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In this paper we conduct a general, model-independent analysis of the running of gauge couplings
within closed string theories. Unlike previous discussions in the literature, our calculations fully
respect the underlying modular invariance of the string and include the contributions from the
infinite towers of string states which are ultimately responsible for many of the properties for which
string theory is famous, including an enhanced degree of finiteness and UV/IR mixing. In order
to perform our calculations, we adopt a formalism that was recently developed for calculations of
the Higgs mass within such theories, and demonstrate that this formalism can also be applied to
calculations of gauge couplings. In general, this formalism gives rise to an “on-shell” effective field
theory (EFT) description in which the final results are expressed in terms of supertraces over the
physical string states, and in which these quantities exhibit an EFT-like “running” as a function
of an effective spacetime mass scale. We find, however, that the calculation of the gauge couplings
differs in one deep way from that of the Higgs mass: while the latter results depend on purely on-
shell supertraces, the former results have a different modular structure which causes them to depend
on off-shell supertraces as well. In some regions of parameter space, our results demonstrate how
certain expected field-theoretic behaviors can emerge from the highly UV/IR-mixed environment.
In other situations, by contrast, our results give rise to a number of intrinsically stringy behaviors
that transcend what might be expected within an effective field theory approach.
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I. INTRODUCTION AND MOTIVATION

String theory is widely regarded as providing the ul-
timate “UV completion” of theories which successfully
describe experimental phenomena at lower energy scales.
Such theories include the Standard Model as well as its
various extensions. However, it is not always clear how
one might draw an explicit map between these full string
theories on the one hand and observable low-energy phe-
nomena on the other. Because the fundamental scale of
string theory is normally considered to be unreachably
remote, and because the particle spectrum of the string
is generally quantized in units of this scale, one tradi-
tionally attempts to extract low-energy phenomenologi-
cal predictions from string theory by focusing on the ef-
fects associated with only the lightest of the string modes.

Unfortunately, this approach towards string phe-
nomenology robs us of the full power of string theory to
provide new insights into low-energy phenomena. String
theory, as a theory of extended objects, does not merely
produce light states — it also gives rise to infinite towers
of massive states which are also an intrinsic part of the
string spectrum. Indeed, the “stringiness” of string the-
ory — i.e., the fundamental features of string theory that
transcend our field-theoretic expectations and therefore
have the power to suggest new solutions to old puzzles —
lie within these states. By disregarding these states and
their accumulated contributions to low-energy physics,
we are severing the link between the UV-complete the-
ory and its low-energy phenomenology. This reduces us
to working within an effective field theory (EFT) whose
relevant operators are very hard to explain.
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For this reason, it may be argued that a proper ap-
proach to understanding many of the low-energy phe-
nomenological implications of string theory is one in
which these infinite towers of states are retained and their
effects are incorporated in a natural way throughout our
calculations. Indeed, the effects of such states are likely
to be the most relevant for fundamental phenomenolog-
ical questions — such as hierarchy problems — which
focus on the difficulties of maintaining a peaceful coexis-
tence of both light and heavy scales within a quantum-
mechanical universe.

One clue as to the power of these infinite towers of
states is that string theories generally have finiteness
properties that transcend what can be expected in field
theory. One normally attributes these finiteness prop-
erties to the extended nature of the string — a feature
lacking in theories based on point particles — but this
extended nature of the string is precisely what gives rise
to these infinite towers of states. For perturbative closed
strings (which will be our main focus throughout this
paper), worldsheet modular invariance is the exact fun-
damental symmetry which governs these states and their
interactions. Thus, modular invariance holds the key to
much of the stringiness of string theory and the finiteness
(or softened divergences) associated with its low-energy
phenomenological predictions. However, modular invari-
ance also leads to much more, including a unique and
surprising form of UV/IR mixing that can severely dis-
tort the validity of effective field theories (EFTs), even at
low energies where one might have assumed EFT-based
approaches to hold.

For this reason, it is important to develop fully
modular-invariant methods of extracting low-energy phe-
nomenological predictions from string theory. By their
very nature, these are methods in which the full towers
of string states play an important role and cannot be
neglected. It is then hoped that the inclusion of these
infinite towers of states and the preservation of the un-
derlying modular symmetry can lead to new ways of ap-
proaching long-standing phenomenological puzzles. In-
deed, as originally advocated in Ref. [1], this might be
one route towards developing non-traditional approaches
towards addressing hierarchy problems.

In this paper, we shall calculate the running of the
one-loop gauge couplings within string theory. This is an
old and classic topic within string phenomenology, but we
shall employ a formalism for doing this calculation which
fully respects modular invariance and which thereby in-
corporates all of the “magic” to which string theory gives
rise. We shall begin in Sect. II by reviewing the frame-
work [2] within which we shall perform this calculation.
We shall also summarize the prior results in this field
and highlight the ways in which our approach (and our
eventual results) will be different. Sect. III then forms
the main body of this paper. Within this section, we
shall systematically perform our calculations, ultimately
developing a completely general picture of how gauge
couplings run within four-dimensional closed string the-

ories. Along the way we shall also discuss several new
results which may have wider applicability beyond our
specific gauge-coupling calculation. These include new
theorems concerning the cancellations of various super-
traces of modular-invariant operators. We shall also dis-
cuss the effects of entwinement , a phenomenon which
emerges within the context of our gauge-coupling calcu-
lation and which shifts the meaning of “physicality” when
characterizing different states in the string spectrum. We
shall then summarize our main results and possible di-
rections for future research in Sect. IV.

II. PRELIMINARIES: OUR FRAMEWORK
AND CONNECTION TO PRIOR LITERATURE

In Ref. [2], a framework was developed for perform-
ing calculations of the Higgs mass in a fully modular-
invariant way. As discussed there, this framework is com-
pletely general and can be applied to any string model
(vacuum state). Moreover, although the focus within
Ref. [2] centered around calculations of the Higgs mass,
this framework can be applied to numerous quantities of
phenomenological interest, including the running of the
gauge couplings. Explicitly performing such a calculation
is thus the primary goal of this paper.

In this section, we shall begin by reviewing the salient
features of this framework and the various steps that are
involved. With these steps explicitly elucidated, we shall
then discuss prior calculations of the running gauge cou-
plings that exist in the literature — including the classic
calculation of Kaplunovsky [3] — and discuss precisely
which parts of those prior calculation preserve modular
invariance and which parts do not. We shall then outline
the primary goals of this paper within this language.

A. Our analysis framework

Within the framework developed in Ref. [2], the calcu-
lation of a given low-energy quantity ζ proceeds through
a number of distinct steps. These steps are illustrated
schematically in Fig. 1. For clarity we shall now enumer-
ate these steps individually although many of them are
deeply connected to each other and may be performed
simultaneously. Explicit examples of each step will be
given later in this section.

1. As a starting point, one constructs what may be
considered to be the “string-theoretic” equivalent
of the one-loop field-theoretic contributions to the
relevant quantity ζ coming from each of the string
states. In doing this, one must sum over the con-
tributions from the infinite towers of string states,
regardless of their masses. This is a sum of the con-
tributions from the entire tower of states as they
propagate around the worldsheet torus, with these
contributions weighted appropriately by the naive
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FIG. 1. Distinct steps associated with our analysis of an arbitrary physical quantity, as discussed in the text. The particular
sequence of steps to be followed depends on the goal of the analysis. Particularly relevant results are those in the lower portions
of this sketch, in which our physical quantity is expressed purely in terms of contributions from on-shell, physical string states
and also in a form which runs as a function of a spacetime mass scale µ.

vertex factors corresponding to their charges and
couplings. However, even though we have summed
over the entire string spectrum, the resulting ex-
pression may not be modular invariant.

2. Second, if needed, one then performs a “modular
completion” of the above expression for ζ. This
will generally require the introduction of additional
terms which may be interpreted as coming from ex-
tra intrinsically stringy effects such as gravitational
backreactions. In such situations, the tight con-
straints of modular invariance render these modu-
lar completions fairly unique. Thus, after this step,
one has obtained a general, fully modular-invariant,
string-theoretic expression for the quantity ζ under
study.

