in the recent years, in particular, in regards to the associated
linear fiducial power corrections [328–330]. These can be fully accommodated into resum-
med predictions through a simple recoil prescription [331, 332]. In the context of fixed-order
calculations based on slicing methods, this further allows to significantly stabilize the var-
iation with the slicing parameter. The impact of fiducial power corrections on cross sections
can become sizeable as was observed in the gluon-fusion Higgs production process with
ATLAS cuts [233], while in the case of the Drell–Yan process their impact was found to be
only of moderate size [237]. It was shown in [333] that linear fiducial power corrections can
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be almost entirely avoided in two-body decay processes through a suitable adjustment of the
selection cuts. In its simplest incarnation, this can be accomplished by applying cuts on ‘self-
balancing variables’ such as the arithmetic +p pT T

1

2 ,1 ,2( ) or geometric p pT T,1 ,2
1 2( · ) mean

of the transverse momenta. Such cuts should not be difficult to implement in most exper-
imental analyses, and will not result in a significant loss in acceptance. In the case of the
Drell–Yan process, it was seen that this approach indeed largely eliminates the impact from
fiducial power corrections and in the same way reduces the difference between resummed and
fixed-order predictions on inclusive quantities such as the fiducial cross section.

Jet algorithms, identified final states, and fragmentation
NNLO predictions are necessary to achieve the highest precision for 2→ 2 (and 2→ 3)

processes at the LHC. The presence of one or more jets in the final state requires the
application of a jet algorithm, almost universally the anti-kt algorithm as they give rise to
geometrically regular jets. However, there can be accidental cancellations between the scale-
dependent terms in the NNLO calculation that can result in artificially small scale uncer-
tainties, especially close to jet radii of R = 0.4. A more realistic estimate of the uncertainty
can be obtained by the use of a larger radius jet (R = 0.6–0.7), or by alternate estimates for
uncertainties from missing higher orders [334–336].

Increasingly, many of the precision LHC measurements involve the presence of heavy
quarks in the final state, e.g. V+ c/b. The heavy flavour quark is reconstructed as a jet with a
heavy flavour tag, imposing a transverse momentum threshold that is typically much smaller
than the transverse momentum of the jet itself. Calculations at NNLO require the application
of an IR-collinear safe jet algorithm such as the flavour-kt algorithm [337]. The experimental
approach, however, is to first reconstruct the jet using the anti-kt jet algorithm, and then to
look for the presence of heavy flavour within that jet. The resulting mismatch in algorithms
can result in an error of the order of 10%, potentially larger than the other sources of
uncertainty in the measurement/prediction. Such a mismatch can be avoided through a
computation based on massive heavy quarks (see e.g. [338] for a comparison against
flavour-kt in WH production) or by the inclusion of the fragmentation contribution at NNLO
(see e.g. [200] for NNLOQCD predictions for B-hadron production in tt̄ ). Alternatively, the
mismatch can be mitigated through new jet-tagging procedures [339–341].

A similar issue with a mismatch between experiment and theory arises in the case of
identified photons that require an isolation procedure to distinguish the prompt production
from the overwhelming background. Differences in a fixed-cone isolation versus a smooth-
cone isolation [342, 343] have been the subject of many studies which assessed the impact to
be at the few-percent level [1, 214, 344–346]. Precision phenomenology based on processes
with external photons thus demands an extension of the fragmentation contribution to NNLO
that has been achieved recently [175, 176].

3.1. Higgs boson associated processes

An overview of the status of Higgs boson associated processes is given in table 1. In the
following, the acronym Heavy Top limit (HTL) is used to denote the effective field theory in
the mt→∞ limit. In this limit, the Higgs bosons couple directly to gluons via the following
effective Lagrangian

= - - + +¼mn
mn
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whose matching coefficients known up to fourth order in αS [347–354].
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H: LH19 status: Results at NNLOHTL known for two decades [201, 202, 355–357].
Inclusive N3LOHTL results computed in [358–360] and available exactly in the program
IHIXS 2 [361] and in an expansion around the Higgs production threshold in SUSHI

[362]. The first differential results at N3LOHTL were presented in [232, 363–365] and
the transverse momentum spectrum of the Higgs boson has been studied at NNLO +
N3LL [366, 367]. The mt-dependence is known at 3-loops for the virtual piece
[368–370] and at 4-loops in a large-mt expansion [371]. Complete NLOQCD corrections
are known for arbitrary quark masses [351, 372–378]. Bottom quark effects have been
studied for intermediate Higgs transverse momentum mb pTmt at NLO+NNLL
[379]. Mixed QCD-EW corrections, ÄN LO1,1

QCD EW
HTL( ) ( ) , were known in the limit of small

electroweak gauge boson mass [380, 381].

The complete N3LOHTL corrections were computed fully differentially, at fixed order [287]
and with N3LL’ resummation for the Higgs pT spectrum [233]. After applying fiducial cuts, it

Table 1. Precision wish list: Higgs boson final states. N LOx
QCD
VBF( )* means a calculation

using the structure function approximation. V=W, Z.

Process Known Desired

pp→ H N3LOHTL

NNLO t
QCD
( ) N4LOHTL (incl.)

ÄN LO1,1
QCD EW
HTL( ) ( ) NNLO b c

QCD
,( )

NLOQCD

pp→ H+ j NNLOHTL

NLOQCD NNLOHTL ⊗NLOQCD + NLOEW

N(1,1)LOQCD⊗EW

pp→ H+ 2j NLOHTL ⊗LOQCD NNLOHTL ⊗NLOQCD + NLOEW

N3LO QCD
VBF( )* (incl.) N3LO QCD

VBF( )*

NNLO QCD
VBF( )* NNLO QCD

VBF( )

NLO EW
VBF( )

pp→ H+ 3j NLOHTL NLOQCD + NLOEW

NLO QCD
VBF( )

pp→ VH NNLOQCD + NLOEW

NLOgg HZ
t b,( )

pp→ VH+ j NNLOQCD NNLOQCD + NLOEW

NLOQCD + NLOEW

pp→ HH N3LOHTL⊗ NLOQCD NLOEW

pp→ HH+ 2j N3LO QCD
VBF( )* (incl.)

NNLO QCD
VBF( )*

NLO EW
VBF( )

pp→ HHH NNLOHTL

 +pp H tt̄ NLOQCD + NLOEW NNLOQCD

NNLOQCD (off-diag.)

 +pp H t t̄ NLOQCD + NLOEW NNLOQCD
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was observed that the fixed order corrections exhibit some instabilities stemming from linear
power corrections ∼pT,H/mH which are cured by the N3LL’ resummation [233]. These
instabilities are substantially removed using the cuts suggested in [333], as described above.
Ultimately, the resulting N3LOHTL and N3LL’+N3LOHTL corrections are observed to give
an enhancement similar to the inclusive case. In [382] fiducial results for Higgs Boson
production were produced at N3LL’+NNLOHTL using the RadISH formalism. A new
program, HTURBO, for producing fast NNLO+NNLL predictions for gg→H(→ γγ), was
presented in [383], it represents an independent reimplementation of the HQT [384, 385],
HNNLO [201] and HRES [386] programs.

The dominant light-quark contribution to the NLO mixed QCD-EW corrections have now
been computed including the exact EW-boson mass dependence [387]. The results were
found to be compatible with the +5.4% enhancement predicted by previous calculations
utilising the soft approximation [388] or the mH=mV [389] and mV=mH [381] limits.

In [390] the exact top-quark mass dependence was computed to NNLOQCD. The chal-
lenging two-loop real corrections and three-loop virtual amplitudes are computed by
numerically solving a system of differential equations [369]. The virtual corrections are also
known analytically at leading colour [391]. The inclusion of the top quark mass corrections at
NNLOQCD shifts the cross section by −0.26% and effectively eliminates the uncertainty due
to the top quark mass effects. A study of the top-quark mass renormalisation scheme
uncertainty at NNLOQCD for off-shell Higgs production was presented in [392].

