
TIF-UNIMI-2023-9, CERN-TH-2023-042

Determining probability density functions with adiabatic quantum computing

Matteo Robbiati,1, 2 Juan M. Cruz-Martinez,3 and Stefano Carrazza2, 4, 3, 5

1European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland
2TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
3CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

4INFN, Sezione di Milano, I-20133 Milan, Italy
5Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE

The two main approaches to quantum computing are gate-based computation and analog computa-

tion, which are polynomially equivalent in terms of complexity, and they are often seen as alternatives

to each other. In this work, we present a method for fitting one-dimensional probability distributions

as a practical example of how analog and gate-based computation can be used together to perform

different tasks within a single algorithm. In particular, we propose a strategy for encoding data within

an adiabatic evolution model, which accomodates the fitting of strictly monotonic functions, as it is

the cumulative distribution function of a dataset. Subsequently, we use a Trotter-bounded procedure

to translate the adiabatic evolution into a quantum circuit in which the evolution time t is identified

with the parameters of the circuit. This facilitates computing the probability density as derivative of

the cumulative function using parameter shift rules.

Keywords: Analog Computing, Quantum machine learning; Hybrid computation; Variational quantum circuits;

Optimization

I. INTRODUCTION

In the context of quantum computing, we are witnessing

the development of various technologies, which can be cat-

egorized into two different but computationally equivalent

approaches: Gate-Based Computation (GBC) and analog

computation [1] (AQC).

These two approaches are often used to address very dif-

ferent types of problems. On one hand, many of the most

well-known quantum computing query algorithms such as

Shor’s [2], Grover’s [3] or Deutsch-Josza’s [4] are for-

malized through the gate computation paradigm. Also

in the field of Quantum Machine Learning (QML) [5, 6],

the most common approach involves defining Parametric

Quantum Circuits [7–9] that serve as variational mod-

els which are trained to perform the target tasks. On

the other hand, AQC has been shown to be an effective

tool for tackling optimization problems [10–14], in particu-

lar Quadratic Unconstrained Binary Optimization (QUBO)

problems, which can be easily encoded within a system of

interacting nearest-neighbours particles and represented in

terms of Ising Hamiltonians.

In this work, we present an application where AQC and

GBC can be used together in the context of QML, ad-

dressing different tasks within the process by exploiting

their respective strengths. To showcase our proposed algo-

rithm we tackle the determination of the underlying Prob-

ability Density Function (PDF) of a given one-dimensional

dataset.

This is a problem that presents some very specific chal-

lenges. First, given a random sample of a distribution,

a way of reconstructing the underlying distribution is to

compute its Cumulative Distribution Function (CDF). An

accurate representation of a CDF requires a model which

behaves monotonically with a target parameter, for which

we exploit AQC. Then, given its CDF, the PDF can be de-

termined by the derivative of the CDF. We face this second

challenge through GBC (Fig. 1).

Let us then begin by considering the cumulative distribu-

tion of a sample. We first define a regression model based

on adiabatic evolution [15] which encodes a generic one-

dimensional function defined in a predefined bounded range

as the time evolution of the expectation value of an arbi-

trary observable over the evolved state. This approach is

sufficiently flexible to fit a large variety of functional forms

and it can be easily set up so that boundary conditions and

the monotonicity of the problem are automatically satisfied

with a suitable definition of the adiabatic evolution. This

final remark is particularly important when dealing with Cu-

mulative Distribution Functions (CDF), which have to be

monotonically increasing and defined between 0 and 1.

After achieving an acceptable CDF fit, the method

projects the obtained adiabatic Hamiltonian into a quan-

tum circuit representation using a Trotter-like decompo-

sition [16]. This step opens the possibility to train and

perform inference of the regression model on circuit-based

quantum devices and therefore give us the possibility to

extract the PDF of the sample as the derivative of the

circuit using robust and well known Parameter Shift Rules

(PSR) [17, 18].

The paper is organized as follows. In Sec. II we present

the technical details of the probability density function es-

timation using using the synergistic action of analog and

gate-based quantum computing. The Sec. III presents val-

idation results for multiple examples and a comparison with

classical Kernel Density Estimation (KDE) methods to ver-

ar
X

iv
:2

30
3.

11
34

6v
3

 [
qu

an
t-

ph
]

 6
 J

an
 2

02
5

2

1. Sample from
a distribution

2. Encode the
cumulative into an
Adiabatic Evolution

3. Translate the
evolution into a
quantum circuit

4. Compute the
circuit derivative

Trotter-like Density estimation

FIG. 1. Schematic representation of the proposed Quantum Adiabatic Machine Learning (QAML) algorithm. A cumulative distribution
function is encoded into an adiabatic evolution, which is then translated into a quantum circuit and differentiated with respect to the
target values in order to approximate the probability density function.

ify the robustness of our algorithm in terms of accuracy.

Finally, in Sec. V we draw our conclusion and outlook.

II. METHODOLOGY

In this section we describe the procedure implemented

for the determination of probability density functions. The

algorithm is separated in two steps: the approximation of

an empirical cumulative distribution function using adia-

batic quantum evolution in a discrete time-grid as a re-

gression model, and subsequently, the determination of

the probability density function through the trotter-like

quantum circuit representation obtained from the adiabatic

Hamiltonian. In the same section we generalize the evolu-

tion time to a continuous variable.

In Sec. II A and Sec. II B 2 we introduce the choice of

using an adiabatic evolution to fit a cumulative distribu-

tion. And in Sec. II C 2 we translate the obtained operator

into a quantum circuit, facilitating the computation of its

derivatives.