One could, in principle, stop here. However, one natu-
ral question that arises is whether this expression for ζ is
finite, or whether it might diverge in certain string back-
grounds. Because this quantity is fully modular invari-
ant, this expression will already exhibit the elimination
or softening of the divergences that would have otherwise
been expected in field theory. Thus, the divergence struc-
ture of ζ might be very different from what one would
expect in ordinary quantum field theory.

We then have different options, depending on whether
ζ is finite or divergent.

3. If the quantity resulting from Step 2 is potentially
divergent, one must regulate this quantity in a
manner which is consistent with modular invari-
ance. (Indeed, any regulator which breaks mod-
ular invariance is likely to introduce precisely the
sorts of spurious effects we are hoping to avoid.)
This passage from the divergent quantity ζ to the

regulated quantity ζ̂ is indicated as Step 3 within
Fig. 1. Thus, after this step, one has a fully string-
theoretic (and hence modular-invariant) expression

for ζ which is also finite. We shall let ζ̂ denote this

finite, regulated quantity. In general, ζ̂ will depend
on a regulator parameter a or collections of param-

eters {ai}. The resulting regulated quantity ζ̂(ai)
will then be finite for all {ai} except those limit-
ing values of ai which correspond to removing the
regulator.

4. Alternatively, if the quantity resulting from Step 2
is finite, we have two possibilities. One possibility
is to nevertheless choose to regulate this quantity in
the same way as in Step 3. This then deforms ζ into

another finite quantity ζ̂(ai) which remains finite
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even in the limit when the regulator is removed.
This is shown as Step 4 within Fig. 1.

5. Finally, if the quantity resulting from Step 2 is fi-
nite, an alternative possibility is to simply recog-
nize that no regulation is needed. In that case, one
can forego the regulator entirely and simply retain
the expression obtained in Step 2. We indicate this
choice as Step 5 within Fig. 1.

At this stage (green boxes in Fig. 1), we have a quan-

tity ζ̂ which is fully modular invariant and finite. This
quantity will depend on regulator parameters ai if we
have employed Steps 3 or 4, but will be independent of
ai if we have followed Step 5.

There are now several different options for how one
might proceed. These different paths ultimately corre-

spond to recasting the finite expression ζ̂ obtained in
Steps 3 through 5 in different forms that are useful for
different purposes.

6. If we are interested in extracting an EFT-like “run-

ning” for ζ̂(ai), we can start from Step 3 or Step 4
and proceed to identify an appropriate combination
f(ai) of the ai-parameters with a spacetime scale
µ. As discussed in Ref. [2], such an identification
breaks modular invariance by adopting a particular
EFT-like direction for spacetime “UV” versus “IR”
physics (i.e., a particular UV/IR direction for µ)
in terms of the otherwise UV/IR-blind worldsheet
combination f(ai). This step nevertheless respects
all other aspects of the modular symmetry, and can
be viewed as merely breaking the modular sym-
metry spontaneously . One then obtains a running

quantity ζ̂(µ). Indeed, this is the step at which
we first introduce the notion of a spacetime energy
scale into the theory.

All expressions up to this point receive explicit contri-
butions from the full towers of string states. These in-
clude not only physical, “on-shell” level-matched states
(whose left- and right-moving mass contributions are
equal), but also unphysical “off-shell” states (whose left-
and right-moving mass contributions are unequal). Note
that the off-shell states can only appear within loops,
and thus cannot serve as in-states or out-states in any
string amplitude. Indeed, it is the on-shell states which
have field-theory analogues, while the off-shell states are
intrinsically stringy. Thus, if our goal for comparison
purposes is to recast our string results into an on-shell
form which is as close as possible to what might arise in

field theory, we would like to rewrite ζ̂ in terms of the
contributions from only the physical, on-shell states as
fully as possible.

To do this, we can utilize certain methods derived
from modular-function theory which involve the so-called
“Rankin-Selberg” transform [4–6]. The mathematics be-
hind this transform is reviewed in Ref. [2] and ultimately
allows us to express a one-loop string-theoretic amplitude

as the residue of a deformed field-theoretic amplitude,
evaluated at a location in the complex plane associated
with the deformation parameter where the field-theoretic
amplitude has a pole. This relation between a string am-
plitude and a (deformed) field-theory amplitude then en-
ables us to obtain an expression for the string amplitude
which involves supertraces over the contributions from
only the physical string states.

7. If we perform a Rankin-Selberg transform starting
from the results of Step 3, 4, or 5 (green boxes
in Fig. 1), we then obtain corresponding results
(orange boxes in Fig. 1) which involve supertraces
over only the physical string states. Such results
preserve modular invariance fully and represent an
alternative — and often more transparent — for-

mulation for ζ̂ which enables a direct comparison
with what might have been expected in field theory.
In particular, if we apply the Rankin-Selberg trans-
form to the results of Steps 3 or 4, we obtain results
which also depend on our regulator parameters ai.
However, if we apply the Rankin-Selberg transform
to the results of Step 5, our result depends on the
physical supertraces only and does not involve any
regulator parameters (orange box with red border
in Fig. 1). This may then be viewed as our final re-

sult for the string quantity ζ̂ — one which is fully
modular invariant and involves only the supertraces
over physical string states.

8. Alternatively, if we calculate the Rankin-Selberg
transform of the results of Step 6 (blue box in
Fig. 1) — or equivalently identify f(ai) with µ
within the results of Step 7 (upper two orange

boxes in Fig. 1) — we obtain an expression for ζ̂(µ)
in which the supertraces over the physical string

states govern the running of ζ̂(µ). This is indicated
by the purple box with the red border in Fig. 1. As
discussed in Ref. [2], these results preserve modu-
lar invariance as fully as possible and yet resemble
as closely as possible the running of physical quan-

tities in field theory. This result thus describes ζ̂
as a running quantity, where the running is now
governed purely by the supertraces of the physical

string states. This formulation for ζ̂(µ) is partic-
ularly useful for studying the maximal extent to

which an EFT description of ζ̂(µ) at low energies
emerges and remains valid within the full modular-
invariant string theory.

The most important results of this analysis are those
which are indicated in the red-bordered boxes in the
lower right portion of Fig. 1. As discussed above, these
results respectively express our original quantity in terms
of the supertraces over only the physical states in the
string spectrum, and also describe how this quantity runs
as a function of a spacetime energy scale µ. Indeed, the
limit in which the regulator is removed will typically cor-
respond to taking the deep-IR limit µ → 0 (or equiv-
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alently the deep-UV limit µ → ∞, given that modular
invariance requires an invariance under the scale duality
µ → M2

s /µ, as originally pointed out in Ref. [2]). In
this limit, the result of Step 8 reduces to the regulator-
independent result of Step 7.

Even though we have broken this analysis procedure
into distinct steps, we stress that many of these steps
are deeply connected and can be performed simultane-
ously. For example, as discussed in Ref. [2], it is possible
to proceed directly from the results of Step 2 to those
of Step 7 through a so-called “regulated Rankin-Selberg”
transform. Likewise, if we are not interested in interpret-
ing our physical quantities as “running” with respect to
a spacetime scale µ, we need never be concerned with
Step 6 or Step 8.

B. Prior literature: Results to date

To date, this procedure has been applied to two differ-
ent quantities ζ of phenomenological interest: the one-
loop cosmological constant Λ, and the one-loop Higgs
mass m2

φ. Here the Higgs field φ is identified as any scalar
field φ whose fluctuations can affect the masses of other
string states throughout the string spectrum. We shall
now present some of the main results of these prior anal-
yses. These results will not only serve to illustrate the
different steps of this procedure but will also be relevant
later in this paper.

