
Quantum Machine Intelligence             (2025) 7:5 
https://doi.org/10.1007/s42484-024-00228-2

RESEARCH ART ICLE

Determining probability density functions with adiabatic quantum
computing

Matteo Robbiati1,2 · Juan M. Cruz-Martinez3 · Stefano Carrazza2,3,4,5

Received: 28 March 2024 / Accepted: 12 December 2024
© The Author(s) 2025

Abstract
The twomain approaches to quantum computing are gate-based computation and analog computation, which are polynomially
equivalent in terms of complexity, and they are often seen as alternatives to each other. In this work, we present a method
for fitting one-dimensional probability distributions as a practical example of how analog and gate-based computation can
be used together to perform different tasks within a single algorithm. In particular, we propose a strategy for encoding data
within an adiabatic evolution model, which accommodates the fitting of strictly monotonic functions, as it is the cumulative
distribution function of a dataset. Subsequently, we use a Trotter-bounded procedure to translate the adiabatic evolution into
a quantum circuit in which the evolution time t is identified with the parameters of the circuit. This facilitates computing the
probability density as derivative of the cumulative function using parameter shift rules.

Keywords Analog computing ·Quantummachine learning ·Hybrid computation ·Variational quantum circuits ·Optimization

1 Introduction

In the context of quantum computing, we are witnessing
the development of various technologies, which can be cat-
egorized into two different but computationally equivalent
approaches: gate-based computation (GBC) and analog com-
putation (Albash and Lidar 2018) (AQC).

These two approaches are often used to address very dif-
ferent types of problems. On one hand, many of the most
well-known quantum computing query algorithms such as
Shor’s (1997), Grover’s (1996), or Deutsch-Josza’s (1992)
are formalized through the gate computation paradigm.Also,
in thefield of quantummachine learning (QML) (Schuld et al.

B Matteo Robbiati
matteo.robbiati@cern.ch

1 European Organization for Nuclear Research (CERN),
Geneva 1211, Switzerland

2 TIF Lab, Dipartimento di Fisica, Università degli Studi di
Milano, Milan, Italy

3 INFN, Sezione di Milano, I-20133 Milan, Italy

4 Theoretical Physics Department, CERN, CH-1211 Geneva
23, Switzerland

5 Quantum Research Center, Technology Innovation Institute,
Abu Dhabi, United Arab Emirates

2014; Biamonte et al. 2017), the most common approach
involves defining parametric quantum circuits (Benedetti
et al. 2019; Chen et al. 2020; Cerezo et al. 2021) that serve
as variational models which are trained to perform the target
tasks. On the other hand, AQC has been shown to be an effec-
tive tool for tackling optimization problems (Yarkoni et al.
2022; Zaech et al. 2022; Pelofske et al. 2023; Date and Potok
2021; Tasse et al. 2022), in particular quadratic unconstrained
binary optimization (QUBO) problems, which can be easily
encoded within a system of interacting nearest-neighbours
particles and represented in terms of Ising Hamiltonians.

In this work, we present an application where AQC and
GBC can be used together in the context of QML, address-
ing different tasks within the process by exploiting their
respective strengths. To showcase our proposed algorithm,
we tackle the determination of the underlying probability
density function (PDF) of a given one-dimensional dataset.

This is a problem that presents some very specific chal-
lenges. First, given a random sample of a distribution, a
way of reconstructing the underlying distribution is to com-
pute its cumulative distribution function (CDF). An accurate
representation of a CDF requires a model which behaves
monotonically with a target parameter, for which we exploit
AQC. Then, given its CDF, the PDF can be determined by the
derivative of the CDF.We face this second challenge through
GBC (Fig. 1).

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00228-2&domain=pdf


    5 Page 2 of 11 Quantum Machine Intelligence              (2025) 7:5 

Fig. 1 Schematic representation of the proposed quantum adiabatic
machine learning (QAML) algorithm. A cumulative distribution func-
tion is encoded into an adiabatic evolution, which is then translated into

a quantum circuit and differentiated with respect to the target values in
order to approximate the probability density function

Let us then begin by considering the cumulative distribu-
tion of a sample. We first define a regression model based
on adiabatic evolution (Farhi et al. 2000) which encodes a
generic one-dimensional function defined in a predefined
bounded range as the time evolution of the expectation
value of an arbitrary observable over the evolved state. This
approach is sufficiently flexible to fit a large variety of func-
tional forms, and it can be easily set up so that boundary
conditions and the monotonicity of the problem are auto-
matically satisfied with a suitable definition of the adiabatic
evolution. This final remark is particularly important when
dealing with cumulative distribution functions (CDF), which
have to be monotonically increasing and defined between 0
and 1.

After achieving an acceptableCDFfit, themethod projects
the obtained adiabatic Hamiltonian into a quantum circuit
representation using a Trotter-like decomposition (Paeckel
et al. 2019). This step opens the possibility to train and
perform inference of the regression model on circuit-based
quantum devices and therefore give us the possibility to
extract the PDF of the sample as the derivative of the
circuit using robust and well-known parameter shift rules
(PSR) (Mitarai et al. 2018; Schuld et al. 2019).

The paper is organized as follows: In Section 2, we present
the technical details of the probability density function esti-
mation using the synergistic action of analog and gate-based
quantum computing. Section 3 presents validation results for
multiple examples and a comparison with classical kernel
density estimation (KDE) methods to verify the robustness
of our algorithm in terms of accuracy. Finally, in Section 5,
we draw our conclusion and outlook.