The amplitude for the production of a Higgs boson in gluon fusion (gg→H) via a fermion
loop is suppressed by the quark mass, mq, and vanishes in the limit mq→ 0. Mass/power-
suppressed non-Sudakov logarithms of the form a -y m lnq q s

n n m

m
2 1 H

q
( ), where yq is the Yukawa

coupling, are present in this limit and can become large. In [393–396], the next-to-leading
power, mq( ) , corrections were studied and resummed to all orders in the strong coupling
constant. In [397], the next-to-next-to-leading power, mq

3( ) , term was obtained for 3-loop
Higgs production and an all-order analysis was performed for the large-Nc and Abelian limits.

Finally, although not strictly a H production calculation, we mention that the recently
completed calculation of the 4-loop form factors [117, 118, 398–405] is a first step towards
gg→H at N4LO. The cusp anomalous dimension, related to the 1/ò2 poles of the form factor,
was previously computed at the same perturbative order. Following earlier numerical results
[406, 407], the result for the fermionic piece was obtained [402, 408], followed by the
nfTFCRCFCA term [409]. The gluonic piece was computed in [410]. An independent calc-
ulation of the cusp anomalous dimension, performed without relying on any conjectured
properties, was presented in [404] building on [411]. An approximate result for the 4-loop
QCD corrections to Higgs boson production was presented in [412], based on the soft-gluon
enhanced contributions in the limit of a large number of colours.

The experimental uncertainty on the total Higgs boson cross section is currently of the
order of 8% [413] based on a data sample of 139 fb−1, and is expected to reduce to the order
of 3% or less with a data sample of 3000 fb−1 [414]. Most Higgs boson couplings will be
known to 2%–5% [415]. To achieve the desired theoretical uncertainty, it may be necessary to
also consider the finite-mass effects at NNLOQCD from b and c quarks, combined with fully
differential N3LOHTL corrections.

H+ j: LH19 status: Known at NNLOHTL [169, 192, 193, 242, 250, 416] and at NLOQCD

including top-quark mass effects [417–419]; top–bottom interference effects are also
known [420, 421]. Fiducial cross sections for the four-lepton decay mode were
calculated in [422]. The Higgs pT spectrum with finite quark mass effects calculated
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beyond the LO using high-energy resummation techniques at LL accuracy [423];
parton shower predictions including finite-mass effects available in various
approximations [424–427]. The transverse momentum spectrum has also been
studied at NLO+NNLL in the case a jet veto, p pt

j
t
j v, , is applied [428]. The

leading EW effects for the qg and qq̄ channels were computed some time ago
[429, 430].

Very recently, the NLOQCD corrections to H+ j production were calculated including the
full mass dependence in both the bottom and top quark loops [431]. The master integrals were
evaluated using the series expansion of differential equations [121–124, 432]. At the NLO
level, the contribution of the bottom quark is found to be small at the inclusive level, but
affects the shape of pT distribution for small-pT. The process was studied with the quark
masses renormalised in the on-shell (OS) and MS schemes, previously full NLO results had
only been presented in the OS scheme. At large-pT the MS result was found to lie below the
OS result both at LO and (to a lesser extent) NLO. Thus, the choice of mass renormalsiation
scheme can have a non-negligible impact on the prediction.

Considerable work has been carried out computing the mixed QCD-EW corrections to
H+ j production. As in H production, these corrections are largely dominated by topologies
containing a light fermion loop with the Higgs boson coupled to EW bosons. In [433], the
relevant two-loop planar master integrals were computed using differential equations. In [41],
the two-loop mixed corrections to gg→Hg were presented, the master integrals were com-
puted using direct integration over the Feynman parameters and, independently, using diff-
erential equations. In [434], the gg→Hg amplitudes were evaluated using generalised power
series, providing fast and stable numerical results. Most recently, in [116] the two-loop
amplitudes for the qg and qq̄ channels were computed again using direct integration over the
Feynman parameters.

In [435], the process  +bb H j¯ was computed differentially at NNLOQCD in the 5FS
(but retaining the bottom quark Yukawa coupling). The LO and NLO results in the 5FS are
plagued by large factorisation scale uncertainties which are tamed at NNLOQCD. Although the
contribution of this channel is small, it is interesting due to its sensitivity to the bottom quark
Yukawa coupling.

The production of a Higgs boson in association with a charm jet was studied at NLOQCD in
[436], the amplitude receives contributions from diagrams with and without a Hcc̄ Yukawa
coupling and their interference. A careful treatment of the charm mass is required for this
process due to the assumption mc = 0 for incoming quarks (from the PDF) and the
requirement of a helicity flip for the interference contribution. A related subtlety was observed
also in e.g. WH bb( ¯) when neglecting the bottom quark mass [273].

The current experimental uncertainty on the Higgs + �1 jet differential cross section is of
the order of 10%–15%, dominated by the statistical error, for example, the fit statistical errors
for the case of the combined H→ γγ and H→ 4ℓ analyses [437, 438]. With a sample of 3000
fb−1 of data, the statistical error will nominally decrease by about a factor of 5, resulting in a
statistical error of the order of 2.5%. If the remaining systematic errors (dominated for the
diphoton analysis by the spurious signal systematic error) remain the same, the resultant
systematic error would be of the order of 9%, leading to a total error of approximately 9.5%.
This is similar enough to the current theoretical uncertainty that it may motivate improve-
ments on the H+ j cross section calculation. Of course, any improvements in the systematic
errors would reduce the experimental uncertainty further. Improvements in the theory could
entail a combination of the NNLOHTL results with the full NLOQCD results, similar to the
reweighting procedure that has been done one perturbative order lower.
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H+� 2j: LH19 status: VBF production known at N3LOHTL accuracy for the total cross
section [439] and at NNLOHTL accuracy differentially [173, 281] in the ‘DIS’
approximation [440]; non-factorizable QCD effects beyond this approximation
studied in [441]. Full NLOQCD corrections for H+ 3j in the VBF channel
available [442, 443]. H+� 3j in the gluon fusion channel was studied in [444]
and an assessment of the mass dependence of the various jet multiplicities was
made in [445]; NLOEW corrections to stable Higgs boson production in VBF
calculated [446] and available in HAWK [447]. Mass effects in H+ 2j at large
energy are known within the ‘High Energy Jets’ framework [448–453].

In [454] parton-shower and matching uncertainties for VBF Higgs production were studied
in detail using PYTHIA and HERWIG. The study found that varying just the renormalisation,
factorisation and shower scales underestimates the theoretical uncertainty. Instead, by com-
paring different parton shower Monte Carlos the authors observe differences at the level of
10% for NLO accurate observables and 20% for LO accurate observables. The work also
highlighted the importance of the choice of appropriate recoil schemes in order not to obtain
unphysical enhancements for VBF topologies.

NNLOQCD corrections to VBF Higgs production with H bb̄ and H→WW* decays
were computed for fiducial cross sections in [274], using the nested soft-collinear subtraction
scheme. These results have recently been extended to include also anomalous HVV interac-
tions [455].

A comparative study of VBF Higgs production at fixed order and with parton shower Monte
Carlos has been carried out over a wide range of Higgs boson transverse momenta [336]. This
was an outgrowth of Les Houches 2019. One interesting discovery is that, at very high Higgs
boson pT, current implementations of ME+ PS Monte Carlos do not provide a completely
accurate description of the VBF production mechanism. Rather than the nominal 2→ 3 pro-
cess, high-pT VBF Higgs production becomes effectively a 2→ 2 process, with the second
tagging jet becoming soft with respect to the hard scattering scale. This then requires the use of
two factorization scales in the ME+ PS VBF calculation to take into account this disparity.