For the one-loop closed-string cosmological constant
(vacuum energy) Λ, Step 1 requires that we begin with
the standard expression [7] which is nothing other than
the one-loop string partition function Z(τ) integrated
over the fundamental domain F of the modular group.
Indeed, if we define the standard four-dimensional one-
loop string amplitude for any operator insertion A as

〈A〉 ≡
∫
F

d2τ

τ2
2

τ−1
2

∑
m,n

(−1)F Amn q
mqn , (2.1)

then the corresponding one-loop vacuum energy Λ is
nothing but

Λ = − M
4

2
〈1〉 . (2.2)

Here τ is the one-loop torus modular parameter with
real and imaginary parts τ1,2 respectively; q ≡ e2πiτ ;
F is the fundamental domain of the modular group;
the sum

∑
m,n is over all discrete string states with

right- and left-moving worldsheet energies (m,n), nor-
malized so that the corresponding spacetime mass M2 is
given by M2 = 1

2
(M2

R + M2
L) = 2

α′ (m + n) where the
string scale Ms and reduced string scaleM are given by
Ms ≡ 2πM = 1/

√
α′; F is the spacetime fermion num-

ber of each state contributing in the sum; and Amn are
the eigenvalues of the operator A when acting on each
(m,n) string state. Note that d2τ/τ2

2 is the modular-
invariant measure for the τ -integration, while the extra

prefactor τ−1
2 within the integrand of Eq. (2.1) emerges

from the integration over the continuum of modes associ-
ated with the uncompactified spacetime coordinates and
reflects the fact that the four-dimensional string partition
function, prior to insertions, has modular weight k = −1.
The curved shape of the lower portion of the fundamental
domain F implies that the amplitude in Eq. (2.1) receives
contributions from not only the physical (level-matched)
“on-shell” string states with m = n but also the unphys-
ical (intrinsically stringy) “off-shell” states with m 6= n.
Indeed, we see from Eq. (2.2) that for the cosmologi-
cal constant Λ the only “insertion” into the partition-
function in Eq. (2.1) is given by A = 1, the identity
operator. This makes sense for a vacuum energy, since
all states contribute equally and independently of their
possible charges or other characteristics.

The result in Eq. (2.2) thus represents Step 1. Given
that A = 1, this expression is fully modular invariant
and no modular completion is needed. This result then
carries over to Step 2. Proceeding to Step 3, we ask
whether this quantity is divergent. In principle, there are
indeed certain states within the string spectrum which
could cause divergences: these are physical tachyons for
which m = n < 0. Since the presence of such tachyons
destabilizes the theory, we shall restrict our attention to
string theories in which such states are absent. It then
follows that Λ is finite. According to the procedure we
have sketched in Fig. 1, we then have two options which
amount to whether or not we wish to impose a regulator.
For considerations of Λ alone, there is no need to do so,
since Λ is already finite. We shall therefore carry this
expression for Λ unchanged into Step 5.

Our final step (Step 7 within Fig. 1) is to evaluate the
Rankin-Selberg transform of the expression in Eq. (2.2).
This is not difficult, and leads immediately to a result
first derived in Ref. [8]:

Λ =
1

24
M2 StrM2 (2.3)

where our supertrace ‘Str’ notation indicates a statistics-
weighted trace over the spectrum of only physical string
states [8]:

StrA ≡ lim
y→0

∑
states i

(−1)Fi Ai e
−yα′M2

i (2.4)

with the index i labeling the different physical states in
the spectrum. This definition of the supertrace will be
discussed further in Sect. III. Intimately connected with
the result in Eq. (2.3) and emerging from the same anal-
ysis is also an additional constraint [8]

Str1 = 0 . (2.5)

The results in Eqs. (2.3) and (2.5) hold for any tachyon-
free closed string theory in four spacetime dimensions and
even generalize [8] to other dimensionalities as well, with
StrM2β = 0 for all 0 ≤ β ≤ 1

2
(D−4) in general and with
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ΛD ∼M2 StrMD−2 where ΛD is the corresponding one-
loop cosmological constant in D spacetime dimensions.

These results are truly remarkable. In ordinary four-
dimensional quantum field theory, we would expect that
Λ would be a divergent quantity for which Str1 gov-
erns the quartic divergence and StrM2 governs the
quadratic divergence. However, we now see that in a four-
dimensional tachyon-free modular-invariant string theory
Λ is actually finite and moreover that StrM2 gives its
value. Likewise, Str1 actually vanishes.

These results are the consequence of a governing “mis-
aligned supersymmetry” [8, 9] which has been proven
to exist within the spectra of all tachyon-free modular-
invariant string theories. Indeed, this symmetry indi-
cates that bosonic and fermionic string states must be
distributed across the infinite string spectrum in such a
way that the spectrum is either exactly spacetime su-
persymmetric (a “degenerate” form of misaligned super-
symmetry) or configured in a precise mathematical way
wherein any surplus of bosonic states at a given mass
level triggers the existence of an even greater surplus of
fermionic states at an even higher mass level, which in
turn triggers the existence of an even larger surplus of
bosonic states at an even higher mass level, and so forth.
The sizes of these alternating surpluses grow exponen-
tially as a function of mass, thereby explaining how even
a non-supersymmetric string can remain consistent not
only with the Hagedorn transition but also with finite
supertrace results such as that in Eq. (2.3). Misaligned
supersymmetry thus lies at the heart of the remarkable
finiteness properties of closed strings [1, 8, 9] and will
ultimately underpin the results of this paper as well.

To date, the only other physical quantity which has
been studied within the full framework sketched in Fig. 1
is the Higgs mass m2

φ. This analysis was performed in

Ref. [2], and we shall outline the salient results here. In
general, as stated above, the Higgs will be viewed as any
state whose VEV affects the masses of at least some of
the corresponding string states. We shall work within
the Higgsed phase of the theory and accordingly assume
that the Higgs field has a non-zero VEV and is already
sitting at the minimum of its potential. Clearly the Higgs
mass then corresponds to the curvature of this potential
at that minimum. In order to calculate this curvature,
we can regard the masses M2 of all string states in the
Higgsed phase to be functions of φ, where φ parametrizes
the fluctuations of the Higgs field around this minimum.
In complete analogy to Eq. (2.2), it then turns out that [2]
the one-loop Higgs mass can then be written as

m2
φ = − M

2

2

〈
τ2X1 + τ2

2 X2

〉
+ ... (2.6)

where the insertions X1 and X2 into the partition func-

tion sum are given by

X1 ≡ − 1

4π
∂2
φM

2

∣∣∣∣
φ=0

X2 ≡
1

16π2M2
(∂φM

2)2

∣∣∣∣
φ=0

. (2.7)

These insertions thus tally the effective Higgs “charges”
(or equivalently the contributions to the curvature of the
effective Higgs potential) from each state. Indeed, these
are the strengths with which each state couples to the
Higgs, as measured by the degree to which the mass of
the state responds to fluctuations of the Higgs VEV. The
result in Eq. (2.6) can thus serve as the starting point
(Step 1) for our analysis.

As shown in Ref. [2], the insertion of these non-trivial
Xi operators breaks the modular invariance due to a sub-
tle modular anomaly. As a result, a modular completion
is needed. It turns out [2] that the appropriate com-
pletion in this case can be achieved by introducing an
additional constant into the operator insertions, so that
Eq. (2.6) now takes the fully modular-invariant (com-
pleted) form

m2
φ = − M

2

2

〈
ξ

4π2
+ τ2X1 + τ2

2 X2

〉
(2.8)

where ξ is an O(1) parameter which describes the way
in which the particular Higgs field under study is embed-
ded within the corresponding string model. Indeed, this
extra term can be interpreted as arising from the univer-
sal gravitational backreactions associated with the direct
Higgs couplings to the individual string states. Eq. (2.8)
is therefore fully modular invariant and serves as the re-
sult of Step 2. Note that use of our result in Eq. (2.2)
enables us to rewrite Eq. (2.8) in the form

m2
φ =

ξ

4π2

Λ

M2
− M

2

2

〈
τ2X1 + τ2

2 X2

〉
, (2.9)

thereby indicating the existence of a surprising string-
theoretic connection between the Higgs mass and the cos-
mological constant [2]. It is intriguing that such relations
join together precisely the two quantities whose values lie
at the heart of the two most pressing hierarchy problems
in modern physics.