A. Model regression with adiabatic quantum evolution

Given a function F (t), one-dimensional in input and out-

put, we build a regression model by selecting an observable

O such that there are two Hamiltonians, H0 and H1, for
which the expectation value of O over the ground states
of H0 and H1 correspond to the two points between which

we want to learn the function F .

Therefore, we interpret the regression problem as the

procedure of building a time dependent Hamiltonian H(t),

such that its ground state |ψ(t)⟩ at time t satisfies

⟨ψ(t)|O|ψ(t)⟩ = F (t). (1)

From now on, for simplicity, we shorten the l.h.s. of the

expression (1) with ⟨O⟩t . We construct this Hamiltonian
implementing an adiabatic evolution

H(t) =
[
1− s(t;θ)

]
H0 + s(t;θ)H1, (2)

governed by the parametric scheduling function s(t;θ),

where t has to be defined in [0, 1]. The problem is then

reduced to finding the right set of parameters θ such that

⟨O⟩t during the adiabatic evolution of the state |ψ(t)⟩ ap-
proximates the target function.

Note that the choice of s(t,θ) is fundamental to guar-

antee the monotonicity of the target function.

B. Learning empirical cumulative density functions

1. Adiabatic evolution setup

The presented framework can be applied to the problem

of fitting a cumulative distribution function F (t), with t ∈
[0, T]. This can be done if two requirements are satisfied:

the model has to be strictly monotonically increasing in

t and the extreme values of the function are set to be

F (0) = 0 and F (T) = 1.

The second condition can be fulfilled by appropriately se-

lecting the Hamiltonians H0 and H1, as well as the observ-

able O. In particular, since we focus on one-dimensional
distributions, and we treat here the introductory case of

one qubit, a proper choice can be O = σz , H0 = σx and

H1 = −σz , where σx and σz correspond to the Pauli X
and Pauli Z matrices respectively. This choice satisfies

the boundary conditions of the problem ⟨O⟩0 = 0 and
⟨O⟩T = 1. Secondly, the monotonicity of the function can
be ensured by implementing a scheduling function which is

monotonic itself. This final remark, together with the ap-

propriate Hamiltonians definition, make adiabatic evolution

3

an extremely effective model for approximating a CDF. In

this work, we use as scheduling function a polynomial of

degree p:

s(t; θ) =
1

η

p∑
i=1

θi t
i , with η =

p∑
i=1

θi , (3)

whose monotonicity is guaranteed by requiring positive co-

efficients θi for t ∈ [0, 1]. If one prefers to define a more
flexible scheduling function, such as a neural network, an-

other viable option is to penalize the model during training

when negative fluctuations of the predictions are recorded.

2. Training of the adiabatic evolution

In order to train a parametric adiabatic evolution to

approximate a function we make use of Qibo [19–22],

which is an open-source full-stack framework for quan-

tum computing. Qibo provides the possibility to execute

analog quantum computing models that can be symbol-

ically defined through an interface based on SymPy [23].

These models can then be translated into circuits and exe-

cuted through trotterization. In particular, a second-order

Time-Evolving Block Decimation (TEBD) method is im-

plemented (see Eq. (62) of Ref. [16]). This approxima-

tion, once chosen a time step dτ presents an error of the

order O(dτ3) per time step [16]. Considering a total evo-

lution time T divided into N = T/dτ steps, the total error

of the approximation becomes O(dτ2). Further details can

be found in the official Qibo documentation [24].

The use of Qibo allows us to execute our algorithm

on self-hosted superconducting quantum devices (see

Sec. IV), however by this choice we are limited to a gate-

based paradigm, which forces us to consider a discretized

case of the time evolution. We address this limitation in

Sec. II C 1, by implementing an approximation that allows

us to extend from the discrete case to the continuous.

This approximation would not be necessary if using analog

devices or simulators. Among the simulation tools we men-

tion QuTip [25] and HOQST [26] for handling open quan-

tum systems, and QuantumAnnealing.jl [27] for quan-

tum annealing algorithms.

The procedure follows a supervised machine learning

strategy: at first, we generate a sample of random vari-

ables {x} following a chosen distribution ρ, and we cal-
culate the empirical CDF of the sample {F}. This step
is equivalent to constructing a cumulative histogram of

the data, where we select Ntrain bins identified with the

evolution times controlling the scheduling function. Each

pair of
(
xj , Fj

)
values are mapped into

(
τj , ⟨O⟩τj

)
, where

τj = tj/T is the evolution time corresponding to the j-th

step of the discretized adiabatic evolution normalized with

respect to the final time T and ⟨O⟩τj is the expectation

value of the target observable over the ground state of

H(τj) as introduced in Eq. (1).

In this last step, we apply a transformation to the domain

of the variable x , so that both x and τ are now defined in

the interval [0, 1]. This allows us to define a standardized

framework for each analyzed variable. The original distri-

bution can be easily reconstructed by applying the inverse

transformation.

Once the training set is defined and the scheduling func-

tion is initialised using an initial set of parameters θ0, we

execute the adiabatic evolution of the state |ψ(τ)⟩ from
|ψ(0)⟩ to |ψ(1)⟩ and we collect all the ⟨O⟩τj values during
the evolution.

We define a mean-squared error loss function J for esti-

mating the quality of the fit:

J =
1

Ntrain

Ntrain∑
j=1

[
Fj − ⟨O⟩τj

]2
, (4)

where ⟨O⟩τj depends on the variational parameters because
the evolved state on which it is calculated follows an evo-

lution governed by the parametric scheduling s(τ,θ).

We finally perform the training of the model by optimiz-

ing the parameters θ using a selected optimizer. In this

work we make use of the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [28], which is one of the

optimizers provided by Qibo. We remark that any opti-

mizer can be used since the approach is totally agnostic

under this aspect.