The non-factorisable NNLOQCD correction to VBF production was studied and found to be
small in [456].

The impact of the top-quark mass in H+ 1, 2 jets was studied in [457]. For H+ 1 jet, good
agreement with the full NLOQCD result was observed when including the top-quark mass in
the real radiation and rescaling the virtual contribution in the HTL by the full Born result.
NLO differential predictions for H+ 2 jet were computed using this approximation and the
relative correction was found to be very similar to the NLOHTL prediction, although the
absolute predictions differed significantly.

The current experimental error on the H+� 2j cross section is on the order of 25% [437],
again dominated by statistical errors, and again for the diphoton final state, by the fit statistical
error. With the same assumptions as above, for 3000 fb−1, the statistical error will reduce to
the order of 3.5%. If the systematic errors remain the same, at approximately 12% (in this case
the largest systematic error is from the jet energy scale uncertainty and the jet energy reso-
lution uncertainty), a total uncertainty of approximately 12.5% would result, less than the
current theoretical uncertainty. To achieve a theoretical uncertainty less than this value would
require the calculation of H+� 2j to NNLOHTL ⊗NLOQCD in the gluon fusion produc-
tion mode.

VH: LH19 status: Total cross section known in the threshold limit at N3LOQCD

[458]. Inclusive NNLOQCD corrections available in VH@NNLO [459–461].
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NNLOQCD differential results known for WH [218] and ZH [220]; extended to
include NNLOQCD H bb̄ decays in [462]; matched to parton shower using the
MiNLO procedure in [463, 464]; supplemented with NNLL’ resummation in the
0-jettiness variable and matched to a parton shower within the GENEVA Monte Carlo
framework in [465]. NNLOQCD with H bb̄ decays at NNLOQCD known [273] and
available in MCFM [247] with NLOQCD decays. Soft-gluon resummation effects
known [466]; NLOEW corrections calculated [308, 467–469] also including parton
shower effects [308]. Loop-induced gg→ ZH known at NLOHTL reweighted by the
full LO cross section [470]; finite mt effects at NLOQCD known in a 1/mt expansion
[471]; threshold resummation calculated in [472]. NLOQCD with dimension-six
Standard Model Effective Field Theory (SMEFT) operators investigated [473],
matched to a parton shower in the MADGRAPH5_aMC@NLO framework. Higgs
pseudo-observables investigated at NLOQCD [474]. Process  + pp VH X

+ll bb X¯ ¯ studied at NNLOQCD in [170]. Process bb ZH¯ in the 5FS, but with a
non-vanishing bottom quark Yukawa coupling, investigated in the soft-virtual
approximation at NNLOQCD [475].

The  pp WH bb( ¯) process has been computed at NNLOQCD including bottom quark
mass effects [338], the inclusion of the quark masses affects fiducial cross sections at the 5%
level with larger differences visible in some differential distributions. Anomalous HVV
couplings were studied at NNLOQCD for W±H and ZH in [476]. Predictions for ZH and W±H
with H bb̄ at NNLOQCD for production and decay were produced, matched to a parton
shower using the MiNNLO method, were presented in [477]. In the SMEFT, a
NNLOQCD event generator for   pp Z ll H bb( ¯) ( ¯) was presented in [478]. The polarised

qq ZH¯ amplitudes were studied at NNLOQCD in [479].
The loop-induced gg→ ZH channel accounts for ∼10% of the total cross section and

contributes significantly to the pp→ ZH theoretical uncertainty. The NLO virtual amplitudes
were computed in a small-pT expansion [480], high-energy expansion [481], and numerically
[42]. The complete NLO corrections were recently presented in [482] (based on a small-mH,
mZ expansion), in [44] (based on a combination of the numerical results and high-energy
expansion), and in [483] (based on a combination of the small-pT and high-energy expan-
sion [484]).

Published results for the VH cross section are available for data samples up to 139 fb−1,
with uncertainties on the order of 20%, equally divided between statistical and
systematic errors [485]. For 3000 fb−1, the statistical error will reduce to 4%–5%,
resulting in a measurement that is systematically limited, unless there are significant
improvements to the systematic errors. The general VH process has been calculated to
NNLOQCD, leading to a small-cale uncertainty. However, for the best description of the ZH
process, the exact NLO corrections to the gg→ ZH sub-process, described above, should be
included.

VH+ j: LH19 status: Known at NLOQCD + PS [486] and NLOSM+ PS [308]. The VH+ j
processes are now known at NNLOQCD differentially, including fiducial cross
sections [171, 172]. The NNLOQCD Drell–Yan type corrections are found to
stabilise the predictions and reduce the theoretical uncertainty for all channels (W+,
W− and Z).

HH: LH19 status: N3LOHTL corrections are known in the infinite top mass limit [487, 488]
and have been reweighted by the NLOQCD result (including finite top-quark mass
effects) [489]. Finite mt effects are incorporated in NNLOHTL calculation by
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reweighting and combined with full-mt double-real corrections in [222]. NLOQCD

results including the full top-quark mass dependence are known numerically
[490–493] and matched to parton showers [494, 495]; exact numerical results have
also been supplemented by results obtained in a small-mt expansion [496, 497]; a Padé
approximated result based on the large-mt expansion and analytic results near the top
threshold was presented in [498]. Threshold resummation was performed at
NLOHTL +NNLL [499] and NNLOHTL +NNLL [500]. NLOHTL +NLL resumma-
tion for the pT of the Higgs boson pair was presented in [501]. NNLOQCD virtual and
real-virtual corrections (involving three closed top-quark loops) known in a large-mt

expansion [502, 503]. Sensitivity of HH production to the quartic self-coupling
(which enters via EW corrections) was studied in [504–506]. The bb HH¯ process
is known at NNLOQCD [507].

The uncertainty related to the choice of the top quark mass renormalisation scheme (OS
versus MS) at NLOQCD is large and similar in size to the usual scale uncertainties
[492, 493, 508]. This uncertainty dominates the uncertainty budget when the NLOQCD results
are used to reweight the NNLOHTL and N3LOHTL results.

Corrections have been computed at NLO within a nonlinear Effective Field Theory [509]
and used to reweight the NNLOHTL results [510]. SMEFT predictions and uncertainties for
gg→HH were studied at NLOQCD in [511].

At the amplitude level, NNLO results for the real corrections are now known in a large-mt

expansion to order m1 t
6. Results at NNLOHTL for di-Higgs and di-pseudoscalar-Higgs

production through quark annihilation have been computed [512].
The experimental limits on HH production are currently at the level of approximately four

times the SM cross section for ATLAS [485] (with an expected limit of 5.7) based on a data
sample of 139 fb−1. The observed (expected) constraints on the Higgs boson trilinear cou-
pling modifier κλ are determined to be [−1.5, 6.7] ([−2.4, 7.7]) at 95% confidence level,
where the expected constraints on κλ are obtained excluding pp→HH production from the
background hypothesis. For CMS, a 95% CL limit of 3.9 times the Standard Model has been
obtained [513], with an expected limit of 7.9, for a data sample of 138 fb−1. Constraints have
also been set on the modifiers of the Higgs field self-coupling κλ with this measurement in the
range of −2.3 to 9.4, with an expected range of −5.0 to 12.0.

With a data sample of 3000 fb−1, it is projected that a limit of 0.5< λhhh/λhhh,SM< 1.5
can be achieved at the 68% CL for ATLAS and CMS combined [415].

HH+ 2j: LH19 status: Fully differential results for VBF HH production are known at
NNLO QCD

VBF( )* [282] and at N3LO QCD
VBF( )* for the inclusive cross section [514].