In general, the quantity in Eq. (2.9) can diverge at
most logarithmically. This is also a striking result, in-
dicating that modular invariance has significantly soft-
ened what would otherwise have been a field-theoretic
quadratic divergence of the Higgs mass. Moreover, we
see that this quantity is actually finite unless the string
model in question happens to contain a net number of
massless X2-charged string states. For simplicity, we
shall therefore proceed under the assumption that the net
number of massless X2-charged string states vanishes in
the string model under discussion, and merely note that
the analysis presented in Ref. [2] is completely general
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and considers all possible cases, including those in which
the net number of such states is non-zero.

Given these assumptions, we can now continue to ex-
press these results in different forms. One possibility is to
proceed directly through Step 5 towards Step 7 by taking
the Rankin-Selberg transform of our modular-complete
result in Eq. (2.9). In this way, one finds that the Higgs
mass can generally be expressed in terms of the contri-
butions from only the physical string states [2]:

m2
φ =

1

24
M2 Str

[
D2
φM

2(φ)
] ∣∣∣∣
φ=0

(2.10)

where we have defined the modular-covariant double-φ
derivative

D2
φ ≡ ∂2

φ +
ξ

4π2M2
. (2.11)

The result in Eq. (2.10) is thus the Higgs-mass analogue
of the Λ-result in Eq. (2.3).

Another possibility is to analyze how our string-
theoretic Higgs mass runs as a function of a spacetime
mass scale µ. For this purpose we start from the result
in Eq. (2.9) and proceed towards Step 4 by introduc-
ing a suitable regulator. As discussed in Ref. [2], there
are many requirements on such regulators, chief among
them that they be completely modular invariant. One
compelling class of such regulators can be formulated by
deforming our one-loop amplitudes

〈A〉 → 〈A〉Ĝ (2.12)

where 〈A〉Ĝ is defined exactly as in Eq. (2.1) except
that the integrand is now multiplied by an appropriate

modular-invariant regulator function Ĝ(ai, τ), with ai de-
noting the internal regulator parameters. We then must

demand that Ĝ(ai, τ) exhibit certain properties in order
to ensure that we have a sensible regulator. In particular,
for such a regulator, we demand that there exist a com-
bination or function f(ai) of regulator parameters such
that taking f(ai) → 0 effectively removes the regulator
while taking any non-zero value of f(ai) allows the regu-
lator to suppress the unwanted divergences but otherwise
leave the theory intact as far as possible. Given that all
such divergences must come from those portions of the
integration region in which τ → τcusp (where τcusp are the
so-called “cusp” points τcusp = i∞ or τcusp = p/q, where
p, q ∈ Z), we thus have three requirements for suitable

modular-invariant regulator functions Ĝ(ai, τ):

• For all f(ai) > 0, we require that Ĝ(ai, τ) → 0
sufficiently rapidly as τ → τcusp. This enables our
regulator to suppress divergences and yield a finite
one-loop string amplitude.

• For all f(ai) > 0, we also require that Ĝ(ai, τ) ≈ 1
when τ is sufficiently far away from the cusp points.
This ensures that our regulator, while suppressing
divergences near the cusp points, leaves the remain-
der of the theory intact as much as possible.

• Finally, as f(ai)→ 0, we require that Ĝ(ai, τ)→ 1
for all τ . This ensures the existence of a limit in
which our regulator is effectively removed and our
original theory is obtained.

We shall also need to require for consistency that Ĝ(τ)
satisfy an additional algebraic identity [2] whose signifi-
cance will be discussed shortly.

In Ref. [2], a suitable modular-invariant regulator func-

tion Ĝ(ai, τ) meeting all of these criteria was developed.
This regulator function will be discussed in detail in
Sect. III. However, using this regulator, we can then
take Step 4 by evaluating

m̂2
φ(ρ, a) = − M

2

2

〈
ξ

4π2
+ τ2X1 + τ2

2 X2

〉
Ĝ
. (2.13)

We then follow Step 6 by mapping to a spacetime mass
scale µ via the identification [2]

µ2 = f(ai)M
2
s , (2.14)

after which we follow Step 8 by evaluating the Rankin-
Selberg transform. A detailed discussion of the Rankin-
Selberg procedure is provided in Ref. [2]. The end result
of this analysis yields our final on-shell result for the run-
ning Higgs mass, expressed completely in terms of super-
traces over only physical string states. Indeed, this result
takes the form

m̂2
φ(µ) = m̂2

φ(µ)

∣∣∣∣
X

+
ξ

4π2M2
Λ̂(µ) (2.15)

where the two different terms on the right side represent
the contributions ultimately stemming from the different
terms in Eq. (2.8).

The algebraic forms of these final results [2] are fairly
complicated (involving infinite sums of Bessel functions)
and thus not particularly illuminating. However, the to-
tal result for the running Higgs mass m̂2

φ(µ) is plotted

in Fig. 3 of Ref. [2]. One important feature of this run-
ning is a “scale-duality” invariance [2] under µ→M2

s /µ.
As discussed in Ref. [2], the emergence of scale duality
is a general phenomenon, an unavoidable consequence of
modular invariance and its corresponding UV/IR sym-
metries.

The existence of scale duality nevertheless places an
additional constraint on potential regulator functions

Ĝ(ai, τ). Specifically, scale-duality symmetry in conjunc-
tion with the identification in Eq. (2.14) together require

that our regulator function Ĝ(ai, τ) also exhibit an invari-
ance under any transformations on the parameters ai for
which f(ai) → 1/f(ai). Phrased slightly differently, the
transformation f(ai) → 1/f(ai) must be a symmetry of
the regulator. Otherwise, it would not be possible to
identify a spacetime mass scale µ consistent with scale
duality. Thus, while a regular function without this ad-
ditional symmetry might have been sufficient if our only
goal were to tame divergences, this extra symmetry is
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required if we wish to further identify some combination
f(ai) of regulator parameters with a spacetime mass scale
µ and thereby express our results as quantities that run
with µ.

Given the explicit expressions for m̂2
φ(µ)

∣∣
X

and Λ̂(µ)

in Ref. [2], it is possible to verify that limµ→0 Λ̂(µ) = Λ,
as expected when the regulator is removed. Moreover, it
turns out that

m̂2
φ(µ)

∣∣∣∣
X

=
∂2

∂φ2
Λ̂(µ, φ)

∣∣∣∣
φ=0

. (2.16)

Indeed, as discussed in Ref. [2], this result holds indepen-

dently of the choice of regulator function Ĝ(ai, µ). Given
Eq. (2.15), we then have

m̂2
φ(µ) =

(
∂2
φ +

ξ

4π2M2

)
Λ̂(µ, φ)

∣∣∣∣
φ=0

= D2
φ Λ̂(µ, φ)

∣∣∣
φ=0

, (2.17)

whereupon taking the µ→ 0 limit we find

lim
µ→0

m̂2
φ(µ) = D2

φ Λ(φ)

∣∣∣∣
φ=0

=
1

24
M2 Str

[
D2
φM

2(φ)
] ∣∣∣∣
φ=0

, (2.18)

thereby matching the result for m2
φ from Step 7 in

Eq. (2.10). This matching is an important cross-check,
since taking µ → 0 corresponds to the removal of our
regulator. Indeed, pushing this further, we see that Λ
and m2

φ are related through the algebraic structure [2]{
Λ = Λ(φ)

∣∣
φ=0

m2
φ = D2

φ Λ(φ)
∣∣
φ=0

,
(2.19)

with this structure remaining intact even if we extend
these quantities to run as functions of µ. Finally, the
second of these relations suggests that we may view Λ(φ)
as a Higgs Coleman-Weinberg potential for φ (at least
locally). This is discussed further in Ref. [2].