In Fig. 2 we show and describe an example of the algo-

rithm presented above, to which we refer from now on as

Quantum Adiabatic Machine Learning (QAML).

C. Deriving probability functions from quantum circuits

In the following we generalize the presented model to ac-

cept any continuously sampled time t ∈ [0, T] and we use
a quantum circuit representation to compute the deriva-

tive of the approximated CDF with respect to the target

variable.

1. Generalizing the evolution to any time

The procedure presented in the previous paragraphs can

be interpreted as the evolution product of a series {H(τj)}
of Hamiltonians corresponding to the adiabatic Hamilto-

nian (2) at fixed evolution time steps {τj = tj/T}, dis-
cretized according to dτ = (tj − tj−1)/T , the time step of
the adiabatic evolution. Each of these Hamiltonians can be

associated to a local time evolution operator U(τj) which

evolves |ψ(τj−1)⟩ to |ψ(τj)⟩. More generally, we can obtain

4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
QAML example

cdf
Not trained evolution
Trained evolution
Training points

FIG. 2. Example of Quantum Adiabatic Machine Learning
(QAML). We select Ntrain data from a sample of points picked up
from a Gamma distribution. The training labels (blue points) lay
on the empirical CDF of the sample (black line). The untrained
sequence of ⟨O⟩ (yellow line) is compared with the values after
the QAML training (red line). The scheduling function is the
one presented in Eq. (3) with p = 12.

any state |ψ(τn)⟩ by sequentially applying n operators:

|ψ(τn)⟩ =
n∏
j=1

T U(τj) |ψ(τ0)⟩ := C(τn) |ψ(τ0)⟩ , (5)

where we sum up the sequential action of the U(τj)’s into

a single unitary operator C(τn), which evolves the initial
state |ψ(τ0)⟩ to the one at time τn = n dτ and depends

on the time-ordering operator T . From now on, we refer
to H(τj), U(τj) and C(τj) as Hj , Uj and Cj for simplicity.

In order to compute the state at any value of τ outside of

the discrete simulated time steps of the adiabatic evolution

{τj} it is necessary to take the continuous limit. We start
by considering one of the intermediate elements of the

product introduced in Eq. (5)

Uj = e
−idτHj , with Hj =

(
sj 1− sj
1− sj −sj

)
, (6)

where sj is the value of the scheduling at evolution time

τj = j dτ . This instantaneous form of the adiabatic Hamil-

tonian operator can be diagonalized as Dj using a matrix

Pj such that Hj = PjDjP
−1
j , where:

Pj = Λj

(
1

sj−λj
1−sj

λj−sj
1−sj 1

)
, Dj =

(
λj 0

0 −λj

)
, (7)

and Λj is the appropriate (τ dependent) normalization con-

stant. The absolute value of the eigenvalues of the Hamil-

tonian is λj =
√
2s2j − 2sj + 1.

We now use this decomposition to write Cn in terms of
the diagonal form of the Hamiltonian:

Cn =
n∏
j=0

Pje
−iDj dτP−1j . (8)

If we now take the limit dτ → 0, we have Hj → Hj−1
and thus Pj → Pj−1. We have verified that for smoothly

behaved scheduling function adjacent elements in the se-

quence tend to the identity P−1j Pj−1 → I with an error

proportional to the time step dτ . The Eq. (8) simplifies to

Cn = Pn exp

−i
n∑
j=0

Dj dτ

P−10 . (9)

Furthermore, in the limit of dτ → 0, n → ∞ and the
sum in the above equation becomes an integration in dτ

between the initial and final steps in the evolution.

Ct = Pt exp

{
−i
∫ t/T
0

Dj dτ

}
P−10 , (10)

where we now indicate with Pt and P0 the diagonalization

matrices corresponding respectively to the last and the first

evolution operators we must apply to H0’s ground state in

order to obtain the evolved state at an arbitrary time t,

dropping the discretization requirement.

The proposed approximation only holds when consider-

ing the adiabatic regime, implemented through a small time

step and a slowly varying scheduling function. More in

general, one can construct a more complete and arbitrary

accurate representation of Ut exploiting the Magnus Ex-

pansion (ME) [29, 30]. Combining a proper choice of the

ME order with an arbitrary small trotterization error (de-

fined by the Trotter-Suzuki order and step size) one can

construct an arbitrarily accurate approximation of Ut as

discussed in [31].

2. Circuit representation

Let us now implement the unitary operator Ct as a quan-
tum circuit, using a gate decomposition which is useful for

calculating the derivatives of the circuit with respect to its

variational parameters.

To that end we write Ct in terms of rotational gates,
with the aim of using well-known parameter shift rules [17,

18, 32] on them. The choice of this differentiation method

relies on its robustness to noise and acknowledging that in

the one-dimensional case, the decomposition we propose

is simple and computationally lightweight.

Since any unitary operator U ∈ SU(2) can be written as
a combination of three rotations [33] we choose:

U ≡ Rz(φ)Rx(θ)Rz(ψ), (11)

5

where the three angles (φ, θ, ψ) can be computed as func-

tion of the matrix element of the operator C:
φ = π/2− arg(c01)− arg(c00),
θ = −2 arccos(|c00|),
ψ = arg(c01)− π/2− arg(c00).

(12)

In (12) the matrix elements c00 and c01 depend on the

values of the scheduling s and on the eigenvalues λ of Ht .

This dependence can be written more explicitly:

c0j =
1− s

s
√
λ(λ− s)

{
cos I

(
1 + (−1)j

λ− s
1− s

)
+ i sin I

(
1− (−1)j

λ− s
1− s

)}
, (13)

with I =
∫ τ
0

λ(t ′)dt ′, s = s(τ), λ = λ(τ) and τ = t/T .