2 Methodology

In this section, we describe the procedure implemented for
the determination of probability density functions. The algo-

rithm is separated in two steps: the approximation of an
empirical cumulative distribution function using adiabatic
quantum evolution in a discrete time-grid as a regression
model and, subsequently, the determination of the probabil-
ity density function through the Trotter-like quantum circuit
representation obtained from the adiabatic Hamiltonian. In
the same section, we generalize the evolution time to a con-
tinuous variable.

In Sections 2.1 and 2.2, we introduce the choice of using
an adiabatic evolution to fit a cumulative distribution. And in
Section 2.3.2, we translate the obtained operator into a quan-
tum circuit, facilitating the computation of its derivatives.

2.1 Model regression with adiabatic quantum
evolution

Given a function F(t), one-dimensional in input and output,
we build a regression model by selecting an observable O
such that there are two Hamiltonians, H0 and H1, for which
the expectation values ofO over the ground states of H0 and
H1 correspond to the two points between which we want to
learn the function F .

Therefore, we interpret the regression problem as the pro-
cedure of building a time-dependent Hamiltonian H(t), such
that its ground state |ψ(t)〉 at time t satisfies

〈ψ(t)|O|ψ(t)〉 = F(t). (1)

From now on, for simplicity, we shorten the l.h.s. of the
expression Eq.1 with 〈O〉t . We construct this Hamiltonian
implementing an adiabatic evolution

H(t) =[
1 − s(t; θ)

]
H0 + s(t; θ)H1, (2)

governed by the parametric scheduling function s(t; θ),
where t has to be defined in [0, 1]. The problem is then
reduced to finding the right set of parameters θ such that 〈O〉t

123



Quantum Machine Intelligence              (2025) 7:5 Page 3 of 11     5 

during the adiabatic evolution of the state |ψ(t)〉 approxi-
mates the target function.

Note that the choice of s(t, θ) is fundamental to guarantee
the monotonicity of the target function.

2.2 Learning empirical cumulative density functions

2.2.1 Adiabatic evolution setup

The presented framework can be applied to the problemof fit-
ting a cumulative distribution function F(t), with t ∈ [0, T ].
This can be done if two requirements are satisfied: the model
has to be strictly monotonically increasing in t , and the
extreme values of the function are set to be F(0) = 0 and
F(T ) = 1.

The second condition can be fulfilled by appropriately
selecting the Hamiltonians H0 and H1, as well as the observ-
able O. In particular, since we focus on one-dimensional
distributions, and we treat here the introductory case of one
qubit, a proper choice can be O = σz , H0 = σx and
H1 = −σz , where σx and σz correspond to the Pauli X
and Pauli Z matrices, respectively. This choice satisfies the
boundary conditions of the problem 〈O〉0 = 0 and 〈O〉T = 1.
Secondly, the monotonicity of the function can be ensured
by implementing a scheduling function which is monotonic
itself. This final remark, together with the appropriate Hamil-
tonians definition, make adiabatic evolution an extremely
effective model for approximating a CDF. In this work, we
use as scheduling function a polynomial of degree p:

s(t; θ) = 1

η

p∑

i=1

θi t
i , with η =

p∑

i=1

θi , (3)

whose monotonicity is guaranteed by requiring positive
coefficients θi for t ∈ [0, 1]. If one prefers to define a
more flexible scheduling function, such as a neural network,
another viable option is to penalize the model during training
when negative fluctuations of the predictions are recorded.

2.2.2 Training of the adiabatic evolution

In order to train a parametric adiabatic evolution to approx-
imate a function, we make use of Qibo (Efthymiou et al.
2023a, b, c; Pasquale et al. 2023a), which is an open-source
full-stack framework for quantum computing. Qibo pro-
vides the possibility to execute analog quantum computing
models that can be symbolically defined through an interface
based on SymPy (Meurer et al. 2017). Thesemodels can then
be translated into circuits and executed through trotterization.
In particular, a second-order time-evolving block decimation
(TEBD)method is implemented (see Eq. (62) of Ref. Paeckel
et al. 2019). This approximation, once chosen a time step dτ ,

presents an error of the order O(dτ 3) per time step (Paeckel
et al. 2019). Considering a total evolution time T divided
into N = T /dτ steps, the total error of the approximation
becomes O(dτ 2). Further details can be found in the official
Qibo documentation (evolution in Qibo nd).

The use of Qibo allows us to execute our algorithm on
self-hosted superconducting quantum devices (see Section 4);
however, by this choice, we are limited to a gate-based
paradigm, which forces us to consider a discretized case of
the time evolution.We address this limitation in Section 2.3.1
by implementing an approximation that allows us to extend
from the discrete case to the continuous. This approximation
would not be necessary if using analog devices or simulators.
Among the simulation tools, we mention QuTip (Johansson
et al. 2012) and HOQST (Chen and Lidar 2022) for handling
open quantum systems and QuantumAnnealing.jl
(Morrell et al. 2024) for quantum annealing algorithms.

The procedure follows a supervised machine learning
strategy: at first, we generate a sample of random variables
{x} following a chosen distribution ρ, and we calculate the
empirical CDF of the sample {F}. This step is equivalent to
constructing a cumulative histogram of the data, where we
select Ntrain bins identified with the evolution times control-
ling the scheduling function. Each pair of

(
x j , Fj

)
values is

mapped into
(
τ j , 〈O〉τ j

)
, where τ j = t j/T is the evolution

time corresponding to the j-th step of the discretized adia-
batic evolution normalized with respect to the final time T
and 〈O〉τ j is the expectation value of the target observable
over the ground state of H(τ j ) as introduced in Eq. 1.

In this last step, we apply a transformation to the domain
of the variable x so that both x and τ are now defined in
the interval [0, 1]. This allows us to define a standardized
framework for each analyzed variable. The original distri-
bution can be easily reconstructed by applying the inverse
transformation.