C. Goals and results of this paper

As reviewed above, the one-loop cosmological constant
Λ and one-loop Higgs mass m2

φ have already been ana-
lyzed within the formalism we have presented, with the
central results outlined above. In this paper, by contrast,
our goal is to analyze a third quantity: the one-loop con-
tributions to the gauge couplings αi ≡ g2

i /(4π) associated
with the various gauge groups that might be present in
a given string model.

For the gauge couplings, it turns out that certain steps
in the above procedure have already been performed. In
a seminal early paper [3], Kaplunovsky considered the so-
called “threshold corrections” that are required to match

the full string gauge couplings to an EFT at one loop and
constructed an expression for such threshold corrections
which we may regard as completing Step 1. He recog-
nized that this quantity generally diverges due to the
contributions from certain massless states, and provided
a procedure for removing this divergence. Unfortunately,
although sufficient for certain purposes, this procedure
was not modular invariant. Indeed, we shall see that
even the starting point — the notion of a “threshold cor-
rection” — is not modular invariant, as it artificially sep-
arates the contributions of massless states from those of
massive states. This will be discussed further in Sect. III.

Later, in an important series of papers [10–12], Kir-
itsis and Kounnas revisited this issue and developed a
properly modular-invariant regulator for this calculation.
In so doing, Kiritsis and Kounnas implicitly completed
Steps 2 and 3. Indeed, the regulator which we shall em-
ploy in this paper (and which was employed in Ref. [2]) is
built upon the regulator they constructed. However, our
regulator has been generalized and modified in a certain
critical way which allows us to proceed to identify a cor-
responding spacetime mass scale µ for all values of the
regulator parameters ai and thereby express the gauge
couplings as running quantities [2]. Specifically, the reg-
ulator function used in Refs. [10–12] satisfied the two
bulleted requirements above but did not exhibit the re-
quired symmetry under f(ai)→ 1/f(ai) which is critical
for properly identifying a running spacetime mass scale
µ. This will be corrected in our analysis in Sect. III.

More importantly, however, the primary purpose of
this paper is to bring this analysis of the gauge couplings
to its natural conclusion. In particular, we shall complete
the remaining steps in our procedure outlined above, and
seek to obtain an expression for the gauge couplings in
terms of the supertraces of the contributions from only
the physical string states. Interestingly, we shall find
that this cannot be done for all terms in our expressions
because of the unique modular structure of the gauge
couplings. We shall therefore spend considerable time
discussing this issue, and we shall develop a procedure
through which these contributions can nevertheless be
written as supertraces over certain string states. We will
also study the running of the gauge couplings as func-
tions of a spacetime mass scale µ. This will enable us to
determine the properties — and also the limits of valid-
ity — for any associated EFT describing the behavior of
the gauge couplings in closed string theories. In particu-
lar, we will see how the running EFT emerges from our
prescription and evolves as various mass thresholds are
crossed.

III. GAUGE COUPLINGS IN STRING
THEORY: GENERAL TREATMENT

We now turn to the principal goal of this paper: to
utilize the methods outlined above in order to study the
behavior of the one-loop contribution to the gauge cou-
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pling gG corresponding to any spacetime gauge group G
in closed string theory. We shall normalize these cou-
plings such that the corresponding gauge-kinetic terms
are given by

L = − 1

4g2
G

F (G)
µν F (G)µν , (3.1)

and we shall isolate the one-loop contributions to gG by
evaluating these couplings gG to one-loop order and then
separating out the tree-level contributions. In general,
these quantities are related through

16π2

g2
G

∣∣∣∣total thru
one-loop

order

=
16π2

g2
G

∣∣∣∣
tree

+ ∆G (3.2)

where ∆G denotes the one-loop contribution to 16π2/g2
G.

Indeed, in string theory we know that gG|tree ∼ e−〈φ〉

where 〈φ〉 denotes the VEV of the dilaton φ. Our goal in
this paper is thus to study the properties of ∆G.

A. Operator insertions

In field theory, we know that ∆G receives contributions
from all of the states in our theory which transform in
non-trivial representations R of G. Indeed, for each such
state in the theory, the corresponding one-loop contribu-
tion to ∆G is given by b · trR(Q2

G), where

• Q2
G is the sum of the squares of the charges in the

Cartan subalgebra of G;

• the trace tallies the values of Q2
G over all the

states within the representation R (following the
convention that each CPT-conjugate particle/anti-
particle pair of states is counted only once); and

• the numerical coefficient b encapsulates the Lorentz
helicity properties of the state, with b =
{1/3, 2/3,−11/3} for Lorentz scalars, spinors, and
vectors respectively.

Indeed, we note that these b-coefficients are nothing but
b = −4(−1)F (S2 − 1/12) where S = {0, 1/2, 1} is the
Lorentz spin of the corresponding state and where F is
the spacetime fermion number.

Given these observations, it is straightforward to gen-
erate an analogous expression in string theory. Of course,
in string theory, our traces count all states in the theory
independently and thus tally each member of a CPT-
conjugate particle/anti-particle pair separately. With
this effective doubling of the conventions for our traces,
our field-theoretic b-coefficients are effectively rescaled
to become b = {1/6, 1/3,−11/6} for Lorentz scalars,
spinors, and vectors respectively, or equivalently b =
−2(−1)F (S2 − 1/12). At this stage, then, our QFT-
motivated expression for ∆G in string theory can be ex-
pected to take the form

∆G = − 2
〈(
S2 − 1/12

)
Q2
G

〉
(3.3)

where the brackets signify the full one-loop amplitude
of the form given in Eq. (2.1). Indeed, we note from
Eq. (2.1) that these brackets already include the factor of
(−1)F as well as the double sum

∑
m,n which effects the

sum over gauge-group representations R and the traces
overQ2

G within eachR. Furthermore, without loss of gen-
erality, the presence of a gauge symmetry implies that our
string states populate a corresponding lattice of gauge
charges. We can then decompose

Q2
G =

∑
`,`′

c
(G)
``′ Q`Q`′ (3.4)

where the Q` component is the charge operator in the `th

lattice direction and where the coefficients c
(G)
``′ describe

how the string gauge group G is embedded within the
charge lattice.

Eq. (3.3) thus represents our Step 1 starting point for
our study of the one-loop contributions to the gauge
couplings. Indeed, we see that this quantity is writ-
ten in terms of the product of two insertions, Q2

G and
S2 − 1/12, and thus resembles as closely as possible
the field-theory result, only expressed in terms of a full
one-loop string amplitude. Note that if our theory is
spacetime-supersymmetric, then we are free to drop the
factor of −1/12, since the contributions from this term
will be proportional to Tr (−1)F for each representation
of the gauge group and thus vanish. We shall nevertheless
keep this factor for generality.

According to the procedure outlined in Sect. II, our
next step is to perform a modular completion of this ex-
pression. Clearly, there are two separate insertions in
play: Q2

G and S2 − 1/12. We shall discuss each of these
in turn, since neither insertion preserves the modular in-
variance of the full string amplitude.

Let us first discuss the modular completion of Q2
G. In

general, it was shown in Ref. [2] that the product of any
two charge bilinears can be modular completed by sub-
stituting

Q`Q
′
` → Q`Q

′
` −

1

4πτ2
δ`,`′ . (3.5)

Given the embedding in Eq. (3.4), we thus find the mod-
ular completion of Q2

G is given by

Q2
G → Q2

G −
ξ

4πτ2
(3.6)

where ξ ≡
∑
` c

(G)
`` . Indeed, with this result, we see that

ξ is ultimately related to the affine level kG at which the
gauge group G is realized.

