

Search for resonances in light-by-light scattering using the forward proton detectors at the LHC-ATLAS

ATLAS-CONF-2023-002

La Thuile 2023 **Gen Tateno** (ICEPP UTokyo) on behalf of the ATLAS Collaboration

Light-by-light scattering @ LHC

Electric field around LHC beam proton is regarded as photons \rightarrow Use LHC as a $\gamma\gamma$ collider

SM $\gamma\gamma \to \gamma\gamma$ observed in lead ion collisions

In *pp* collisions, SM $\gamma\gamma \rightarrow \gamma\gamma$ has too small cross section... But BSM can enhance it!

e.g. Axion-like particle (ALP) (assumed for signal modeling)

AFP detector

In the $\gamma\gamma \rightarrow \gamma\gamma$ event, final state proton can be intact (not broken)

(Re-hadronization into proton may occur)

AFP detector

In the $\gamma\gamma \rightarrow \gamma\gamma$ event, final state proton can be intact (not broken) \rightarrow Use ATLAS forward proton (AFP) detectors AFP

AFP detector

In the $\gamma\gamma \rightarrow \gamma\gamma$ event, final state proton can be intact (not broken) \rightarrow Use ATLAS forward proton (AFP) detectors

Purpose and main strategy

Diphoton resonance search using AFP (Data is 14.6 fb⁻¹ from runs in 2017) Select events where ξ_{AFP} is close to $\xi_{\gamma\gamma}$: matching AFP

Event selection

 $\star \xi_{AFP}$

High

range

acceptance

AFP

~+200 m

- 1. Require diphoton to be back-to-back Acoplanarity $A_{\phi}^{\gamma\gamma} \equiv |\Delta\phi|/\pi < 0.01$
- 2. Require ξ_{AFP} in the high acceptance range $0.035 < \xi_{AFP} < 0.08 \rightarrow \xi_{\gamma\gamma}$ range is also limited

Statistical modeling

s+b unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distribution

Signal yield modeling

Signal yield

s+b unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distribution

Signal PDF

BG PDF BG yield

Signal yield modeling

()

s+b unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distribution

Signal PDF Signal yield BG PDF BG yield $\mathcal{F}(m_{\gamma\gamma}; \boldsymbol{\sigma}_X(\boldsymbol{\mu}), m_X, N_b, \boldsymbol{a}) = f_X(m_{\gamma\gamma}; \boldsymbol{x}_X(m_X)) N_X(\boldsymbol{\sigma}_X(\boldsymbol{\mu}); m_X) + f_b(m_{\gamma\gamma}, \boldsymbol{a}) N_b$

Background modeling

s+b unbinned maximum likelihood fit to the $m_{\nu\nu}$ distribution

Signal PDF Signal yield **BG PDF** BG yield $\mathcal{F}(m_{\gamma\gamma}; \boldsymbol{\sigma}_{X}(\boldsymbol{\mu}), m_{X}, N_{\mathrm{b}}, \boldsymbol{a}) = f_{X}(m_{\gamma\gamma}; \boldsymbol{x}_{X}(m_{X})) N_{X}(\boldsymbol{\sigma}_{X}(\boldsymbol{\mu}); m_{X}) + f_{\mathrm{b}}(m_{\gamma\gamma}, \boldsymbol{a}) N_{\mathrm{b}}$

То

- determine parameters *a*
- validate this form
- evaluate uncertainty on signal sterngth μ including
- actual detector response
- fake photons,

Create fully data-driven combinatorial BG sample

12

Photons and protons are recorded for each event

Photons and protons are recorded for each event

Reassignment of protons to diphotons

 Reproduce the coincident matching between γγ and proton

- Suppress the single-vertex BG and signal-contamination in data
- → Pure combinatorial BG sample

14

Photons and protons are recorded for each event

15

Try other combination of the reassignment

Use all possible combinations of reassignment

BG PDF initial parameters are determined

Search results

18

CL_s limit @ 95% CL 100% ALP $\rightarrow \gamma \gamma$ branching ratio is assumed