Once the training set is defined and the scheduling function
is initialized using an initial set of parameters θ0, we execute
the adiabatic evolution of the state |ψ(τ)〉 from |ψ(0)〉 to
|ψ(1)〉, and we collect all the 〈O〉τ j values during the evolu-
tion.

We define a mean-squared error loss function J for esti-
mating the quality of the fit:

J = 1

Ntrain

Ntrain∑

j=1

[
Fj − 〈O〉τ j

]2
, (4)

where 〈O〉τ j depends on the variational parameters because
the evolved state on which it is calculated follows an evolu-
tion governed by the parametric scheduling s(τ, θ).

We finally perform the training of the model by optimiz-
ing the parameters θ using a selected optimizer. In this work,
we make use of the covariance matrix adaptation evolution

123



    5 Page 4 of 11 Quantum Machine Intelligence              (2025) 7:5 

strategy (CMA-ES) (Hansen 2016), which is one of the opti-
mizers provided by Qibo. We remark that any optimizer
can be used since the approach is totally agnostic under this
aspect.

In Fig. 2, we show and describe an example of the algo-
rithm presented above, to which we refer from now on as
quantum adiabatic machine learning (QAML).

2.3 Deriving probability functions from quantum
circuits

In the following, we generalize the presentedmodel to accept
any continuously sampled time t ∈ [0, T ], and we use a
quantum circuit representation to compute the derivative of
the approximated CDF with respect to the target variable.

2.3.1 Generalizing the evolution to any time

The procedure presented in the previous paragraphs can
be interpreted as the evolution product of a series {H(τ j )}
of Hamiltonians corresponding to the adiabatic Hamilto-
nian Eq.2 at fixed evolution time steps {τ j = t j/T },
discretized according to dτ = (t j − t j−1)/T , the time step
of the adiabatic evolution. Each of these Hamiltonians can
be associated to a local time evolution operatorU (τ j )which
evolves |ψ(τ j−1)〉 to |ψ(τ j )〉. More generally, we can obtain
any state |ψ(τn)〉 by sequentially applying n operators:

|ψ(τn)〉 =
n∏

j=1

T U (τ j )|ψ(τ0)〉 := C(τn)|ψ(τ0)〉, (5)

Fig. 2 Example of quantum adiabatic machine learning (QAML). We
select Ntrain data from a sample of points picked up from a Gamma
distribution. The training labels (blue points) lay on the empirical CDF
of the sample (black line). The untrained sequence of 〈O〉 (yellow line)
is compared with the values after the QAML training (red line). The
scheduling function is the one presented in Eq. 3 with p = 12

where we sum up the sequential action of the U (τ j )’s into a
single unitary operator C(τn), which evolves the initial state
|ψ(τ0)〉 to the one at time τn = n dτ and depends on the
time-ordering operator T . From now on, we refer to H(τ j ),
U (τ j ) and C(τ j ) as Hj , Uj and C j for simplicity.

In order to compute the state at any value of τ outside of
the discrete simulated time steps of the adiabatic evolution
{τ j }, it is necessary to take the continuous limit. We start by
considering one of the intermediate elements of the product
introduced in Eq. 5

Uj = e−idτHj , with Hj =
(

s j 1 − s j
1 − s j −s j

)
, (6)

where s j is the value of the scheduling at evolution time τ j =
j dτ . This instantaneous form of the adiabatic Hamiltonian
operator can be diagonalized as Dj using a matrix Pj such
that Hj = Pj D j P

−1
j , where

Pj = � j

(
1

s j−λ j
1−s j

λ j−s j
1−s j

1

)

, Dj =
(

λ j 0
0 −λ j

)
, (7)

and � j is the appropriate (τ dependent) normalization
constant. The absolute value of the eigenvalues of the Hamil-

tonian is λ j =
√
2s2j − 2s j + 1.

We now use this decomposition to write Cn in terms of the
diagonal form of the Hamiltonian:

Cn =
n∏

j=0

Pje
−i D j dτ P−1

j . (8)

Ifwenow take the limit dτ → 0,wehave Hj → Hj−1 and
thus Pj → Pj−1.We have verified that for smoothly behaved
scheduling function, adjacent elements in the sequence tend
to the identity P−1

j Pj−1 → I with an error proportional to
the time step dτ . Equation 8 simplifies to

Cn = Pn exp

⎧
⎨

⎩
−i

n∑

j=0

Dj dτ

⎫
⎬

⎭
P−1
0 . (9)

Furthermore, in the limit of dτ → 0, n → ∞ and the sum
in the above equation becomes an integration in dτ between
the initial and final steps in the evolution.

Ct = Pt exp

{
−i

∫ t/T

0
Dj dτ

}
P−1
0 , (10)

where we now indicate with Pt and P0 the diagonalization
matrices corresponding respectively to the last and the first
evolution operators we must apply to H0’s ground state in

123



Quantum Machine Intelligence              (2025) 7:5 Page 5 of 11     5 

order to obtain the evolved state at an arbitrary time t , drop-
ping the discretization requirement.

The proposed approximation only holds when consid-
ering the adiabatic regime, implemented through a small
time step and a slowly varying scheduling function. More
in general, one can construct a more complete and arbitrary
accurate representation of Ut exploiting the Magnus expan-
sion (ME) (Blanes et al. 2009, 2010). Combining a proper
choice of the ME order with an arbitrary small trotterization
error (defined by the Trotter-Suzuki order and step size), one
can construct an arbitrarily accurate approximation of Ut as
discussed in Gonzalez-Conde et al. (2024).