In [456] the non-factorisable NNLOQCD contribution to VBF HH was studied in the
eikonal approximation. For typical selection cuts, the non-factorisable NNLOQCD corrections
are found to be small and largely contained within the scale uncertainty bands of the fac-
torizable calculation. It is worth emphasising that non-factorisable corrections can only be
trusted in the range of validity of the eikonal approximation which is when all transverse
momentum scales are small with respect to the partonic centre-of-mass energy. It implies that
the approximation does not apply when the transverse momentum of a jet becomes large.

Differential predictions for VBF HH production including NNLO QCD
VBF( )* +

NLOEW corrections were presented in [515]. The NLOEW corrections were found to be
similar in size to the NLOQCD corrections for typical LHC fiducial cuts and they become
dominant for certain kinematic regions. The non-factorisable NNLOQCD contributions,
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computed in [456], are also included. The current level of theoretical precision is adequate for
the HL-LHC.

HHH: LH19 status: Known at NNLOHTL [516, 517], finite quark mass effects are included
by reweighting with the full Born result.

ttH¯ : LH19 status: NLOQCD corrections for on-shell ttH¯ production known [518–521].
NLOEW corrections studied within the MADGRAPH5_AMC@NLO framework
[522, 523]. Combined NLOQCD and NLOEW corrections with NWA top-quark decays
computed in [524]. Corrections to ttH¯ including top quark decays and full off-shell
effects computed at NLOQCD [525] and combined with NLOEW [297]. NLOQCD

results merged to parton showers [526, 527] and NLO+NNLL resummation
performed in [528–531]. NLOQCD results in the SMEFT calculated [532].

In [533] results for the flavour off-diagonal channels of ttH¯ were presented at
NNLOQCD using an extension of the qT-subtraction formalism to QQF¯ (F colourless) final
states. The corrections we found to be at the few per mille level for the off-diagonal channels.
The complete NNLOQCD result is currently unknown due to the missing two-loop amplitudes.

An independent computation of NLOQCD corrections including off-shell effects was
performed in [534], further considering the LO decays of the Higgs boson.

Fragmentation and splitting functions for the final-state transitions t→H and g→H, known
previously in the mH=mT limit [535] and at LO [536], were presented at ayt s

2( ) in [537].
These results are useful for the resummation of logarithms of the form p mln T( ), and can be
used to derive massive predictions in the high-pT regime from their massless counterparts.

The cross section for ttH¯ has been measured with a data sample of 139 fb−1, with a total
uncertainty on the order of 20%, dominated by the statistical error [538, 539]. The statistical
error will shrink to the order of 4%–5% for 3000 fb−1, leaving a systematics-dominated
measurement. Given that this calculation is currently known only at NLOQCD, with a
corresponding scale uncertainty of the order of 10%–15%, this warrants a calculation of the
process to NNLOQCD.

tH: LH19 status: NLOQCD corrections known [540, 541].

NLO QCD+ EW corrections are now available [542] for on-shell top quarks. This is the
first time that NLO EW corrections have been computed for this process. In addition, a
detailed comparison between the 4-flavour and 5-flavour scheme has been carried out.

bbH¯ : (including H production in bottom quark fusion treated in 5FS) LH19 status:
NNLOQCD predictions in the 5FS known for a long time, inclusively [543] and later
differentially [544, 545]; resummed calculation at NNLO+NNLL available [546].
Three-loop Hbb̄ form factor known [547]; N3LOQCD in threshold approximation
[548, 549] calculated. Complete N3LOQCD results in the 5FS presented in [550] and a
resummed calculation up to N3LO+N3LL was presented in [551]. N(1,1)LOQCD⊗QED

as well as NNLOQED predictions were derived in [552]. NLOQCD corrections in the
4FS known since long ago [553, 554]; NLOQCD (including the formally NNLOHTL yt

2

contributions) using the 4FS presented in [555]. NLOQCD matched to parton shower
and compared to 5FS in [556]; various methods proposed to combine 4FS and 5FS
predictions [557–561]; NLOEW corrections calculated [562].

J. Phys. G: Nucl. Part. Phys. 50 (2023) 043001 Topical Review

20



In [563] bbH¯ was computed at a a +
s
m n 1( ) with m+ n= 2, 3 in the 4FS (i.e. at NLO

including both QCD and EW corrections). New corrections from Z bb H( ¯) and ZZ VBF
were found to give sizeable corrections, making the extraction of yb from this channel
considerably more challenging. In [564], it was shown that the impact of the new channels on
the extraction of yb can be reduced using kinematic shapes.

In [54], the two-loop leading colour planar helicity amplitudes for bbH¯ production in the
5FS were computed. The helicity amplitudes were analytically reconstructed using finite field
methods and the integrals appearing are evaluated using generalised series expansions [124].
The massless 4-loop QCD corrections to the bbH¯ vertex were studied in [119], this result is
an important step towards N4LO bb H¯ production (in the 5FS) and H bb̄ decay.

3.2. Jet final states

An overview of the status of jet final states is given in table 2.

2j: LH19 status: Differential NNLOQCD corrections at leading-colour calculated in the
NNLOJET framework [162]. Predictions using exact colour obtained with the sector-
improved residue subtraction formalism [194] confirming in the case of inclusive-jet
production at 13 TeV and R = 0.7 that the leading-colour approximation is well justified
for phenomenological applications. Complete NLO QCD+ EW corrections avail-
able [565].

Completion of the full colour result using the antenna subtraction method [566] corro-
borating the small impact of sub-leading colour contributions in inclusive-jet observables,
however, finding larger effects in di-jet production for the triple-differential (pT,avg, y

*, yboost)
setup of the CMS 8 TeV measurement. NNLOQCD corrections to bottom quark production
were computed using the qT-subtraction method [229] in the four-flavour scheme with
massive bottoms.

Important three-loop amplitudes became available that would enter the calculation of jet
production at N3LOQCD: four-quark scattering ( qq QQ¯ ¯) [40] and gluon scattering [39].

Inclusive jets can be measured in both ATLAS and CMS with 5% uncertainty in the cross
sections (in the precision range), a precision that requires NNLOQCD cross sections. Global
PDF fits require NNLOQCD calculations of double and even triple differential observables,
requiring the use of full colour predictions. The measurements extend to jet transverse
momenta of the order of 3–5 TeV, necessitating the precise calculation of EW corrections as
well. Eventually, PDFs will be determined at the N3LOQCD level, requiring the use of
N3LOQCD predictions for the input processes, including inclusive-jet production, necessitat-
ing the calculation of di-jet production to this order.

Table 2. Precision wish list: jet final states.

Process Known Desired

pp→ 2 jets NNLOQCD N3LOQCD + NLOEW

NLOQCD + NLOEW

pp→ 3 jets NNLOQCD + NLOEW
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�3j: LH19 status: NLOQCD corrections for 3-jet [567], 4-jet [568, 569] and 5-jet [570]
known. Full NLOSM calculation for 3-jet production was performed using SHERPA
interfaced to RECOLA in [571].

Completion of the 3-jet calculation at NNLOQCD [197] at full colour with the exception of
the two-loop virtual finite remainder that is only available at leading colour so far [572]. The
inclusion of the NNLO corrections significantly reduces the dependence of the predictions on
the factorization and renormalization scales.

Three-jet observables provide a better description of jet shapes, and have the potential for
the determination of the strong coupling constant over an extended dynamic range.

3.3. Vector boson associated processes

An overview of the status of vector-boson associated processes is given in table 3. If not
stated explicitly, the leptonic decays are assumed. In the same way, the off-shell description is
the default one. Finally, in some cases for VV+ 2j, it is mentioned to which underlying Born
contribution the corrections refer to when the full NLO corrections are not known.