We now turn to the modular completion of the helicity
factor S2 − 1/12 in Eq. (3.3). In general, a given string
theory gives rise to infinite towers of states with higher
and higher spins. However, in the heterotic string, these
states can ultimately be organized in terms of the CFT
sector from which they arise, where the CFT in ques-
tion is that associated with the transverse right-moving
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Lorentz group SO(D − 2). In the heterotic string, there
are only three such sectors: the identity (or scalar) sec-
tor, the spinor sector, and the vector sector. The ground
states of these sectors have spins S = {0, 1/2, 1} respec-
tively. Loosely speaking, every other string state can be
viewed as a member of one of these sectors in the sense
that it can be realized through tensor products of this
vacuum state (or one of its CFT descendants) with addi-
tional vector representations arising from excitations of
the left-moving coordinate bosons. In this way, states
with arbitrarily high spins can be generated.

Disregarding the contributions from the purely inter-
nal degrees of freedom and the two transverse spacetime-
coordinate bosons, the contribution to the total partition
function from the states in each of these three sectors
takes the form Θ/η, where η is the Dedekind eta-function
and where Θ is given by

scalar : Θ = 1
2

(ϑ3 + ϑ4)

spinor : Θ = 1
2
ϑ2

vector : Θ = 1
2

(ϑ3 − ϑ4) . (3.7)

Here ϑi are the three Jacobi theta-functions. Indeed, in
each of these cases we find that

Θ ∼ eπiτS
2

(1 + ...) , (3.8)

thereby already suggesting a relationship between S and
a modular derivative.

Given this, we now seek to understand how to incor-
porate the helicity factor S2 − 1/12 in a fully modular-
invariant way into the sum over string states. A direct
string calculation [3] tells us that the proper procedure to
generate the helicity part is to modify the total partition
function of the string theory in question, replacing

Θ

η
→ ∂

∂τ

(
Θ

η

)
. (3.9)

This is the result of a full string calculation, and thus
this replacement does not disturb the modular invari-
ance of the total partition function. In particular, the
τ -derivative d/dτ is modular-covariant when acting on
a modular-covariant function of modular weight k = 0
such as Θ/η. Thus, no further modular completion is
required after this replacement is implemented. Or, to
phrase this another way, the simple insertion S2 − 1/12
has been “modular completed” by instead implementing
the replacement in Eq. (3.9).

The issue that remains for us, however, is to express
the replacement in Eq. (3.9) as an insertion into the nu-
merator of the partition-function trace. We wish to do
this in order to eventually express our results in terms of
(weighted) traces over our original string spectrum. To

accomplish this, we observe that

∂

∂τ

(
Θ

η

)
=

1

η

∂Θ

∂τ
+ Θ

∂

∂τ

1

η

=
1

η

[
∂Θ

∂τ
−Θ

∂

∂τ
log η

]
=

1

η

[
∂

∂τ
+
πi

12
E2(τ)

]
Θ (3.10)

where in passing to the final line we have utilized the
identity

E2(τ) =
1

2πi

∂

∂τ
log η24(τ) (3.11)

where E2(τ) is the normalized weight-two holomorphic
Eisenstein function

E2(τ) ≡ 1− 24

∞∑
n=1

σ(n)e2πinτ

= 1− 24q − 72q2 − 96q3 − 168q4 − ... (3.12)

with σ(n) ≡
∑
d|n d. We can shall find it convenient

to simplify this notation slightly by writing E2(τ) =∑∞
n=0 χnq

n where

χn =

{
1 n = 0

−24σ(n) n > 0 .
(3.13)

We thus see that the replacement in Eq. (3.9) is tanta-
mount to the insertion of the modular-covariant deriva-
tive Dτ into that portion of the total partition-function
trace corresponding to the spacetime Lorentz group,
where

Dτ ≡
∂

∂τ
− iπ

12
E2(τ) . (3.14)

In this sense Dτ is the operator that represents S2−1/12
in string theory.

As evident from this discussion, the operator d/dτ act-
ing purely on Θ represents the spin S2. Indeed, we can
identify the spin S as the “helicity charge” QH of the
state relative to the spacetime Lorentz symmetry, where
the subscript H can be identified as that right-moving
lattice direction ` whose trace yields Θ. We can there-

fore identify Q
2

H = i
π∂/∂τ , allowing us to express our

modular completion in the form

Q
2

H −
1

12
→ Q

2

H −
1

12
E2(τ) . (3.15)

At first glance, it might have seemed from Eq. (3.5)

that the modular completion of Q
2

H would simply be

Q
2

H → Q
2

H − 1/(4πτ2), just as occurred for the gauge
charges. However, the critical difference here is that we
are not seeking the modular completion of Q2

H ; we are
seeking the modular completion of Q2

H − 1/12. It is the
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presence of the extra term −1/12 which induces the sub-
tlety and ultimately requires the Eisenstein function in
Eq. (3.14). Although it might have seemed that the ex-
tra shift −1/12 is only a pure number and thus should be
completely harmless, this neglects the fact that we must
preserve modular invariance. While the insertion of S2

raises the modular weight of the corresponding portion
of the partition function by two, the insertion of a pure
number such as −1/12 does not affect the modular weight
at all. We thus cannot subtract 1/12 directly from S2

or Q2
H in a modular-invariant theory; rather, the −1/12

must first be “modular completed” into a modular func-
tion (or in this case, a quasi-modular function) of weight
two. As it turns out, a theorem in modular-function the-
ory asserts that there is only one (quasi-)modular func-
tion of weight k = 2: this is the Eisenstein function
E2(τ). It is thus natural and expected that the modu-
lar completion in Eq. (3.15) would involve the Eisenstein
function. Indeed, in this sense we may regard E2/12
as the properly normalized modular completion of 1/12,
with E2/12 = 1/12 +O(q).

As noted above, the Eisenstein series E2 (unlike the
Eisenstein series E2k for k > 1) is not a strict modular
function. Instead, E2 is only quasi -modular, transform-
ing under modular transformations as

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6

π
ic(cτ + d) .

(3.16)
It is the latter “anomaly” term in this result which spoils
the true modular covariance for E2. However, this is
precisely what is needed because the derivative ∂/∂τ in
Eq. (3.14) also fails to be modular invariant in exactly
the opposite way. Thus, it is precisely the combination
in Eq. (3.14) that yields a fully modular-invariant result.

Given these results, we see that our modular-
completed expression for ∆G now takes the form

∆G = − 2

〈
τ2
2

(
Q

2

H −
1

12
E2

) (
Q2
G −

ξ

4πτ2

)〉
.

(3.17)
Note that the extra factor of τ2

2 that has been inserted
into Eq. (3.17) is another element of our modular com-
pletion. This reflects the fact that the insertions of the
helicity and gauge factors — although preserving modu-
lar invariance — also together raise the modular weight
of the resulting integrand in Eq. (2.1) by two units (from
k = −1 to k = +1) for any four-dimensional string the-
ory. Modular invariance then dictates that such an in-
crease in the modular weight of the integrand be accom-
panied by a corresponding increase in the number of lead-
ing τ2 prefactors. The result in Eq. (3.17) then completes
Step 2 of the procedure outlined in Sect. II.

At this stage, it may be worthwhile to compare with
the classic results of Kaplunovsky in Ref. [3]. First, we
emphasize that in this paper we are simply calculating
the one-loop contributions to the gauge coupling. In par-
ticular, despite the algebraic resemblance of Eq. (3.2) to
a renormalization-group equation (RGE) for a running

gauge coupling, at this stage we have not introduced any
notion of running or scale. Second, this conceptual dif-
ference notwithstanding, there is a further critical differ-
ence in that the contributions from the massless states
were explicitly removed within the calculation of the ∆G-
term in Ref. [3]. This was done because a separate field-
theoretic logarithmic running (assumed to be contributed
from the massless states) was explicitly introduced into
the renormalization-group version of Eq. (3.2) in Ref. [3].
This rendered ∆G in Ref. [3] a mere tally of the contribu-
tions from only the massive modes. Thus, in this sense,
the version of ∆G in Ref. [3] became a mere threshold
correction, one which is devoid of its own running.