Note that the construction of the circuit is completely

independent of the choice of scheduling function. Depend-

ing on this choice, I may be computed analytically.
With this, we define a method to build a quantum circuit

which, for fixed evolution parameters θ and time t, returns

the ground state of Ht , which can be used to compute the

requested ⟨O⟩t .

3. From the CDF to the PDF

The circuit representation of the operator Ct allows us
to reconstruct our original target function F (t) introduced

in Sec. II A by applying the circuit to a state prepared as

|ψ(0)⟩ and then measuring the chosen observable (σz in
this work) over the obtained final state.

As previously said, our example case has been that in

which the target function F (t) correspond to the empir-

ical CDF of some arbitrary distribution ρ. By imposing

monotonicity and pinning the initial and final points we en-

sure that its first derivative corresponds to the PDF of the

same distribution.

For a one-dimensional distribution we have then:

dF (t)

dt
=
d

dt
⟨ψ(0)|C†t σz Ct |ψ(0)⟩ . (14)

In the context of quantum computing, as previously an-

ticipated, we can take advantage of what is usually known

as Parameter Shift Rule (PSR) [17, 18] which allows us to

take the derivative of the expectation of an observable such

as Eq. (14) by simply evaluating the circuit after shifting

the parameters with respect to which we are taking the

derivative. We are using specifically the formula presented

in [17], for circuits based on rotations. Note that in this

case we have limited ourselves to gates in which the pa-

rameter appears only once, but more complicated forms

can also be utilized [34].

With this we arrive to the final formula of the PDF in

terms of the original circuit for an arbitrary value of t:

ρ(t) = PSR
[
⟨ψ(0)|C†t σz Ct |ψ(0)⟩

]
. (15)

III. VALIDATION

In the following we test the presented algorithm by draw-

ing samples from a known distribution, building the circuit

and reconstructing the original probability function. All re-

sults for this section are summarized in Table I.

A. Sampling known distributions

In order to validate and test the procedure, we select two

known distributions: a Gamma distribution and a Gaus-

sian mixture of two Gaussian distributions. For each case,

we generate a representative sample of dimension Nsample
and fit the resulting empirical CDF using the approach de-

scribed in Sec. II A. We then derive the PDF with the pro-

cedure introduced in Sec. II C 3 and compare the results

with the original distribution. We repeat this exercise for

every example by using quantum simulation on classical

hardware with exact state-vector representation and with

shot-noise.

In these examples the adiabatic evolution training is set

to stop once a given threshold value Jthresh of the loss func-

tion (4) is reached. Furthermore, every sample is rescaled

to be between 0 and 1 according to the definition of τ

introduced in Sec. II B 2. In all cases the adiabatic evolu-

tion is run from τ = 0 to τ = 1 with dτ = 0.002. We

define the scheduling function as a polynomial of order p

following the ansatz in Eq. (3).

We start by drawing samples from a Gamma distribution,

defined as

ρ(x ;α, β) =
βαxα−1e −βx

Γ(α)
, (16)

with α = 10 and β = 0.5. We take Nsamples = 5·104 points
and train the scheduling function until a target precision of

Jthresh = 10
−5 is reached.

We repeat the procedure both with and without shot-

noise. In the case of simulations with shot-noise, we con-

struct the final value of our predictions by repeating the

calculation of the expectation value of σz twenty times.

The collected results are then used to define the predic-

tion and its uncertainty as the mean and standard deviation

of the obtained values, respectively. The discussed results

are shown in Tab. I.

The results of the training can be seen in the first row

and left column of Fig. 3, where we plot the empirical

CDF (black line) together with both the exact (red line)

6

Fit function Nsample p Jf MSEexactCDF MSEshotsCDF MSEexactPDF MSEshotsPDF KLshotsPDF

Gamma 5 · 104 25 2.9 · 10−6 1 · 10−5 1 · 10−5 9 · 10−4 2 · 10−3 4 · 10−3

Gaussian mix 2 · 105 30 4.4 · 10−6 9 · 10−6 9 · 10−6 2 · 10−3 4 · 10−3 6 · 10−3

t 5 · 104 20 2.1 · 10−6 3 · 10−4 3 · 10−4 1 · 10−3 3 · 10−3 5 · 10−3

s 5 · 104 20 7.9 · 10−6 3 · 10−4 3 · 10−4 1 · 10−2 1 · 10−2 4 · 10−3

y 5 · 104 8 3.7 · 10−6 3 · 10−4 3 · 10−4 9 · 10−4 2 · 10−3 2 · 10−3

TABLE I. Summary of the results. From left to right, we show the number of points of the datasets, the number of variational
parameters of the adiabatic evolution models, the best loss function value registered during the training, the MSE metric values
respectively comparing the CDF estimation in exact simulation, the CDF estimation in shot-noise simulation, the PDF estimation
in exact simulation and the PDF estimation in shot-noise simulation. When considering shot-noise simulation, each estimation
contributing to the MSE has been calculated as mean value of 20 estimates, each of these obtained collecting Nshots = 2 · 105 shots
of the quantum circuit. The MSE valued for the Gamma and the Gaussian mixture examples are calculated using five hundred points
equispaced in [0, 1], while the HEP results are calculated considering the values extracted from a histogram representation of the
data setting Nbins = 34. In the last column, we show the value of the Kullback-Leibler divergence between the estimated distribution
in case of Nshots = 2 · 105 and the theoretical distribution.

and shot-noise (blue and yellow lines) simulation, and a his-

togram of the data. In the second row and left column of

Fig. 3 we show the PDF obtained by taking the derivative

of the circuit compared it with the original distribution, as

well as the ratio with respect to the target labels. We find

that while the exact simulation achieves an accuracy of a

few percent everywhere but the tails of the distribution,

when shot-noise is enabled it is necessary to go beyond

Nshots = 10
5 to achieve single-digit precision. This is il-

lustrated by the two shadowed bands for Nshots = 2 · 105
(blue), and a lower value of Nshots = 2 · 104 (yellow) which
has a worse than 10% precision everywhere.