V: LH19 status: Fixed-order NNLOQCD and NLOEW corrections to the Drell–Yan
process known for many years, see e.g. [573] and references therein; inclusive cross
sections and rapidity distributions in the threshold limit at N3LOQCD extracted from
the pp→H results at this order [574, 575]; dominant factorizable corrections at

a as( ) (N(1,1)LOQCD⊗EW) known differentially [576] for the off-shell process
including the leptonic decay; total cross section for the qq̄ channel at
N(1,1)LOQCD⊗EW computed for on-shell Z bosons [577]; N(1,1)LOQCD⊗QED

corrections for the on-shell Z boson for the inclusive cross section [578], and
differentially [275]. NNLOQCD computations matched to parton shower available
using the MiNLO method [579], SCET resummation [580], the UN2LOPS technique
[581], and the MINNLOPS method [582]; NNLOQCD+N3LL accuracy for f* and
transverse-momentum distributions of the Z boson [367]; N3LOQCD corrections
known [583] for the production of a lepton-pair via virtual photons.

Several new computations became available at N3LOQCD accuracy: for the neutral-current
process, the lepton-pair rapidity distribution in the photon-mediated Drell–Yan process has
been obtained in [234]. The complete corrections at N3LOQCD to the inclusive neutral-current
Drell–Yan process including contributions from both photon and Z-boson exchange has been
computed in [584]. A computation combining a qT resummation at N3LL with N3LOQCD

corrections has been presented [235]. The same accuracy is achieved in [237], where a
detailed study of the impact of fiducial cuts on infrared physics is provided together with a
critical reassessment of systematic uncertainties of such calculations. It is worth mentioning
that at this accuracy, the theoretical uncertainties are reduced to the level of 1%. For the
charged-current process, the total cross section at N3LOQCD for the charged-current Drell–
Yan process were presented in [585], exhibiting a very similar pattern of corrections as in the
case of the neutral-current process. Most recently, differential N3LOQCD corrections were
obtained in [238] presenting the rapidity distribution and charge asymmetry in W boson
production as well as the transverse mass distribution of the decay leptons. The latter is an
important distribution for the W-boson mass extraction and N3LOQCD corrections were found
to only minimally impact its shape.

In the last two years, there has been an extraordinary amount of work done for the
computation of mixed strong-EW corrections. In [586], the qT formalism has been extended
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to the case of mixed QCD-QED corrections. The work provides the subtraction term and the
hard factor needed to carry out such a computation. Mixed QCD-electroweak corrections to
on-shell Z production have been also computed by two different groups [276, 587]. This work
showed that QED and EW corrections displays a subtle interplay making their joint com-
putation necessary for precision studies. The same accuracy has been obtained for on-shell
production in the same way [277]. The class of corrections proportional to Nf have been
obtained for the off-shell production W and Z [588]. The corrections impact the invariant-
mass distributions at a level of up to 2% for large invariant masses (above 500 GeV). In [589],
the impact of these mixed corrections on the W-mass determination have been studied. They
found that the inclusion of such corrections can impact it at the level of the order of 20MeV.

Table 3. Precision wish list: vector boson final states. V=W, Z and g¢  =V V W Z, , , .
Full leptonic decays are understood if not stated otherwise.

Process Known Desired

pp→ V N3LOQCD N3LOQCD + N(1,1)LOQCD⊗EW

N(1,1)LOQCD⊗EW N2LOEW

NLOEW

 ¢pp VV NNLOQCD + NLOEW NLOQCD (gg channel, w/ mas-
sive loops)

+ NLOQCD (gg channel) N(1,1)LOQCD⊗EW

pp→ V+ j NNLOQCD + NLOEW hadronic decays

pp→ V+ 2j NLOQCD + NLOEW (QCD
component)

NNLOQCD

NLOQCD + NLOEW (EW
component)

 +pp V bb̄ NLOQCD NNLOQCD + NLOEW

 ¢ +pp VV j1 NLOQCD + NLOEW NNLOQCD

 ¢ +pp VV j2 NLOQCD (QCD component) Full NLOQCD + NLOEW

NLOQCD + NLOEW (EW
component)

pp→W+W+ + 2j Full NLOQCD + NLOEW

pp→W+W− + 2j NLOQCD + NLOEW (EW
component)

pp→W+Z+ 2j NLOQCD + NLOEW (EW
component)

pp→ ZZ+ 2j Full NLOQCD + NLOEW

 ¢ pp VV V NLOQCD NLOQCD + NLOEW

NLOEW (w/o decays)
pp→W±W+W− NLOQCD + NLOEW

pp→ γγ NNLOQCD + NLOEW N3LOQCD

pp→ γ+ j NNLOQCD + NLOEW N3LOQCD

pp→ γγ+ j NNLOQCD + NLOEW

+ NLOQCD (gg channel)

pp→ γγγ NNLOQCD NNLOQCD + NLOEW
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An almost complete computation for the off-shell production of pp→ ℓνℓ have been presented
in [230]. The only missing piece is the finite remainder of the two-loop corrections. For the
neutral Drell–Yan, such a complete computation has been obtained [231]. With respect to the
NLOQCD corrections, the mixed one can reach about −15% at transverse momentum around
500 GeV. In [590], an independent calculation of the two-loop EW-QCD amplitude from the
one of [231] for the qq̄-initiated Drell–Yan process has been provided. These mixed QCD-
electroweak corrections have been further studied in detail at high invariant mass in [591].
Around 200 GeV, they are at the level of 1% but can reach 3% at 1 TeV where they can be
well approximated by the product of QCD and electroweak corrections.

In [592], a N3LL resummation via the RadISH formalism has been matched to
NNLOQCD corrections. This allows to generate event with parton-shower effects and
hadronisation with NNLO QCD accuracy.

In [593], a study of transverse momentum distributions in low-mass Drell–Yan lepton-pair
production has been carried out at NNLOQCD. These have been compared to collider and
fixed-target experiment data. Only the former is described well by the calculation, indicating
the importance of non-perturbative correction for the latter.

In [594], NLOEW corrections to the angular coefficients parametrising the Drell–Yan
process around the Z-boson pole mass. These are provided as a function of the transverse
momentum of the Z boson.

Along the same line, in [198] the corresponding decay coefficient have been provided at
N3LOQCD+NLOEW accuracy for the case of W production.

Drell–Yan cross sections, and in particular the production of W and Z bosons, are among
the most precise measurements conducted at the LHC, and will continue to be so in the future.
As a result, they play an important role in PDF fits. The systematic uncertainties are domi-
nated by that of the luminosity uncertainty, with other systematic uncertainties at the percent
level or smaller. The relative precision between the measured W and Z boson cross sections
achieved at 7 TeV by ATLAS [595] has resulted in an increase of the strange quark dis-
tribution in PDF fits using that data set. Electroweak corrections are important in order to
match the experimental precision, including mixed QCD and EW corrections. The data will
be an important component in future PDF fits at NNLOQCD. The dominant luminosity
uncertainty can be eliminated by considering normalised distributions, in which case an
experimental uncertainty well below the percent level can be achieved in the pT distribution of
the Z boson.

V/γ+ j: LH19 status: Z+ j [166, 168, 243–245], W+ j [168, 240, 245, 246], and γ+ j
[165, 248] completed through NNLOQCD including leptonic decays, via antenna
subtraction and N-jettiness slicing; all processes of this class, and in particular
their ratios, investigated in great detail in [596], combining NNLOQCD predictions
with full NLO EW and leading NNLOEW effects in the Sudakov approximation,
including also approximations for leading N(1,1)LOQCD⊗EW effects, devoting
particular attention to error estimates and correlations between the processes.

Computations for V production in association with flavour jets have been obtained at
NNLOQCD: Z+ b [174] and W+ c [199]. One important aspect is the necessary use of the
flavour-kT algorithm in these computations in order to guarantee IR finiteness. In [597], a
W+ c computation at NLOQCD+PS accuracy with massive charm quarks has been presented.