By contrast, in this paper ∆G will always represent the
full one-loop contribution to the gauge coupling, with the
contributions from both massless and massive states in-
cluded together in a unified way . Indeed, it is only in such
a manner that we can ever hope to preserve modular in-
variance throughout our calculations. Moreover, once we
proceed to introduce a scale dependence into our even-
tual results and consider how these quantities run, we
shall even find that the contributions from the massless
string states are not strictly logarithmic, but instead take
a more complex form which is dictated by modular in-
variance and which only reduces to a logarithmic running
in a certain EFT-like limit.

Certain aspects of the modular completions we have
discussed here also appear in Ref. [3] and in the sub-
sequent work reported in Refs. [10–12]. In partic-
ular, our modular completion of Q2

G is already im-
plicit in Refs. [10–12] and further discussed/reviewed in
Refs. [13, 14]. Likewise, the effective “modular comple-
tion” of the helicity factor whereby the factor of S2−1/12
is dropped in favor of the replacement in Eq. (3.9) already
appears in Ref. [3]. However, our subsequent reformu-
lation of this replacement as a partition-function inser-
tion involving the Eisenstein function E2 — as given in
Eqs. (3.14) and (3.15) — is, as far as we are aware, new
and does not appear in the prior literature.

Given our expression in Eq. (3.17), we can now con-
tinue along the path outlined in Sect. II. In particular,
following Eq. (2.6), we see that our total operator inser-
tion for the gauge couplings is given by

X ≡ − 2τ2
2

(
Q

2

H −
1

12
E2

) (
Q2
G −

ξ

4πτ2

)
. (3.18)

Expanding X in leading powers of τ2 then yields

X = τ2X1 + τ2
2X2 (3.19)

where we now identify

X1 ≡
ξ

2π

(
Q

2

H −
E2

12

)
X2 ≡ − 2

(
Q

2

H −
E2

12

)
Q2
G . (3.20)

This division of the total insertion into two separate
terms X1 and X2 is based on their leading powers of τ2
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and will be important when we discuss how our expres-
sions diverge and what kinds of running these quantities
ultimately experience. However, we stress that neither
〈τ2X1〉 nor 〈τ2

2X2〉 is modular invariant by itself. In-
deed, these two terms serve as modular completions of
each other, and only their sum in Eq. (3.19) is modu-
lar invariant. Phrased slightly differently, the splitting
of the total insertion into an X1 piece and an X2 piece
based on their leading powers of τ2 is not unique. This
non-uniqueness arises because modular transformations
(especially the Poisson resummations that often underlie
these transformations) can change the apparent powers
of leading τ2 factors that appear. Thus such resumma-
tions have the power to induce a reclassification of various
terms as belonging to either X1 and X2. However, once a
given separation into X1 and X2 is given, it will be con-
sistent to perform all calculations within the framework
of that separation without further Poisson resummations.
This issue will be discussed further below.

Our result in Eq. (3.19) tells us that our calculation
of the gauge couplings shares the same basic algebraic
structure as our calculation of the Higgs mass in Ref. [2].
However, one important difference is the fact that X1,2

now depend on the worldsheet modular parameters τ1,2
through the Eisenstein function E2(τ). In other words,
we now have more than simple charge insertions — we
also have the insertion of an entire modular function! We
will shortly see that this difference will have important
ramifications.

B. Divergences and regulator function

Our next step is to study the potential divergence
structure of ∆G. Indeed, just as in the Higgs case,
it is possible for ∆G to diverge. For example, any
level-matched massless state which carries a non-zero X2

charge will induce a divergence in ∆G unless this state is
balanced against another similar state of opposite statis-
tics. Indeed, in a rough sense to be clarified shortly, the
divergence in ∆G will be proportional to Str

M=0
X2. Like-

wise, we see that this divergence is at most logarithmic.

The fact that ∆G formally diverges means that we
must introduce a regulator. It is here that we pass to
Step 3 within Fig. 1. It might seem natural to proceed
by simply subtracting the contributions from the masss-
less states (or more precisely the X2-charged massless
states) from ∆G. This is reminiscent of what was done in
Ref. [3], but introducing this sort of artificial distinction
between massless and massive states necessarily breaks
the modular invariance of ∆G.

Instead, following what was done in Ref. [2] for the
Higgs mass, we shall regulate our theory by deforming
the one-loop amplitude as described in Eq. (2.12), in-

troducing a new regulator function Ĝ(τ, τ) into the inte-

grand:

∆G → ∆̂G ≡
〈
τ2X1 + τ2

2X2

〉
Ĝ

=
〈(
τ2X1 + τ2

2X2

)
Ĝ
〉
. (3.21)

The issue at hand is thus to choose a suitable Ĝ regulator
function.

Below Eq. (2.12) we have listed a number of properties
that such a regulator function should exhibit. A function
satisfying all of these properties was given in Ref. [2],
adapting prior results in Ref. [10], and we shall use this

function here as well. This function Ĝρ(a, τ) has two free
regulator parameters ai ≡ {ρ, a} with ρ ∈ R+ and ρ 6= 1,
and is given by

Ĝρ(a, τ) ≡ 1

1 + ρa2

ρ

ρ− 1
a2 ∂

∂a

[
Zcirc(ρa, τ)−Zcirc(a, τ)

]
(3.22)

where

Zcirc(a, τ) ≡
√
τ2
∑
k,`∈Z

q(ka−`/a)2/4 q(ka+`/a)2/4 .

(3.23)
Note that Zcirc(a, τ) represents the sum over the Kaluza-
Klein (KK) and winding modes that would be associated
with a bosonic worldsheet field compactified on a circle
of radius (Msa)−1, with k and ` respectively indexing the
KK and winding modes, while the leading factor of

√
τ2

is inserted into Eq. (3.23) in order to ensure that Zcirc is
modular invariant. We stress that for our purposes Zcirc

is merely an ingredient in the definition of our regulator
and does not correspond to any actual physical compact-

ification of our theory. It turns out that Ĝρ(a, τ)→ 1 as
a→ 0, indicating that taking a→ 0 removes the regula-
tor. Indeed, for this function we have

f(ai) = ρa2 . (3.24)

It then turns out that all of the bulleted requirements
below Eq. (2.12) are satisfied, in addition to the require-

ment that Ĝρ(a, τ) exhibit an invariance under f(ai) →
1/f(ai), or equivalently under a → (ρa)−1. Indeed, we
will eventually identify our spacetime running scale µ ac-
cording to Eq. (2.14) with f(ai) given in Eq. (3.24).

C. The Rankin-Selberg transform: From
amplitudes to supertraces

Given this choice of regulator function, our result for

∆̂G in Eq. (3.21) can then be viewed as representing
Steps 3 and/or 4 in Fig. 1. From this point, there are
several options. One possibility is to proceed directly to
Step 6 by identifying a running mass scale µ according to
Eq. (2.14), where f(ai) is given in Eq. (3.24). However,
in order to extract a description of the running of the
gauge couplings which is as close as possible to what we



13

might expect from ordinary quantum field theory, we are
more interested in performing the Rankin-Selberg trans-
form of our result in Eq. (3.21) in order to pass to Steps 7
and 8.

Operationally, this transform can be performed in a
number of different ways. In this section, we shall de-
scribe three different approaches to evaluating this trans-
form in order to understand their relative advantages
and disadvantages. As we shall see, the first two ap-
proaches lead to results which hold only under certain
simplifying assumptions. Indeed, we describe these ap-
proaches because they connect to our previous calcula-
tions in Ref. [2]. Unfortunately, these approaches lack
the complete generality that we will ultimately require
for some of the later calculations in this paper. For this
reason, after describing these two approaches, we shall
then proceed to outline our third and preferred approach.
As we shall see, this approach will be completely general
and lead to results which have not been previously de-
scribed in the literature.