In order to test the algorithm with a more complicated

example we also sample from a Gaussian mixture

ρ(x ; µ⃗, σ⃗) = 0.6N (x ;µ1, σ1) + 0.4N (x ;µ2, σ2), (17)

with µ⃗ = (−10, 5) and σ⃗ = (5, 5). From this distribution
we take Nsample = 5 · 105 points to generate the training
sample. The results corresponding to this second target

are shown in the right column of Fig. 3 and follow the

same graphical conventions presented above.

To quantify the accuracy of our predictions we define a

Mean Squared Error (MSE) metric

MSE =
1

N

N∑
j=0

(yj,meas − yj,pred)2, (18)

where yj,meas and yj,pred correspond to the target label and

the model prediction associated to a specific variable xj .

The Eq. (18) is written as function of a general variable y ,

which is then deployed as the CDF and the PDF predictions

in what follows. In addition, we also compute the Kullback-

Leibler divergence

KL =

N∑
i=1

[
yi ,pred log

(
yi ,pred
yj,meas

)]
(19)

for the PDFs computed in the case of shot-noise simulation

with Nshots = 2 ·105 shots. We collect our results in Tab. I.

B. Density estimation of simulated high energy physics

data

In the previous case we were training the circuit using

a sample from a known distribution, we now address the

more complex case of learning an unknown distribution.

We consider the particle physics process involving top and

anti-top quark pair production (pp → tt̄), for which we

choose the cross section differential on the rapidity y and

the logarithms of the Mandelstam variables − log (−t) and
− log s. This choice is motivated by the following reasons:
on one hand, they present a real-world scenario in high

energy physics (HEP), stress-testing the method, and on

the other hand, it provides a potential use-case for the

methods presented in this paper.

While in general one would train directly on the output

of a Monte Carlo event generator, in our test case the

data sampling is obtained from a separated hybrid classical-

quantum model called Style-qGAN [35]. The Style-qGAN

has been trained with 105 events for pp → tt̄ production

at a center of mass of
√
s = 13 TeV computed at Leading

Order.

In Fig. 4 we show the results for the training of the circuit

(the CDF on the top row) and its derivative (the PDF on

the bottom row), following the same graphical conventions

introduced in the previous section.

In Table I we summarize the results for all examples

tested in this section. For each model we describe the fi-

nal configuration and fit accuracy by calculating the MSE

values for both the CDF and the PDF estimations.

We find the achieved level of quality is satisfactory for all

tested distributions. We also observe that Nshots = 2 · 105
shots provide sufficient statistics to achieve a precision in

7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
F

Gamma

Data
Exact simulation
Nshots = 2 105

Target

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

Gaussian mixture

0

1

2

3

Gamma
Target values

Data
Target

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Nshots = 2 104

Nshots = 2 105

0

1

2

3

Gaussian mixture

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25
Ra

tio
 to

 tr
ue

FIG. 3. Top row: CDF fit via QAML procedure. The target CDF (dashed black line) is compared with QAML predictions obtained
via exact simulation (red line) and simulation with shot-noise (blue line). An histogram of the data is shown in grey. Bottom row:
comparison between the target PDF and the result of the derivative of the trained circuit. Once again the target labels (dashed black
line) are compared with the data histogram (grey), with QAML exact simulation results (red line) and QAML shot-noise simulations
with Nshots = 2 · 104 and Nshots = 2 · 105 (yellow and blue lines respectively). These same results are also shown in the form of a
ratio between the target labels and the predictions via QAML in the lowest part of the figures. While representing the PDFs, only
one simulation with shot-noise is drawn (Nshots = 2 · 105). All the shot-noise simulations curves are represented together with a 1σ
confidence belt calculated repeating Nruns = 20 the predictions with fixed trained model.

the range of 4-10% (see ratio plots in the bottom part of

Fig. 3 and Fig. 4). In the case of the HEP based data,

this level of precision is only achieved near the distribu-

tion peaks. The precision (and the accuracy) deteriorates

as we move towards the tails where the differential cross

section approaches zero, a behavior consistent with classi-

cal approaches a common challenge when fitting distribu-

tions [36].

C. Benchmark with KDE methods

In this section we benchmark our results with a state-

of-art Kernel Density Estimation method provided by

scikit-learn [37]. While we are optimistic about the

future of quantum technologies and the potential utility

of the proposed method, we stress that this analysis is in-

tended here to only verify the robustness of the results

in terms of accuracy, and not to propose this method as

an alternative to classical techniques. This kind of stress-

testing is necessary in order to have confirmation of the

validity of the proposed method once faster and more ac-

curate hardware is obtained.