2.3.2 Circuit representation

Let us now implement the unitary operator Ct as a quan-
tum circuit, using a gate decomposition which is useful for
calculating the derivatives of the circuit with respect to its
variational parameters.

To that end, we write Ct in terms of rotational gates, with
the aim of using well-known parameter shift rules (Mitarai
et al. 2018; Schuld et al. 2019;Mari et al. 2021) on them. The
choice of this differentiation method relies on its robustness
to noise and acknowledging that in the one-dimensional case,
the decompositionwe propose is simple and computationally
lightweight.

Since any unitary operator U ∈ SU (2) can be written
as a combination of three rotations (Bertini et al. 2006), we
choose

U ≡ Rz(φ)Rx (θ)Rz(ψ), (11)

where the three angles (φ, θ, ψ) can be computed as function
of the matrix element of the operator C:
⎧
⎪⎨

⎪⎩

φ = π/2 − arg(c01) − arg(c00),

θ = −2 arccos(|c00|),
ψ = arg(c01) − π/2 − arg(c00).

(12)

In Eq.12, the matrix elements c00 and c01 depend on the
values of the scheduling s and on the eigenvalues λ of Ht .
This dependence can be written more explicitly:

c0 j = 1 − s

s
√

λ(λ − s)

{
cos I

(
1 + (−1) j

λ − s

1 − s

)

+ i sin I
(
1 − (−1) j

λ − s

1 − s

)}
, (13)

with I =
∫ τ

0
λ(t ′)dt ′, s = s(τ ), λ = λ(τ) and τ = t/T .

Note that the construction of the circuit is completely inde-
pendent of the choice of scheduling function. Depending on
this choice, I may be computed analytically.

With this, we define a method to build a quantum circuit
which, for fixed evolution parameters θ and time t , returns
the ground state of Ht , which can be used to compute the
requested 〈O〉t .

2.3.3 From the CDF to the PDF

The circuit representation of the operator Ct allows us to
reconstruct our original target function F(t) introduced in
Section 2.1 by applying the circuit to a state prepared as
|ψ(0)〉 and then measuring the chosen observable (σz in this
work) over the obtained final state.

As previously said, our example case has been that in
which the target function F(t) corresponds to the empirical
CDF of some arbitrary distribution ρ. By imposing mono-
tonicity and pinning the initial and final points, we ensure
that its first derivative corresponds to the PDF of the same
distribution.

For a one-dimensional distribution, we have then

dF(t)

dt
= d

dt
〈ψ(0)|C†t σz Ct |ψ(0)〉. (14)

In the context of quantum computing, as previously antic-
ipated, we can take advantage of what is usually known as
parameter shift rule (PSR) (Mitarai et al. 2018; Schuld et al.
2019) which allows us to take the derivative of the expec-
tation of an observable such as Eq. 14 by simply evaluating
the circuit after shifting the parameters with respect to which
we are taking the derivative. We are using specifically the
formula presented in Mitarai et al. (2018) for circuits based
on rotations. Note that in this case, we have limited ourselves
to gates in which the parameter appears only once, but more
complicated forms can also be utilized (Wierichs et al. 2022).

With this, we arrive to the final formula of the PDF in
terms of the original circuit for an arbitrary value of t :

ρ(t) = PSR
[
〈ψ(0)|C†t σz Ct |ψ(0)〉

]
. (15)

3 Validation

In the following, we test the presented algorithm by drawing
samples from a known distribution, building the circuit and
reconstructing the original probability function. All results
for this section are summarized in Table 1.

3.1 Sampling known distributions

In order to validate and test the procedure, we select two
known distributions: a Gamma distribution and a Gaussian
mixture of two Gaussian distributions. For each case, we
generate a representative sample of dimension Nsample and

123



    5 Page 6 of 11 Quantum Machine Intelligence              (2025) 7:5 

Table 1 Summary of the results
Fit function Nsample p J f MSEexact

CDF MSEshots
CDF MSEexact

PDF MSEshots
PDF KLshots

PDF

Gamma 5 · 104 25 2.9 · 10−6 1 · 10−5 1 · 10−5 9 · 10−4 2 · 10−3 4 · 10−3

Gaussian mix 2 · 105 30 4.4 · 10−6 9 · 10−6 9 · 10−6 2 · 10−3 4 · 10−3 6 · 10−3

t 5 · 104 20 2.1 · 10−6 3 · 10−4 3 · 10−4 1 · 10−3 3 · 10−3 5 · 10−3

s 5 · 104 20 7.9 · 10−6 3 · 10−4 3 · 10−4 1 · 10−2 1 · 10−2 4 · 10−3

y 5 · 104 8 3.7 · 10−6 3 · 10−4 3 · 10−4 9 · 10−4 2 · 10−3 2 · 10−3

From left to right, we show the number of points of the datasets, the number of variational parameters of the
adiabatic evolution models, the best loss function value registered during the training, the MSE metric values
respectively comparing the CDF estimation in exact simulation, the CDF estimation in shot-noise simulation,
the PDF estimation in exact simulation, and the PDF estimation in shot-noise simulation. When considering
shot-noise simulation, each estimation contributing to the MSE has been calculated as mean value of 20
estimates, each of these obtained collecting Nshots = 2 ·105 shots of the quantum circuit. The MSE valued for
the Gamma and the Gaussian mixture examples are calculated using five hundred points equispaced in [0, 1],
while the HEP results are calculated considering the values extracted from a histogram representation of the
data setting Nbins = 34. In the last column, we show the value of the Kullback–Leibler divergence between
the estimated distribution in case of Nshots = 2 · 105 and the theoretical distribution

fit the resulting empirical CDF using the approach described
in Section 2.1. We then derive the PDF with the procedure
introduced in Section 2.3.3 and compare the results with
the original distribution. We repeat this exercise for every
example by using quantum simulation on classical hardware
with exact state-vector representation and with shot-noise.