19

CL_s limit @ 95% CL 100% ALP $\rightarrow \gamma\gamma$ branching ratio is assumed

CL_s limit @ 95% CL 100% ALP $\rightarrow \gamma \gamma$ branching ratio is assumed

"At least one" matching enhances the mass acceptance

Summary

- Search for diphoton resonance in light-by-light scattering
- ATLAS Run 2 experiment (14.6 fb⁻¹) with AFP detector First search for BSM with AFP
- Matching between $\gamma\gamma$ and proton
- "At least one" matching requirement enhances the acceptance
- No excess was observed
- Exclusion limits are set on cross section and coupling constant
- CONF note: <u>ATLAS-CONF-2023-002</u>

Thank you for listening!

Backup slides

Acoplanarity distribution

ξ_{AFP} distribution

$\xi_{\gamma\gamma}$ distribution

Statistical modeling

26

• Likelihood Data $\underline{Extended}$ $L(\mu, \nu; m_X, \{m_{\gamma\gamma,i}\}) = e^{-(N_X(\mu) + N_b)} \left[\prod_{i=1}^M \mathcal{F}(m_{\gamma\gamma,i}; \sigma_X(\mu), m_X, N_b, a, \theta)\right] \frac{\underline{Systematics}}{\prod_{\vartheta \in \Theta} e^{-\vartheta^2/2}}$

• PDF

$$\mathcal{F}(m_{\gamma\gamma}; \boldsymbol{\sigma}_{X}(\boldsymbol{\mu}), m_{X}, N_{b}, \boldsymbol{a}, \boldsymbol{\theta})$$

$$= f_{X}\left(m_{\gamma\gamma}; \boldsymbol{x}_{X}(m_{X}, \boldsymbol{\theta}_{CB})\right) N_{X}\left(\boldsymbol{\sigma}_{X}(\boldsymbol{\mu}); m_{X}, \boldsymbol{\theta}_{N_{X}}\right) + f_{b}\left(m_{\gamma\gamma}, \boldsymbol{a}\right) N_{b}$$
Signal PDF Signal yield BG PDF BG yield

- Signal yield $N_{X}(\sigma_{X}(\mu); m_{X}, \theta_{N_{X}})$ $= L_{\text{int}} \sum_{i \in \{\text{EL}, \text{SD}, \text{DD}\}} (\mu \sigma_{\text{std}}^{i}(m_{X}) \varepsilon_{i}(m_{X}) K_{\varepsilon i}(m_{X}, \theta_{\varepsilon i}) K_{S^{2}i}(\theta_{S^{2}i})) \prod_{k \in S_{1}} K_{k}(\theta_{k}) + \delta_{\text{BG}}(m_{X}) \theta_{\text{BG}}$
- μ : Signal strength (unit: $f^{-1} = 0.05 \text{ TeV}^{-1}$)

Signal PDF modeling

s+b unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distribution

Signal PDF Signal yield BG PDF BG yield $\mathcal{F}(m_{\gamma\gamma}; \boldsymbol{\sigma}_X(\boldsymbol{\mu}), m_X, N_b, \boldsymbol{a}) = f_X(m_{\gamma\gamma}; \boldsymbol{x}_X(m_X)) N_X(\boldsymbol{\sigma}_X(\boldsymbol{\mu}); m_X) + f_b(m_{\gamma\gamma}, \boldsymbol{a}) N_b$

Double-sided crystal ball (DSCB) function

- ALP natural width is negligible
- 6 parameters (x_X)
- Each of them is parametrized as a function of m_X using signal MC

 \rightarrow Modelled signal shape continuously varies with m_X

Signal efficiency × acceptance

Background modeling uncertainty

Signal yield limit

3

Stronger limits than CMS-TOTEM in wide range of mass though ATLAS has 7 times lower luminosity – difference is:

"at least one" matching