We compare our exact-simulation results

with the predictions computed using the

sklearn.neighbours.KernelDensity method se-

lecting top-hat and exponential kernels. The first has

been chosen for its computational efficiency, while the

second is more suitable when dealing with tailed distribu-

tions. The kernel bandwidth has been hyper-optimized

using a Tree of Parzen Estimators (TPE) on a random

grid of one thousand points sampled from the interval

8

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

F

s in pp tt decay
Data
qGAN data
Exact simulation
Nshots = 2 105

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

F

t in pp tt decay

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

F

y in pp tt decay

0

2

s in pp tt decay

0.0 0.2 0.4 0.6 0.8 1.0
0.75
1.00
1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Nshots = 2 104

Nshots = 2 105

0

1

2

t in pp tt decay

0.0 0.2 0.4 0.6 0.8 1.0
0.75
1.00
1.25

Ra
tio

 to
 tr

ue 0

1

2
y in pp tt decay

0.0 0.2 0.4 0.6 0.8 1.0
0.75
1.00
1.25

Ra
tio

 to
 tr

ue

FIG. 4. Top row: CDF fit via QAML procedure considering the HEP targets. The target CDF (dashed black line) is compared with
QAML predictions obtained via exact simulation (red line) and simulation with shot-noise (blue line). An histogram of the data is
shown in grey. Bottom row: comparison between the target PDF and the result of the derivative of the trained circuit. Once again
the target labels (dashed black line) are compared with the data histogram (grey), with QAML exact simulation results (red line)
and QAML shot-noise simulations with Nshots = 2 · 104 and Nshots = 2 · 105 (yellow and blue lines respectively). These same results
are also shown in the form of a ratio between the target labels and the predictions via QAML in the lowest part of the figures. While
representing the PDFs, only one simulation with shot-noise is drawn (Nshots = 2 · 105). All the shot-noise simulations curves are
represented together with a 1σ confidence belt calculated repeating Nruns = 20 the predictions with fixed trained model.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

PD
F

Gamma
MSE: 9e 04, QAML
MSE: 5e 04, KDE (exp)
MSE: 3e 04, KDE (t-h)
Target

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

PD
F

Gaussian mixture
MSE: 2e 03, QAML
MSE: 3e 04, KDE (exp)
MSE: 3e 04, KDE (t-h)
Target

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

PD
F

t in pp tt decay
MSE: 1e 03, QAML
MSE: 1e 02, KDE (exp)
MSE: 1e 02, KDE (t-h)
Target

FIG. 5. Comparison between our QAML trained results (red lines) and the proposed solutions of 1D Kernel Density Estimation
method provided by scikit-learn using top-hat (orange lines) and exponential (blue lines) kernels. All the approximations are
compared with the target values (black lines).

[10−5, 1]. The hyper-optimization has been performed

using hyperopt [38].

We compute this benchmark in order to check whether

our algorithm is competitive in terms of accuracy with re-

spect to the most commonly used classical tools. We test

both the QAML procedure and the KDE algorithm on the

Gamma distribution, the Gaussian mixture and the t Man-

delstam variable, which is the one corresponding to our

best result in the HEP examples. We show these results

in Fig. 5, where our predictions are promisingly close to

those obtained through KDE estimation. Additionally, in

the case of the variable t, which is defined on a more crit-

ical domain due to the chosen binning, QAML seems to

offer a more accurate fit to the density profile.

Considering the execution time of the two algorithms,

they present very different characteristics: on one hand,

QAML suffers the optimization time, which is necessary to

perform the density estimation. On the other hand, when

the training is concluded, computing the PDF is extremely

lightweight. Instead, in the case of the KDE, the opposite

9

considerations can be made: the hyper-optimization is rel-

atively light, but then the PDF evaluation depends on the

bandwidth size.

IV. HARDWARE

In order to assess the performance of the model in real

quantum hardware we use a 5-qubits superconducting chip

hosted in the Quantum Research Centre (QRC) of the

Technology Innovation Institute (TII). We calculate the

predictions for the values of the CDF using the best pa-

rameters obtained through the training with the shot-noise

simulation whose results are presented in Tab. I. We take

into account the Gamma distribution defined in Eq. (16)

and we do not apply error mitigation techniques to the

hardware, in order to explore the potentialities of the bare

chips.

We consider Ndata = 25 points equally distributed in

the target range [0, 1] and for each of these we perform

Nruns = 10 predictions executing Nshots = 1000 times the

circuit on the quantum hardware. Using these data, we

calculate the final predictors and their uncertaintes as mean

and standard deviation over the Nruns results. We also

calculate the MSE introduced in Eq. (18) to evaluate the

fit accuracy.

In order to study how the CDF predictions deteriorate

when executed in hardware and to study the dependence of

this deterioration on how the qubits are tuned, we repeat

this procedure for each of the five qubit of the device.

The results are shown in Fig. 6 and are in agreement with

Tab. II, where we report the assignment fidelities [39] of

the qubits and the calculated MSE values.

Qubit ID Assignment Fidelity MSE

0 0.926 1.3 · 10−2

1 0.886 1.4 · 10−2

2 0.953 3.4 · 10−3

3 0.952 2.7 · 10−3

4 0.707 1.3 · 10−1

TABLE II. Prediction deployed on superconducting chip. For
each qubit of the device we show the assignment fidelity at the
moment of the execution and the MSE values.

The quantum hardware control is performed using

Qibolab [21, 40] and the qubits are characterized and cal-

ibrated executing the Qibocal’s routines [22, 41].

V. CONCLUSION

In this work we presented a proof-of-concept application

of quantum machine learning which makes use of both

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CDF fit on superconducting qubits

Qubit 0
Qubit 1
Qubit 2

Qubit 3
Qubit 4
Target

FIG. 6. Nruns = 10 predictions are performed for Ndata = 25
points in the target range [0, 1] using each qubit of a 5-qubits
device hosted in the QRC.

analog and gate-based quantum computation addressing

different tasks within the same problem. Namely, we in-

troduced an algorithm for the determination of probability

density functions. We first define a mechanism to use adi-

abatic evolution as a regression model for the fit of the

cumulative density function of a sample. The adiabatic

evolution model is then represented by the Trotterization

of the adiabatic Hamiltonian in terms of a quantum circuit.