In these examples, the adiabatic evolution training is set
to stop once a given threshold value Jthresh of the loss func-
tion Eq.4 is reached. Furthermore, every sample is rescaled
to be between 0 and 1 according to the definition of τ intro-
duced in Section 2.2. In all cases, the adiabatic evolution is
run from τ = 0 to τ = 1 with dτ = 0.002. We define the
scheduling function as a polynomial of order p following the
ansatz in Eq. 3.

We start by drawing samples from a Gamma distribution,
defined as

ρ(x;α, β) = βαxα−1e−βx

�(α)
, (16)

with α = 10 and β = 0.5. We take Nsamples = 5 · 104 points
and train the scheduling function until a target precision of
Jthresh = 10−5 is reached.

We repeat the procedure bothwith andwithout shot-noise.
In the case of simulations with shot-noise, we construct the
final value of our predictions by repeating the calculation of
the expectationvalueofσz twenty times.The collected results
are then used to define the prediction and its uncertainty as the
mean and standard deviation of the obtained values, respec-
tively. The discussed results are shown in Table 1.

The results of the training can be seen in the first row
and left column of Fig. 3, where we plot the empirical CDF
(black line) together with both the exact (red line) and shot-
noise (blue and yellow lines) simulation, and a histogram of
the data. In the second row and left column of Fig. 3, we
show the PDF obtained by taking the derivative of the circuit

compared it with the original distribution, as well as the ratio
with respect to the target labels. We find that while the exact
simulation achieves an accuracy of a few percent everywhere
but the tails of the distribution, when shot-noise is enabled,
it is necessary to go beyond Nshots = 105 to achieve single-
digit precision. This is illustrated by the two shadowed bands
for Nshots = 2·105 (blue) and a lower value of Nshots = 2·104
(yellow) which has a worse than 10% precision everywhere.

In order to test the algorithm with a more complicated
example, we also sample from a Gaussian mixture

ρ(x; 
μ, 
σ) = 0.6N (x;μ1, σ1) + 0.4N (x;μ2, σ2), (17)

with 
μ = (−10, 5) and 
σ = (5, 5). From this distribution,
we take Nsample = 5 · 105 points to generate the training
sample. The results corresponding to this second target are
shown in the right column of Fig. 3 and follow the same
graphical conventions presented above.

To quantify the accuracy of our predictions, we define a
mean squared error (MSE) metric

MSE = 1

N

N∑

j=0

(y j,meas − y j,pred)
2, (18)

where y j,meas and y j,pred correspond to the target label and
the model prediction associated to a specific variable x j .
Equation 18 is written as function of a general variable y,
which is then deployed as the CDF and the PDF predictions
in what follows. In addition, we also compute the Kullback–
Leibler divergence

KL =
N∑

i=1

[
yi,pred log

(
yi,pred
y j,meas

)]
(19)

123



Quantum Machine Intelligence              (2025) 7:5 Page 7 of 11     5 

Fig. 3 Top row: CDF fit via QAML procedure. The target CDF (dashed
black line) is compared with QAML predictions obtained via exact sim-
ulation (red line) and simulationwith shot-noise (blue line).Ahistogram
of the data is shown in grey. Bottom row: comparison between the tar-
get PDF and the result of the derivative of the trained circuit. Once
again, the target labels (dashed black line) are compared with the data
histogram (grey), with QAML exact simulation results (red line) and
QAML shot-noise simulations with Nshots = 2·104 and Nshots = 2·105

(yellow and blue lines, respectively). These same results are also shown
in the form of a ratio between the target labels and the predictions via
QAML in the lowest part of the figures. While representing the PDFs,
only one simulation with shot-noise is drawn (Nshots = 2 · 105). All the
shot-noise simulation curves are represented together with a 1σ confi-
dence belt calculated repeating Nruns = 20 the predictions with fixed
trained model

for the PDFs computed in the case of shot-noise simulation
with Nshots = 2 · 105 shots. We collect our results in Table 1.

3.2 Density estimation of simulated high energy
physics data

In the previous case, wewere training the circuit using a sam-
ple from a known distribution, and we now address the more
complex case of learning an unknown distribution. We con-
sider the particle physics process involving top and anti-top
quark pair production (pp → t t̄), for which we choose the
cross section differential on the rapidity y and the logarithms
of the Mandelstam variables − log (−t) and − log s. This
choice is motivated by the following reasons: on one hand,
they present a real-world scenario in high energy physics
(HEP), stress-testing the method, and on the other hand, it

provides a potential use-case for the methods presented in
this paper.

While in general one would train directly on the out-
put of a Monte Carlo event generator, in our test case, the
data sampling is obtained from a separated hybrid classical-
quantum model called Style-qGAN (Bravo-Prieto et al.
2022). The Style-qGAN has been trained with 105 events
for pp → t t̄ production at a center of mass of

√
s = 13 TeV

computed at leading order.
In Fig. 4, we show the results for the training of the circuit

(the CDF on the top row) and its derivative (the PDF on
the bottom row), following the same graphical conventions
introduced in the previous section.

In Table 1, we summarize the results for all examples
tested in this section. For each model, we describe the final
configuration and fit accuracy by calculating theMSE values
for both the CDF and the PDF estimations.