Polarised prediction for W+ j with NNLOQCD corrections have also been obtained in
[598]. The study provides all theoretical ingredients to extract polarisation fractions and show
that higher-order corrections help in their precise determination.
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There are a number of kinematic variables related to V+ jet production that probe the
QCD dynamics of the hard scatter, most simply the transverse momenta of the boson and of
the lead jet. At 13 TeV, the boson and jet transverse momenta have been measured up to the
order of 2 TeV [599, 600]. Better agreement with the data is obtained at NNLO than at NLO.
Electroweak corrections are especially important for the case of the V pT. The V pT cross
section, in particular, can be measured very precisely, to the order of a few percent.

Note that in [601], a review of recent experimental and theoretical progress have been
presented for vector-boson production in association with jet(s).

V+� 2j: LH19 status: NLOQCD computations known for V+ 2j final states in QCD
[602, 603] and EW [604] production modes, for V+ 3j [605–610], for V+ 4j
[611, 612] and for W+ 5j [613]; NLOEW corrections known [614] including
merging and showering [615, 616]; Multi-jet merged prediction up to 9 jets at
LO [617]; First results for two-loop amplitudes for W+ 2j [618].

The leading-colour two-loop QCD corrections for the scattering of four partons and a W
boson, including its leptonic decay have been computed in [619]. The results are expressed in
terms of pentagon functions, which opens the possibility to evaluate them for the computation
of NNLOQCD cross sections.

In [620], NLOQCD+NLOEW corrections have been computed for both the W+ 2j and
Z+ 2j processes. The results focus on vector-boson fusion phase spaces and particular
attention is devoted to the correlation of higher-order corrections in both channels. It is
particularly relevant for searches looking for invisible Higgs boson decays.

Final states with V+� 2j offer the possibility of measuring the electroweak production of
a vector boson, a good testing ground for the similar formalism involved in VBF production
of a Higgs boson, as well as serving as a testbed in searches for new physics.

+V bb̄: LH19 status: Known at NLOQCD for a long time [621–624], and matched to
parton showers [625–628]; NLOQCD for Wbbj¯ calculated with parton shower
matching [629]; Wbb̄ with up to three jets computed at NLOQCD in [630]; Multi-
jet merged simulation, combining five- and four-flavour calculations for +Z bb̄
production at the LHC [631].

In [56], an analytic computation of the two-loop QCD corrections to  +ud W bb̄ for an
on-shell W-boson using the leading colour and massless bottom quark approximations was
presented. This result paved the way to the first computation of +W bb̄ at
NNLOQCD accuracy [632]. This constitutes the first 2→ 3 calculation at NNLOQCD accuracy
with one massive particle.

¢VV : LH19 status: NNLOQCD publicly available for all vector-boson pair production
processes with full leptonic decays, namely WW [207, 212], ZZ [208, 210, 215, 633],
WZ [211, 213], Zγ [206, 209, 249], Wγ [209]; NLOQCD corrections to the loop-
induced gg channels computed for ZZ [634, 635] and WW [636, 637] involving full
off-shell leptonic dacays; interference effects with off-shell Higgs contributions
known [638, 639]; NLO EW corrections known for all vector-boson pair production
processes including full leptonic decays [640–647], extensively validated between
several automated tools in [648]; combination of NNLOQCD and NLOEW corrections
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to all massive diboson processes known [649]; NNLOQCD corrections to off-shell
WW production matched to a parton shower [650].

In [651], new results for NNLOQCD matching to parton shower applied to Zγ have been
presented. These have been further applied to a study of anomalous coupling and the
background of Dark Matter searches [652]. The same method to match NNLOQCD and par-
ton-shower corrections (MiNNLOPS) has been applied to ZZ [653] and WW [654] produc-
tion, respectively.

In [655], NNLOQCD corrections matched to parton shower have been computed for the Wγ

process. The computation was validated against an independent calculation at fixed order and
has been compared to ATLAS data at 7 TeV, finding good agreement.

New results for NNLOQCD predictions matched to parton shower have been presented in
[656] for ZZ production. The results are based on the resummed beam-thrust spectrum and
have been compared to 13 TeV data. Good agreement has been found with experimental data.

For WW production, another formalism has been presented which resums the transverse
momentum spectrum of the WW pair at N3LL accuracy and matches it to the integrated
NNLO cross section [657]. This work highlights the importance of higher-order corrections of
all type for precision phenomenology at the LHC.

In [658], NLOQCD corrections matched to parton showers for the gluon–gluon loop-
induced channel have been presented in the 4 leptons final state. This has been complemented
by a similar study from another group where off-shell Higgs effects have been studied [659].

In [309], exact NLOQCD+NLOEW corrections matched to parton shower have been
presented for all massive gauge boson channels. Comparable results have been presented in
[660, 661] were EW corrections are included approximately but the computations rely on
matching and merging of higher jet multiplicities.

Several polarised predictions have been presented at NLOQCD for WW [662] and WZ
[663], at NLOQCD+NLOEW for ZZ [664] and WZ [665] production and at NNLOQCD for
WW [666]. The corrections were found to differ for various polarisations.

Two-loop helicity amplitudes for the gluon-induced process gg→ ZZ were obtained
in [142].

As an example, it is illustrating to look at a recent measurement from the CMS colla-
boration [667]. The final results states a cross section of: σtot(pp→ ZZ)= 17.4± 0.3(stat)±
0.5(syst)± 0.4(theo)± 0.3(lumi)pb. During the high-luminosity phase of the LHC, the sta-
tistical uncertainty will diminish dramatically and it is expected that systematic uncertainty
will also shrink. It will therefore leave the theory uncertainty as the dominant one. The first
source of theory uncertainty originates from the strong coupling and the PDFS, as for many
other processes at the LHC. The other theoretical source of uncertainty is the use of NLO
QCD+ PS tools rescaled with NNLO-QCD corrections. The use of NNLO QCD + PS
predictions, combined with EW predictions are therefore crucial for future data-theory
comparisons. In addition, given the importance of EW corrections in tails of distributions
[653], mixed QCD-EW corrections are likely to become relevant for data description in the
future.

¢ +VV j: LH19 status: NLOQCD corrections known for many years [668–677];
NLOEW corrections available for some on-shell processes, with subsequent
leptonic decays treated in NWA [678, 679]; full NLOEW corrections including
decays in reach of the automated tools.
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Fixed-order and merged parton-shower including NLOQCD and NLOEW corrections have
been obtained for WWj [660] and ZZj [661]. Both computations include EW corrections in an
approximate way when adding PS corrections. In [43], the two-loop leading colour QCD
helicity amplitudes for Wγj production have been presented.

On the experimental side, measurements of this process have been performed by both
experimental collaborations for example for WWj [680–682]. The experimental errors are at
the level of 10% or below and are dominated by systematic uncertainty. While in the future,
the statistical will eventually be negligible, the systematic errors are also expected to decrease,
making therefore the total experimental error of the same order or smaller than the current
theory uncertainty. It therefore calls to go beyond current state-of-the-art to match the acc-
uracy of future high-luminosity measurements.

¢ +VV j2 : LH19 status: In the vector-boson scattering (VBS) approximation [683], NLOQCD

corrections known for the EW production for all leptonic signatures [684–690];
same holds true for the QCD production modes [691–698]; all above
computations matched to parton shower [699–706]; full NLOSM corrections
(NLOQCD, NLOEW and mixed NLO) available for W+W++ 2j production with
leptonic decays [292]; NLOQCD+NLOEW known for WZ scattering [293]; large
EW corrections are an intrinsic feature of VBS at the LHC [707]; NLOEW to
same-sign WW matched to parton/photon shower [708]; assessment of various
approximations in VBS and parton-shower matching for same-sign WW [683];
NLOQCD calculated for WW+ 3j [709].