The probability density profile is then calculated by applying

parameter shift rules to the obtained circuit. This method

allows the usage for training and inference of quantum de-

vices designed for both annealing and circuit-based tech-

nologies. The numerical results obtained and presented in

Sec. III show successful applications of the methodology

for predefined PDFs and empirical distributions obtained

from high-energy particle physics observables. In the same

section we compare the presented methodology with clas-

sical Kernel Density Estimations techniques, demonstrat-

ing that the proposed method can yield satisfactory re-

sults when compared to state-of-art algorithms. Finally,

in Sec. IV we deployed the trained models on to a super-

conducting bare device, showing interesting results even

without applying any quantum error mitigation algorithm.

All numerical results have been obtained using Qibo [42],

a full-stack and open source framework for quantum com-

puting, and are publicly available in [43]. Further possible

developments include the generalization of this method

for the simultaneous determination of multi-dimensional

probability density distributions, the deployment of the full

training procedure on quantum devices and the possibility

to use real quantum annealing for the optimization of the

regressing model parameters.

10

ACKNOWLEDGMENTS

SC thanks the TH hospitality during the elaboration of

this manuscript.

Funding: This project is supported by CERN’s Quantum

Technology Initiative (QTI). MR is supported by CERN

doctoral program.

Author contributions: All authors contributed equally to

the elaboration of this manuscript.

Data Availability: The code to reproduce the simulations

can be found at [44].

DECLARATIONS

Conflict of interest: The authors declare no conflict of

interest.

Open access: This article is licensed under a Creative

Commons Attribution 4.0 International License, which per-

mits use, sharing, adaptation, distribution and reproduc-

tion in any medium or format, as long as you give ap-

propriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and in-

dicate if changes were made. The images or other third

party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a

credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the per-

mitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit

https://creativecommons.org/licenses/by/4.0/.

[1] T. Albash and D. A. Lidar, Adiabatic quantum compu-

tation, Reviews of Modern Physics 90, 10.1103/revmod-

phys.90.015002 (2018).

[2] P. W. Shor, Polynomial-time algorithms for prime factor-

ization and discrete logarithms on a quantum computer,

SIAM Journal on Computing 26, 1484–1509 (1997).

[3] L. K. Grover, A fast quantum mechanical algorithm for

database search (1996), arXiv:quant-ph/9605043 [quant-

ph].

[4] D. Deutsch and R. Jozsa, Rapid solution of problems by

quantum computation, Proceedings of the Royal Society

of London. Series A: Mathematical and Physical Sciences

439, 553 (1992).

[5] M. Schuld, I. Sinayskiy, and F. Petruccione, An introduc-

tion to quantum machine learning, Contemporary Physics

56, 172–185 (2014).

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,

N. Wiebe, and S. Lloyd, Quantum machine learning, Na-

ture 549, 195 (2017).

[7] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Pa-

rameterized quantum circuits as machine learning models,

Quantum Science and Technology 4, 043001 (2019).

[8] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma,

and H.-S. Goan, Variational quantum circuits for deep re-

inforcement learning (2020), arXiv:1907.00397 [cs.LG].

[9] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,

S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,

L. Cincio, and P. J. Coles, Variational quantum algorithms,

Nature Reviews Physics 3, 625–644 (2021).

[10] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, Quan-

tum annealing for industry applications: introduction and

review, Reports on Progress in Physics 85, 104001 (2022).

[11] J.-N. Zaech, A. Liniger, M. Danelljan, D. Dai, and L. V.

Gool, Adiabatic quantum computing for multi object track-

ing (2022), arXiv:2202.08837 [cs.CV].

[12] E. Pelofske, A. Bärtschi, and S. Eidenbenz, Quantum

annealing vs. qaoa: 127 qubit higher-order ising prob-

lems on nisq computers, in High Performance Computing

(Springer Nature Switzerland, 2023) p. 240–258.

[13] P. Date and T. Potok, Adiabatic quantum linear regres-

sion, Scientific Reports 11, 10.1038/s41598-021-01445-6

(2021).

[14] B. Tasseff, T. Albash, Z. Morrell, M. Vuffray, A. Y.

Lokhov, S. Misra, and C. Coffrin, On the emerging po-

tential of quantum annealing hardware for combinatorial

optimization (2022), arXiv:2210.04291 [math.OC].

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quan-

tum computation by adiabatic evolution (2000).

[16] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana,

U. Schollwöck, and C. Hubig, Time-evolution methods

for matrix-product states, Annals of Physics 411, 167998

(2019).

[17] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quan-

tum circuit learning, Physical Review A 98, 10.1103/phys-

reva.98.032309 (2018).

[18] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-

loran, Evaluating analytic gradients on quantum hard-

ware, Physical Review A 99, 10.1103/physreva.99.032331

(2019).

[19] S. Efthymiou, S. Carrazza, A. Pasquale, M. Lazzarin, and

A. Sopena, qiboteam/qibojit: qibojit 0.0.7 (2023).

[20] S. Efthymiou et al., qiboteam/qibo: Qibo 0.1.12 (2023).

[21] S. Efthymiou et al., qiboteam/qibolab: Qibolab 0.0.2

(2023).

[22] A. Pasquale et al., qiboteam/qibocal: Qibocal 0.0.1

(2023).

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/revmodphys.90.015002
https://doi.org/10.1103/revmodphys.90.015002
https://doi.org/10.1137/s0097539795293172
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://api.semanticscholar.org/CorpusID:121702767
https://api.semanticscholar.org/CorpusID:121702767
https://api.semanticscholar.org/CorpusID:121702767
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/2058-9565/ab4eb5
https://arxiv.org/abs/1907.00397
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1088/1361-6633/ac8c54
https://arxiv.org/abs/2202.08837
https://doi.org/10.1007/978-3-031-32041-5_13
https://doi.org/10.1038/s41598-021-01445-6
https://arxiv.org/abs/2210.04291
https://arxiv.org/abs/2210.04291
https://arxiv.org/abs/2210.04291
https://arxiv.org/abs/2210.04291
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.5281/zenodo.7606063
https://doi.org/10.5281/zenodo.7736837
https://doi.org/10.5281/zenodo.7748527
https://doi.org/10.5281/zenodo.7662185

11

[23] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B.

Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,

S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.

Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson,

F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Sa-

boo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz,

Sympy: symbolic computing in python, PeerJ Computer

Science 3, e103 (2017).

[24] A. evolution in Qibo,

https://qibo.science/qibo/stable/code-

examples/advancedexamples.html#trotterdecomp-

example.

[25] J. Johansson, P. Nation, and F. Nori, Qutip: An open-

source python framework for the dynamics of open quan-

tum systems, Computer Physics Communications 183,

1760–1772 (2012).

[26] H. Chen and D. A. Lidar, Hamiltonian open quantum sys-

tem toolkit, Communications Physics 5, 10.1038/s42005-

022-00887-2 (2022).

[27] Z. Morrell, M. Vuffray, S. Misra, and C. Coffrin, Quan-

tumannealing: A julia package for simulating dynamics

of transverse field ising models (2024), arXiv:2404.14501

[quant-ph].

[28] N. Hansen, The CMA evolution strategy: A tutorial, CoRR

abs/1604.00772 (2016), 1604.00772.

[29] S. Blanes, F. Casas, J. Oteo, and J. Ros, The magnus

expansion and some of its applications, Physics Reports

470, 151–238 (2009).

[30] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, A pedagogical

approach to the magnus expansion, European Journal of

Physics 31, 907 (2010).

[31] J. Gonzalez-Conde, Z. Morrell, M. Vuffray, T. Albash,

and C. Coffrin, The Cost of Emulating a Small Quan-

tum Annealing Problem in the Circuit-Model, (2024),

arXiv:2402.17667 [quant-ph].

[32] A. Mari, T. R. Bromley, and N. Killoran, Estimat-

ing the gradient and higher-order derivatives on quan-

tum hardware, Physical Review A 103, 10.1103/phys-

reva.103.012405 (2021).

[33] S. Bertini, S. L. Cacciatori, and B. L. Cerchiai, On the

euler angles for SU(n), Journal of Mathematical Physics

47, 043510 (2006).

[34] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, General

parameter-shift rules for quantum gradients, Quantum 6,

677 (2022).

[35] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M.

Grabowska, and S. Carrazza, Style-based quantum genera-

tive adversarial networks for monte carlo events, Quantum

6, 777 (2022).

[36] A. Butter, T. Plehn, and R. Winterhalder, How to

GAN LHC Events, SciPost Phys. 7, 075 (2019),

arXiv:1907.03764 [hep-ph].

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-

learn: Machine learning in Python, Journal of Machine

Learning Research 12, 2825 (2011).

[38] J. Bergstra, B. Komer, C. Eliasmith, S. Cyphers, and

D. Yamins, Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms, Compu-

tational Science & Discovery 8, 014008 (2015).

[39] Y. Y. Gao, M. A. Rol, S. Touzard, and C. Wang, A prac-

tical guide for building superconducting quantum devices

(2021), arXiv:2106.06173 [quant-ph].

[40] S. Efthymiou, A. Orgaz-Fuertes, R. Carobene, J. Cereijo,

A. Pasquale, S. Ramos-Calderer, S. Bordoni, D. Fuentes-

Ruiz, A. Candido, E. Pedicillo, M. Robbiati, Y. P. Tan,

J. Wilkens, I. Roth, J. I. Latorre, and S. Carrazza, Qi-

bolab: an open-source hybrid quantum operating system,

Quantum 8, 1247 (2024).

[41] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens,

I. Roth, and S. Carrazza, Towards an open-source frame-

work to perform quantum calibration and characterization

(2023), arXiv:2303.10397 [quant-ph].

[42] https://github.com/qiboteam/qibo.

[43] https://github.com/qiboteam/adiabatic-fit.

[44] M. Robbiati, J. Cruz-Martinez, and S. Carrazza, adabatic-

fit (2023).

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1038/s42005-022-00887-2
https://doi.org/10.1038/s42005-022-00887-2
https://arxiv.org/abs/2404.14501
https://arxiv.org/abs/2404.14501
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://api.semanticscholar.org/CorpusID:44139669
https://api.semanticscholar.org/CorpusID:44139669
https://arxiv.org/abs/2402.17667
https://doi.org/10.1103/physreva.103.012405
https://doi.org/10.1103/physreva.103.012405
https://doi.org/10.1063/1.2190898
https://doi.org/10.1063/1.2190898
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-08-17-777
https://doi.org/10.22331/q-2022-08-17-777
https://doi.org/10.21468/SciPostPhys.7.6.075
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/2106.06173
https://doi.org/10.22331/q-2024-02-12-1247
https://arxiv.org/abs/2303.10397
https://github.com/qiboteam/qibo
https://github.com/qiboteam/adiabatic-fit
https://github.com/qiboteam/adiabatic-fit
https://github.com/qiboteam/adiabatic-fit

	Determining probability density functions with adiabatic quantum computing
	Abstract
	Introduction
	Methodology
	Model regression with adiabatic quantum evolution
	Learning empirical cumulative density functions
	Adiabatic evolution setup
	Training of the adiabatic evolution

	Deriving probability functions from quantum circuits
	Generalizing the evolution to any time
	Circuit representation
	From the CDF to the PDF

	Validation
	Sampling known distributions
	Density estimation of simulated high energy physics data
	Benchmark with KDE methods

	Hardware
	Conclusion
	Acknowledgments
	Declarations
	References