123



    5 Page 8 of 11 Quantum Machine Intelligence              (2025) 7:5 

Fig. 4 Top row: CDF fit via QAML procedure considering the HEP
targets. The target CDF (dashed black line) is compared with QAML
predictions obtained via exact simulation (red line) and simulation with
shot-noise (blue line). A histogram of the data is shown in grey. Bottom
row: comparison between the target PDF and the result of the deriva-
tive of the trained circuit. Once again, the target labels (dashed black
line) are compared with the data histogram (grey), with QAML exact
simulation results (red line) and QAML shot-noise simulations with

Nshots = 2 · 104 and Nshots = 2 · 105 (yellow and blue lines, respec-
tively). These same results are also shown in the form of a ratio between
the target labels and the predictions via QAML in the lowest part of the
figures. While representing the PDFs, only one simulation with shot-
noise is drawn (Nshots = 2 · 105). All the shot-noise simulation curves
are represented together with a 1σ confidence belt calculated repeating
Nruns = 20 the predictions with fixed trained model

We find the achieved level of quality is satisfactory for all
tested distributions. We also observe that Nshots = 2 · 105
shots provide sufficient statistics to achieve a precision in
the range of 4–10% (see ratio plots in the bottom part of
Figs. 3 and 4). In the case of the HEP-based data, this level
of precision is only achieved near the distribution peaks. The
precision (and the accuracy) deteriorates as wemove towards
the tails where the differential cross section approaches zero,
a behavior consistent with classical approaches a common
challenge when fitting distributions (Butter et al. 2019).

3.3 Benchmark with KDEmethods

In this section, we benchmark our results with a state-of-
art kernel density estimation method provided by scikit-
learn (Pedregosa et al. 2011). While we are optimistic
about the future of quantum technologies and the potential
utility of the proposed method, we stress that this analysis is
intended here to only verify the robustness of the results in
terms of accuracy and not to propose this method as an alter-
native to classical techniques. This kind of stress-testing is
necessary in order to have confirmation of the validity of the
proposed method once faster and more accurate hardware is
obtained.

We compare our exact-simulation results with the predic-
tions computed using the sklearn.neighbours.Ker-
nelDensity method selecting top-hat and exponential
kernels. The first has been chosen for its computational effi-
ciency, while the second is more suitable when dealing with
tailed distributions. The kernel bandwidth has been hyper-
optimized using a tree of Parzen estimators (TPE) on a
random grid of one thousand points sampled from the inter-
val [10−5, 1]. The hyper-optimization has been performed
using hyperopt (Bergstra et al. 2015).

We compute this benchmark in order to checkwhether our
algorithm is competitive in terms of accuracy with respect to
the most commonly used classical tools. We test both the
QAML procedure and the KDE algorithm on the Gamma
distribution, the Gaussian mixture, and the t Mandelstam
variable, which is the one corresponding to our best result in
theHEP examples.We show these results in Fig. 5, where our
predictions are promisingly close to those obtained through
KDE estimation. Additionally, in the case of the variable t ,
which is defined on a more critical domain due to the chosen
binning, QAML seems to offer a more accurate fit to the
density profile.

Considering the execution time of the two algorithms, they
present very different characteristics: on one hand, QAML
suffers the optimization time, which is necessary to perform
the density estimation. On the other hand, when the training

123



Quantum Machine Intelligence              (2025) 7:5 Page 9 of 11     5 

Fig. 5 Comparison between our QAML trained results (red lines) and the proposed solutions of 1D kernel density estimation method provided by
scikit-learn using top-hat (orange lines) and exponential (blue lines) kernels. All the approximations are compared with the target values
(black lines)

is concluded, computing the PDF is extremely lightweight.
Instead, in the case of the KDE, the opposite considerations
can be made: the hyper-optimization is relatively light, but
then the PDF evaluation depends on the bandwidth size.

4 Hardware

In order to assess the performance of the model in real quan-
tumhardware,we use a 5-qubits superconducting chip hosted
in the Quantum Research Centre (QRC) of the Technology
Innovation Institute (TII).We calculate the predictions for the
values of theCDFusing the best parameters obtained through
the training with the shot-noise simulation whose results are
presented in Table 1.We take into account the Gamma distri-
bution defined in Eq. 16, andwe do not apply errormitigation
techniques to the hardware in order to explore the potential-
ities of the bare chips.

Fig. 6 Nruns = 10 predictions are performed for Ndata = 25 points in
the target range [0, 1] using each qubit of a 5-qubits device hosted in
the QRC

We consider Ndata = 25 points equally distributed in the
target range [0, 1], and for each of these, we perform Nruns =
10 predictions executing Nshots = 1000 times the circuit on
the quantum hardware. Using these data, we calculate the
final predictors and their uncertainties as mean and standard
deviation over the Nruns results. We also calculate the MSE
introduced in Eq. 18 to evaluate the fit accuracy.

In order to study how the CDF predictions deteriorate
when executed in hardware and to study the dependence of
this deterioration on how the qubits are tuned, we repeat this
procedure for each of the five qubit of the device. The results
are shown in Fig. 6 and are in agreement with Table 2, where
we report the assignment fidelities (Gao et al. 2021) of the
qubits and the calculated MSE values.

The quantumhardware control is performed usingQibo-
lab (Efthymiou et al. 2024, 2023c), and the qubits are
characterized and calibrated executing the Qibocal’s rou-
tines (Pasquale et al. 2023b, a).