In [710], an extensive review of both experimental and theoretical advances in VBS has
been presented. Parton-shower effects in the EW production of WZjj at NLOQCD have been
studied in [711]. This study showcased the importance of parton-shower characteristics for
jet-veto observables. Full NLOSM corrections became available for ZZ+ 2j production with
leptonic decays [294, 295]. The work showed the importance of defining fiducial phase-
spaces that are stable under perturbative corrections. It also confirmed that large EW cor-
rections are present for any VBS signature. NLOQCD+NLOEW became available for W+W−

scattering [296]. Interestingly, it showed that the presence of a resonant s-channel Higgs
boson in the phase space reduces the size of the EW corrections. Finally, [712] provided an
improved description of loop-induced contributions in ZZjj by matching and merging dif-
ferent multiplicities to parton shower.

There have been several studies of the experimental prospects for VBS at the high-
luminosity phase of the LHC. They all predict that with 3000 fb−1 of data, it will be possible
to measure VBS signature with a total uncertainty of a few percent [713–716]. On the other
hand, it is expected that longitudinal polarisations in such processes can only be extracted
with a significance of few sigma [715, 716].

¢ VV V : LH19 status: NLOQCD corrections known for many years [676, 717–723], also in
case of Wγγj [724]; NLOEW corrections with full off-shell effects for WWW
production with leptonic decays [725, 726]; NLOEW corrections available for the
on-shell processes involving three [727–729] and two [730] massive vector
bosons; Vγγ processes with full leptonic decays calculated at NLOQCD and
NLOEW accuracy [731].

NLOEW corrections to Wγγ production [732] and to the production of a photon with three
charged lepton plus missing energy [733] were obtained. NLOEW corrections to Wγγ
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production [732] and to the production of a photon with three charged lepton plus missing
energy [733] were obtained.

At the moment, the measurements of the triple-production of massive bosons is statisti-
cally limited [734–736]. For example, the WWW inclusive production has a 12% statistical
uncertainty and a 10% systematic uncertainty. Having in mind the high-luminosity phase of
the LHC, at least NLOQCD+NLOEW accuracy will be needed to match the experimental
precision.

γγ: LH19 status: NNLOQCD results for γγ production calculated by using qT-subtraction
[214, 737], and by using N-jettiness subtraction in the MCFM framework [738];
NNLOQCD also available within the public MATRIX program [216]; NLOQCD

corrections including top-quark mass effects to loop-induced gg channel known
[739, 740]; qT resummation computed at NNLL [737]; NLOEW corrections available
for γγ [289, 741].

Reference [164] has presented a new NNLOQCD calculation, relying on the antenna sub-
traction scheme. The study has shown that the choice of photon-isolation prescriptions as well
as the choice of renormalisation and factorisation scales can have a significant impact on the
predictions. These sources of theoretical uncertainties can be relevant for comparison with
experimental data. In [742], NNLL+NNLOQCD accuracy has been achieved within the
GENEVA framework. In this way, events with parton-shower and hadronisation effects can be
produced. These events are NNLOQCD accurate for observables that are inclusive of the
additional radiation. Alternatively, in [743] NNLOQCD+ PS accuracy has been achieved with
the help of the MiNNLOPS method.

In addition, in [37] three-loop amplitudes in QCD for diphoton production in the quark-
antiquark channel have been calculated. In particular, the helicity amplitudes obtained feature
for the first time three-loop four-point function in full QCD. This work has been completed by
the tree-loop helicity amplitudes in the gluon–gluon channel [38]. They provided the last
missing piece for the N3LOQCD computation of γγ in the gluon–gluon channel.

γγ+� 1j: LH19 status: NLOQCD corrections calculated long ago [744, 745], later also for
γγ+ 2j [746–748] and γγ+ 3j [747]; photon-isolation effects studied at
NLOQCD [745]; NLOQCD corrections for the EW production of γγ+ 2j [749];
NLOEW corrections available for γγj( j) [289];

In [196], the first NNLOQCD computation of γγ+ j production has been achieved. The
calculation is exact except for the two-loop part which is computed at leading-colour acc-
uracy. The leading colour and light fermionic planar two-loop corrections [750] have been
computed for the qq̄ and qg channels by another group. Later, the complete two-loop cor-
rections in massless QCD for the production of two photons and a jet became available [36].
In [751], NLOQCD to the gluon-fusion subprocess of diphoton-plus-jet production have been
calculated by making use of the two-loop amplitude derived in [57]. The corrections are
found to be large, justifying their inclusion when computing NNLOQCD corrections to the
quark-induced process.

γγγ: LH19 status: NNLOQCD corrections in the leading-colour approximation
known [195].
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In [752], a second computation at NNLOQCD accuracy relying on the same approximation
but employing a different subtraction method has been presented. Both calculations are in
mutual agreement and highlight that NNLOQCD corrections are indispensable to describe
experimental data.

3.4. Top quark associated processes

An overview of the status of top quark associated processes is given in table 4.

tt̄ : LH19 status: Fully differential NNLOQCD computed for on-shell top-quark pair
production [188, 189, 228, 753], also available as fastNLO tables [754]; polarised
two-loop amplitudes known [755]; combination of NNLOQCD and NLOEW corrections
performed [756]; also multi-jet merged predictions with NLOEW corrections available
[757]; resummation effects up to NNLL computed [758–763]; NNLOQCD+NNLL
for (boosted) top-quark pair production [764]; top quark decays known at NNLOQCD [
190, 253]; Complete set of NNLOQCD corrections to top-pair production and decay in
the NWA for intermediate top quarks and W bosons [765]; + -W W bb̄ production with
full off-shell effects calculated at NLOQCD [766–769] including leptonic W decays,
and in the lepton plus jets channel [770]; full NLOEW corrections for leptonic final
state available [291]; calculations with massive bottom quarks available at NLOQCD

[771, 772];

NLOQCD predictions in NWA matched to parton shower [773], and multi-jet merged for
up to 2 jets in SHERPA [774] and HERWIG7.1 [775]; bb ℓ4¯ at NLOQCD matched to a parton
shower in the POWHEG framework retaining all off-shell and non-resonant contribu-
tions [776].

Table 4. Precision wish list: top quark final states. NNLOQCD
* means a calculation

using the structure function approximation. g¢ =V W Z, , .

Process Known Desired

pp tt̄ NNLOQCD + NLOEW (w/o decays)
NLOQCD + NLOEW (off-shell effects) N3LOQCD

NNLOQCD (w/ decays)

 +pp tt j¯ NLOQCD (off-shell effects) NNLOQCD + NLOEW (w/ decays)
NLOEW (w/o decays)

 +pp tt j2¯ NLOQCD (w/o decays) NLOQCD + NLOEW(w/ decays)

 + ¢pp tt V¯ NLOQCD + NLOEW(w/o decays) NNLOQCD + NLOEW(w/ decays)
g +pp tt̄ NLOQCD (off-shell effects)

 +pp tt Z¯ NLOQCD (off-shell effects)
 +pp tt W¯ NLOQCD + NLOEW (off-shell effects)

pp t t̄ NNLOQCD
*(w/ decays) NNLOQCD + NLOEW (w/ decays)

NLOEW (w/o decays)

pp→ tZj NLOQCD + NLOEW (w/ decays) NNLOQCD + NLOEW (w/o decays)

pp tt tt¯ ¯ Full NLOQCD + NLOEW (w/o decays) NLOQCD + NLOEW (off-shell effects)
NNLOQCD
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The first NNLOQCD computation matched to parton shower using the MINNLOPS method
has been presented in [777, 778] for on-shell top production. The decays of the top quark are
described at tree level retaining spin correlation. Phenomenological results are also produced
by comparing them against experimental data. As a by product, events with
NNLOQCD accuracy can be generated.

In [200], NNLOQCD corrections to identified heavy hadron production at hadron colliders
has been provided. As an application, the authors study B-hadron production in tt̄ .

In [779], an extensive study of leptonic observables in top-quark pair production and decay
at NNLOQCD accuracy has been provided. In particular, both inclusive and fiducial predic-
tions are studied in details and compared to experimental data.