5 Conclusion

In this work, we presented a proof-of-concept application of
quantum machine learning which makes use of both analog
and gate-based quantum computation addressing different
tasks within the same problem. Namely, we introduced an

Table 2 Prediction deployed on superconducting chip

Qubit ID Assignment fidelity MSE

0 0.926 1.3 · 10−2

1 0.886 1.4 · 10−2

2 0.953 3.4 · 10−3

3 0.952 2.7 · 10−3

4 0.707 1.3 · 10−1

For each qubit of the device, we show the assignment fidelity at the
moment of the execution and the MSE values

123



    5 Page 10 of 11 Quantum Machine Intelligence              (2025) 7:5 

algorithm for the determination of probability density func-
tions. We first define a mechanism to use adiabatic evolution
as a regression model for the fit of the cumulative density
function of a sample. The adiabatic evolution model is then
represented by the Trotterization of the adiabatic Hamilto-
nian in terms of a quantum circuit. The probability density
profile is then calculated by applying parameter shift rules
to the obtained circuit. This method allows the usage for
training and inference of quantum devices designed for both
annealing and circuit-based technologies. The numerical
results obtained and presented in Section 3 show success-
ful applications of the methodology for predefined PDFs and
empirical distributions obtained from high-energy particle
physics observables. In the same section, we compare the
presented methodology with classical kernel density estima-
tion techniques, demonstrating that the proposed method can
yield satisfactory results when compared to state-of-art algo-
rithms. Finally, in Section 4, we deployed the trained models
on to a superconducting bare device, showing interesting
results even without applying any quantum error mitigation
algorithm.

All numerical results have been obtained using Qibo
(https://github.com/qiboteam/qibo), a full-stack and open
source framework for quantum computing, and are publicly
available in (https://github.com/qiboteam/adiabatic-fit). Fur-
ther possible developments include the generalization of
this method for the simultaneous determination of multi-
dimensional probability density distributions, the deploy-
ment of the full training procedure on quantum devices, and
the possibility to use real quantum annealing for the opti-
mization of the regressing model parameters.

Open access

This article is licensed under a Creative Commons Attribu-
tion 4.0 International License, which permits use, sharing,
adaptation, distribution, and reproduction in any medium or
format, as long as you give appropriate credit to the origi-
nal author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The
images or other third partymaterial in this article are included
in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If the material is
not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this
licence, visit https://creativecommons.org/licenses/by/4.0/.

Acknowledgements SC thanks the TH hospitality during the elabora-
tion of this manuscript. This project is supported by CERN’s Quantum

Technology Initiative (QTI). MR is supported by CERN doctoral pro-
gram.

Author Contributions All authors contributed equally to the elaboration
of this manuscript.

Funding Open access funding provided by CERN (European Orga-
nization for Nuclear Research). This project is supported by CERN’s
Quantum Technology Initiative (QTI).
MR is supported by CERN doctoral program.

Data Availability No datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Albash T, Lidar DA (2018) Adiabatic quantum computation. Rev Mod
Phys 90. https://doi.org/10.1103/revmodphys.90.015002

BenedettiM, Lloyd E, Sack S, FiorentiniM (2019) Parameterized quan-
tum circuits as machine learning models. Quantum Sci Technol
4:043001

Bergstra J, Komer B, Eliasmith C, Cyphers S, Yamins D (2015)
Hyperopt: a python library for optimizing the hyperparameters of
machine learning algorithms. Computational Science&Discovery
8:014008

Bertini S, Cacciatori SL, Cerchiai BL (2006) On the Euler angles for
SU(n). J Math Phys 47:043510

Biamonte J,WittekP, PancottiN,Rebentrost P,WiebeN,LloydS (2017)
Quantum machine learning. Nature 549:195

Blanes S, Casas F, Oteo J, Ros J (2009) The magnus expansion and
some of its applications. Phys Rep 470:151–238

Blanes S, Casas F, Oteo JA, Ros J (2010) A pedagogical approach to
the magnus expansion. Eur J Phys 31:907

Bravo-Prieto C, Baglio J, Cè M, Francis A, Grabowska DM, Carrazza
S (2022) Style-based quantum generative adversarial networks for
monte Carlo events. Quantum 6:777

Butter A, Plehn T, Winterhalder R (2019) How to GAN LHC events.
SciPost Phys 7:075 arXiv:1907.03764 [hep-ph]

Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K,
McClean JR, Mitarai K, Yuan X, Cincio L, Coles PJ (2021) Vari-
ational quantum algorithms. Nat Rev Phys 3:625–644

Chen H, Lidar DA (2022) Hamiltonian open quantum system toolkit.
Commun Phys 5. https://doi.org/10.1038/s42005-022-00887-2

123

https://github.com/qiboteam/qibo
https://github.com/qiboteam/adiabatic-fit
https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/revmodphys.90.015002
http://arxiv.org/abs/1907.03764
https://doi.org/10.1038/s42005-022-00887-2


Quantum Machine Intelligence              (2025) 7:5 Page 11 of 11     5 

Chen SY-C, Yang C-HH, Qi J, Chen P-Y, Ma X, Goan HS (2020)
Variational quantum circuits for deep reinforcement learning.
arXiv:1907.00397 [cs.LG]

Date P, Potok T (2021) Adiabatic quantum linear regression. Sci Rep
11. https://doi.org/10.1038/s41598-021-01445-6

Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum
computation. Proc R Soc Lond A Math Phys Sci 439:553

Efthymiou S, Carrazza S, Pasquale A, Lazzarin M, Sopena A (2023a)
qiboteam/qibojit:qibojit0.0.7

Efthymiou S et al (2023b) qiboteam/qibo:Qibo0.1.12
Efthymiou S et al (2023c) qiboteam/qibolab:Qibolab0.0.2
Efthymiou S, Orgaz-Fuertes A, Carobene R, Cereijo J, Pasquale A,

Ramos-Calderer S, Bordoni S, Fuentes-Ruiz D, Candido A, Pedi-
cillo E, RobbiatiM, TanYP,Wilkens J, Roth I, Latorre JI, Carrazza
S (2024) Qibolab: an open-source hybrid quantum operating sys-
tem. Quantum 8:1247

A. evolution in Qibo, https://qibo.science/qibo/stable/code-examples/
advancedexamples.html#trotterdecomp-example

Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computa-
tion by adiabatic evolution

Gao YY, Rol MA, Touzard S, Wang C (2021) A practical guide
for building superconducting quantum devices. arXiv:2106.06173
[quant-ph]

Gonzalez-Conde J, Morrell Z, Vuffray M, Albash T, Coffrin C (2024)
The cost of emulating a small quantum annealing problem in the
circuit-model. arXiv:2402.17667 [quant-ph]

Grover LK (1996) A fast quantum mechanical algorithm for database
search. arXiv:quant-ph/9605043 [quantph]

Hansen N (2016) The CMA evolution strategy: a tutorial. CoRR
abs/1604.00772. arXiv:1604.00772

Johansson J, Nation P, Nori F (2012) Qutip: an opensource python
framework for the dynamics of open quantum systems. Comput
Phys Commun 183:1760–1772

Mari A, Bromley TR, Killoran N (2021) Estimating the gradient and
higher-order derivatives on quantum hardware. Phys Rev A 103:1.
https://doi.org/10.1103/physreva.103.012405

Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M,
Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S,
Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson
F, Pedregosa F, Curry MJ, Terrel AR, Roučka V, Saboo A, Fer-
nando I, Kulal S, Cimrman R, Scopatz A (2017) Sympy: symbolic
computing in python. PeerJ Comput Sci 3:e103

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit
learning. Phys Rev A 98:1. https://doi.org/10.1103/physreva.98.
032309

Morrell Z, Vuffray M, Misra S, Coffrin C (2024) QuantumAnnealing:
a Julia package for simulating dynamics of transverse field ising
models. arXiv:2404.14501 [quant-ph]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikitlearn: machine learning in Python. J Mach Learn Res
12:2825

Paeckel S, Köhler T, Swoboda A, Manmana SR, Schollwöck U, Hubig
C (2019) Time-evolution methods for matrix-product states. Ann
Phys 411:167998

Pasquale, A et al (2023a) qiboteam/qibocal:Qibocal 0.0.1
Pasquale A, Efthymiou S, Ramos-Calderer S, Wilkens J, Roth I,

Carrazza S (2023b) Towards an open-source framework to per-
form quantum calibration and characterization. arXiv:2303.10397
[quant-ph]

Pelofske E, Bärtschi A, Eidenbenz S (2023) Quantum annealing vs.
QAOA: 127 qubit higher-order ising problems on NISQ comput-
ers, inHigh PerformanceComputing SpringerNature Switzerland,
p 240–258

Robbiati M, Cruz-Martinez J, Carrazza S, adabaticfit (2023)
Schuld M, Sinayskiy I, Petruccione F (2014) An introduction to quan-

tum machine learning. Contemp Phys 56:172–185
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Eval-

uating analytic gradients on quantum hardware. Phys Rev A
99:032331. https://doi.org/10.1103/physreva.99.032331

Shor PW (1997) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J Comput
26:1484–1509

TasseB,AlbashT,Morrell Z,VuffrayM,LokhovAY,Misra S,CoffrinC
(2022) On the emerging potential of quantum annealing hardware
for combinatorial optimization. arXiv:2210.04291 [math.OC]

Wierichs D, Izaac J, Wang C, Lin CY-Y (2022) General parameter-shift
rules for quantum gradients. Quantum 6:677

Yarkoni S, Raponi E, Bäck T, Schmitt S (2022) Quantum annealing
for industry applications: introduction and review. Rep Prog Phys
85:104001

Zaech J-N, Liniger A, Danelljan M, Dai D, Gool LV (2022) Adiabatic
quantum computing for multi object tracking. arXiv:2202.08837
[cs.CV]

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1907.00397
https://doi.org/10.1038/s41598-021-01445-6
https://doi.org/10.5281/zenodo.7606063
https://doi.org/10.5281/zenodo.7736837
https://doi.org/10.5281/zenodo.7748527
https://qibo.science/qibo/stable/code-examples/advancedexamples.html#trotterdecomp-example
https://qibo.science/qibo/stable/code-examples/advancedexamples.html#trotterdecomp-example
http://arxiv.org/abs/2106.06173
http://arxiv.org/abs/2402.17667
http://arxiv.org/abs/quantph/9605043
http://arxiv.org/abs/1604.00772
https://doi.org/10.1103/physreva.103.012405
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.98.032309
http://arxiv.org/abs/2404.14501
https://doi.org/10.5281/zenodo.7662185
http://arxiv.org/abs/2303.10397
https://doi.org/10.1103/physreva.99.032331
http://arxiv.org/abs/2210.04291
http://arxiv.org/abs/2202.08837

	Determining probability density functions with adiabatic quantum computing
	Abstract
	1 Introduction
	2 Methodology
	2.1 Model regression with adiabatic quantum evolution
	2.2 Learning empirical cumulative density functions
	2.2.1 Adiabatic evolution setup
	2.2.2 Training of the adiabatic evolution

	2.3 Deriving probability functions from quantum circuits
	2.3.1 Generalizing the evolution to any time
	2.3.2 Circuit representation
	2.3.3 From the CDF to the PDF


	3 Validation
	3.1 Sampling known distributions
	3.2 Density estimation of simulated high energy physics data
	3.3 Benchmark with KDE methods

	4 Hardware
	5 Conclusion
	Open access
	Acknowledgements
	References