NNLOQCD predictions with an MS top-quark mass have been computed [780]. This allows
effects due to the running of the MS mass of the top quark to be studied.

Reference [781] provided a zero-jettiness resummation for top-quark pair production at the
LHC. In that way, NNLL predictions are obtained and can be compared to different
resummation predictions as well as combined with NLOQCD predictions.

New studies of NLOQCD+NLOEW corrections to the top quark pair production have been
provided in [782]. The predictions are NLO accurate for the on-shell production of the top
quarks while the decay is treated at tree level. The effect of such corrections is studied for
spin-correlation coefficients and various asymmetry observables.

New results of two-loop amplitude have also emerged. In [55], the two-loop leading colour
QCD helicity amplitudes for top-quark pair production in the gluon channel have been
calculated. In particular, it provides a complete set of analytic helicity amplitudes which
includes contributions due to massive fermion loops.

Top-pair production has proven to be an important process for inclusion in global PDF fits,
providing additional information on the gluon distribution, especially at higher x. Results are
available in a variety of final states, depending on the decays of the two W bosons. One
advantage of this process is that it offers multiple observables that can be used in PDF fits,
with statistical correlations provided by the experiments that prevent double-counting.
Measurements cover a very wide kinematic range with the top-quark pair mass currently
covering a range up to 4 TeV [783], which will extend to 7 TeV at the high-luminosity LHC.
Electroweak corrections become very important at higher masses. Measurements at the higher
mass range also require the resolution of boosted topologies.

tt j¯ : LH19 status: NLOQCD corrections calculated for on-shell top quarks [784–786], also
matched to parton showers [787, 788]; full off-shell decays included at NLOQCD

[789, 790]; NLOEW corrections known [757] for on-shell top quarks.

Very recently, a phenomenological study of +tt j X¯ has been presented [791]. It con-
siders +tt j X¯ as a signal and provides theoretical ingredients for the measurement of the
process and in particular the extraction of the top mass thanks to it.

+tt j2¯ : LH19 status: NLOQCD corrections to tt jj¯ known for many years [792, 793]; tt jjj¯
at NLOQCD calculated [794] using SHERPA+ OPENLOOPS.

+tt bb¯ ¯: LH19 status: NLOQCD corrections to ttbb¯ ¯ with massless bottom quarks known for
a long time [795–797]; NLOQCD with massive bottom quarks and matching to a
parton shower investigated [798, 799]; NLOQCD corrections for ttbb¯ ¯ production
in association with a light jet [800]; All computations performed with on-shell top
quarks.
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Two independent computations [801, 802] have obtained NLOQCD corrections for the full
off-shell 2→ 8 process, retaining all non-resonant and interference effects.

tt tt¯ ¯: This process can serve as a probe of the Yukawa coupling of the top quark to the
Higgs, as well as a background to possible new physics, such as gluino pair
production [803]. This process was not in the 2019 Les Houches wishlist, but was
the last calculation to be completed in the original NLO Les Houches wishlist [804].
This calculation was performed in 2012 [803] for on-shell top quarks at NLOQCD,
reducing the scale uncertainty from the order of 60% at LO to 20%–25% at NLO.
Additional NLO EW contributions were calculated in [805] considering also
subleading contributions and were found to be relatively large (albeit with large
cancellations). Measurements of four-top production have been carried out by both
ATLAS [806, 807] and CMS [808, 809], with the ATLAS measurement reaching a
significance of 4.7 sigma. The uncertainties are evenly balanced between statistical
and systematic sources, with each being of the same order as the current theory
uncertainty (through scale variation at NLO). Clearly, both experimental sources will
decrease with more data. It is worth noting that a sizeable fraction of the systematic
error is related to the signal modelling, which could be reduced by improvements in
the theoretical determination. The calculation of this process to NNLOQCD (2→ 4
with a heavy mass scale) is not on the current horizon (but perhaps would be feasible
within the lifetime of the HL-LHC). Shorter-term improvements would include NLO
top-quark decays with NLO spin-correlations. Recently, NLOQCD corrections
matched to parton shower have been implemented in the POWHEG framework
[810]. All subleading EW production modes are included at LO and the top-quark
decays are modelled at LO, retaining spin-correlation effects.

¢ttV¯ : LH19 status: NLOQCD corrections to ttZ¯ including NWA decays considered
[811, 812]; NLOQCD for off-shell process [813] and NLOEW for on-shell top quarks
[814]; NLOQCD corrections to gtt̄ [813] for off-shell top quarks and
NLOEW corrections to for on-shell top quarks [814]; NLOQCD corrections to ggtt̄
production matched to parton shower [815]; NLOEW and NLOQCD corrections to
ttZ W H¯ computed within MADGRAPH5_AMC@NLO [523]; dedicated studies on
complete NLOSM corrections for ttW¯ and tt tt¯ ¯ production [805]; resummed
calculations up to NNLL to ttW¯ [816, 817] and ttZ¯ [817, 818] production;
combination of these corrections with NLOEW [819] for ttZ W H¯ .

NLOQCD corrections to the full off-shell production of ttW¯ in the leptonic channels have
been obtained by two different groups [820, 821]. Correlations and asymmetries have been
further studied in [822]. Combined NLOQCD and NLOEW corrections to this process were
completed in [823]. Finally, in [824] the impact of off-shell, parton-shower, and spin-cor-
relation effects have been studied. In addition, improved merging [825] as well as subleading
EW corrections and spin correlation [826] have been studied for ttW¯ . NLOQCD corrections of
the full off-shell process ttZ¯ has been presented in [827, 828].

The full tower of NLO corrections have been obtained for gtt̄ in [317]. In the same work,
NLO QCD+ EW corrections have been also computed for ggtt̄ and tγj. Particular attention
has been paid to obtaining the corrections to these processes with isolated photons in an
automated framework.

In [829], an implementation in POWHEG of NLOQCD corrections matched to parton shower
for on-shell top quarks has been presented for + -tt ℓ ℓ¯ production. In the same way, similar
predictions were obtained in [830] for ttW¯ .
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In [831], NNLL+NLOQCD corrections have been presented for cross sections and diff-
erential distributions for ttW Z h¯ .

A comparison of different predictions, including NWA and off-shell calculations at
NLOQCD was carried out [832].

t/t̄ : LH19 status: Fully differential NNLOQCD corrections for the dominant t-channel
production process completed in the structure function approximation, for stable top
quarks [191] and later including top-quark decays to NNLOQCD accuracy in the
NWA [254, 833]; NNLOQCD corrections for the s-channel and related decay,
neglecting the colour correlation between the light and heavy quark lines and
applying the NWA [834]. NLOQCD corrections to t-channel electroweak W+ bj
production available within MG5_aMC@NLO [835, 836]; NLOQCD corrections to
single-top production in the t, s and tW channels also available in SHERPA [837] and
in POWHEG [838, 839]; NLOEW corrections known [840]. NLOQCD for single top-
quark production in association with two jets [841]. NLOQCD matched to parton
shower for single top-quark production in association with a jet in the MINLO

method [842]; Soft-gluon resummation at NLL for single-top production in the t-
channel [843] and the s-channel modes [844].

An independent calculation of differential t-channel single-top production and decay at
NNLOQCD was performed in [283], resolving a disagreement found between the two prior
calculations.

In [132], the non-factorisable contribution to the two-loop helicity amplitude for t-channel
single-top production were recently computed. These can reach a few percent at high top
transverse momentum.

tZj: LH19 status: NLOQCD corrections known for on-shell top quarks [540].

In [542], NLOQCD+NLOEW corrections have been computed for on-shell top quarks.
While this process is interesting on its own (it has been measured by both ATLAS [845, 846]
and CMS [847, 848]), it also appears as background to vector-boson scattering for the WZ
signature.
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