To begin, let us assume that the partition function of
our string theory in D uncompactified spacetime dimen-
sions takes the form

Z(τ) ≡ τk2
∑
m,n

amn q
mqn (3.25)

where amn is the net (bosonic minus fermionic) num-
ber of string states with right- and left-moving world-
sheet energies (m,n) in the string spectrum and where
k ≡ 1 − D/2. These worldsheet energies are related to
the total spacetime mass M of the corresponding string
state via M2 = 1

2
(M2

L + M2
R) where m = α′M2

R/4 and
n = α′M2

L/4. Let us further assume that we wish to con-

sider the corresponding one-loop amplitude
〈∑

` τ
`
2A

(`)
〉

where the operator
∑
` τ

`
2A

(`) being inserted gives the

value
∑
` τ

`
2A

(`)
mn when acting on a state with worldsheet

energies (m,n). Our one-loop amplitude is then given by

〈∑
`

τ `2A
(`)
〉
≡
∫
F

d2τ

τ2
2

∑
`

τk+`
2

∑
m,n

amnA
(`)
mn q

mqn .

(3.26)
For the sake of this discussion we shall assume that this
amplitude is already finite and therefore does not require
any regulation. We shall return to this issue later when
we discuss what happens when we also insert our regula-
tor.

As long as the amplitude in Eq. (3.26) is finite and
modular invariant, the Rankin-Selberg transform [4–6]
then tells us that this amplitude may equivalently be
expressed as

〈∑
`

τ `2A
(`)
〉

=
π

3
Res
s=1

∫ ∞
0

dτ2 τ
s−2
2 g(τ2) (3.27)

where

g(τ2) ≡
∑
`

τk+`
2

∫ 1/2

−1/2

dτ1
∑
m,n

amnA
(`)
mn q

mqn

=
∑
`

τk+`
2

∑
n

annA
(`)
nn e

−πα′M2
nτ2 . (3.28)

where α′M2
n = 4n. Inserting Eq. (3.28) into Eq. (3.27)

and exchanging the order of the n-sum and the s-
integral/residue (an operation whose validity will be dis-
cussed below), we obtain〈∑

`

τ `2A
(`)
〉

=
π

3

∑
`

∑
n

annA
(`)
nn

× Res
s=1

∫ ∞
0

dτ2 τ
k+`+s−2
2 e−πα

′M2
nτ2

=
π

3

∑
`

∑
n

annA
(`)
nn

× Res
s=1

[
(πα′M2

n)1−k−`−s

× Γ(k + `+ s− 1)
]
. (3.29)

Taking k = −1 (as appropriate for D = 4) and evaluating
the residue of the Euler Γ-function we thus obtain〈∑

`

τ `2A
(`)
〉

=
π

3

∑
`≤1

(−1)`+1

(1− `)!

×
∑
n

annA
(`)
nn (πα′M2

n)1−` , (3.30)

or equivalently〈∑
`

τ `2A
(`)
〉

=
π

3

∑
`≤1

(−1)`+1

(1− `)!
Str
[
A(`)(πα′M2)1−`

]
(3.31)

where for this purpose we temporarily identify the su-
pertrace simply as StrA ≡

∑
n annAnn. We thus see

that the Rankin-Selberg transform procedure has al-
lowed us to express our original amplitude

〈∑
` τ

`
2A

(`)
〉

in Eq. (3.26) as a sum of supertraces over only physical
string states (i.e., states with m = n).

As an example of Eq. (3.31), we can consider the am-
plitude with no insertions at all. Assuming a tachyon-free
theory (so that the amplitude is finite, as required), we
obtain

〈1〉 = − 1

12
StrM2/M2 (3.32)

where M≡Ms/(2π) = (2π
√
α′)−1. We thus find [8]

Λ ≡ − M
4

2
〈1〉 =

1

24
M2 StrM2 , (3.33)

as already noted in Eq. (2.3).
Interestingly, we see that our final expression in

Eq. (3.31) receives no apparent contributions from off-
shell states (i.e., states with m 6= n). Likewise, our fi-
nal result receives no contributions from A(`) insertions
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with ` ≥ 2. Because of these features, it might initially
seem that the value of the amplitude

〈∑
` τ

`
2A

(`)
〉

is in-
dependent of these states and insertions. However, this
is not correct: our result in Eq. (3.31) holds only under
the assumption that this amplitude is modular-invariant,
and modular invariance certainly requires these off-shell
states and the occasional inclusion of A(`) insertions with
` ≥ 2, as we have seen above. Rather, what we are learn-
ing from Eq. (3.31) that modular invariance is so power-
ful a symmetry that the contributions from the off-shell
states and A(`) insertions with ` ≥ 2 are already implic-
itly determined by — and thus can be written in terms
of — the contributions from the on-shell and ` ≤ 1 inser-
tions.

Finally, before proceeding further, we note that our
derivation of the result in Eq. (3.31) rests on a number
of algebraic manipulations which have important qual-
ifications and implications. One of these assumptions
is relevant for Eq. (3.29), in which it was assumed that
all Mn are positive in passing to the second line. How-
ever, if massless states are present, one can always imag-
ine deforming our theory to give these states very small
non-zero masses. One can then perform the integration
in Eq. (3.29) rigorously and remove these masses at the
end. As discussed in Sect. IV of Ref. [2], this procedure
is valid as long as such massless states do not cause the
amplitude under study to diverge. Indeed, we see from
the final result in Eq. (3.31) that it is difficult for massless
states to make contributions in any case unless ` = 1.

However, a more important assumption was made
in passing from Eq. (3.28) to Eq. (3.29), where
we exchanged the order of the n-summation and s-
integration/residue extraction. This exchange is valid
only if the n-summation over the spectrum does not it-
self introduce any new divergences. In general, this will
indeed be the case. However, there can be limits of our
theories in which the spectrum becomes so dense as to
be effectively continuous. In such cases, this procedure
breaks down, additional divergences can emerge from
the sums over states, and there can be non-zero con-
tributions from the operator insertions A(`) with ` > 1.
However, it is easy to understand what is happening in
such situations: the theory is becoming effectively higher-
dimensional. As a result, in such cases we could equiv-
alently shift to a higher-dimensional description from
the start. The value of k would then drop below −1,
with a corresponding change in the values of ` for which
Eq. (3.31) would receive explicit contributions. Indeed,
in a limit in which our four-dimensional theory becomes
effectively six-dimensional, we have k = 1 −D/2 → −2.
Following the same derivation as above, we then find
that the range of the `-summation in Eq. (3.31) becomes
` ≤ 2, and we now have explicit contributions from A(2).
This phenomenon can also be understood in terms of the
discussion in the paragraph below Eq. (3.20). As we de-
compactify our theory and the string spectrum becomes
dense, it becomes appropriate to perform a Poisson re-
summation over the corresponding Kaluza-Klein states

(momentum modes). This Poisson resummation intro-
duces extra powers of τ2 and thus effectively reshuffles
certain terms between X1 and X2.

Fortunately, it is possible to reformulate the Rankin-
Selberg transform procedure in such a way as to
avoid exchanging the order of the n-sum and the s-
integral/residue after reaching Eq. (3.28). This then pro-
duces a more general result which holds even when the
string spectra become dense. Indeed, rather than inte-
grate over τ2 and then take the residue at s = 1 as in
Eq. (3.29), we can instead proceed by recognizing from
Eq. (3.27) that the original string amplitude

〈∑
` τ

`
2A

(`)
〉

is nothing but the Mellin transform of g(τ2)/τ2. We can
therefore write g(τ2) directly as the inverse Mellin trans-
form of this amplitude, thereby ultimately leading to the
alternative result [15, 16]〈∑

`

τ `2A
(`)
〉

=
π

3
lim
τ2→0

g(τ2) , (3.34)

where g(τ2) continues to be given by Eq. (3.28). This
result is equivalent to Eq. (3.27), but has the primary
advantage that we can now evaluate

〈∑
` τ

`
2A

(`)
〉

sim-
ply by taking the τ2 → 0 limit of g(τ2) rather than by
evaluating the residue of the τ2 integral of g(τ2), as in
Eq. (3.29). Indeed, inserting Eq. (3.28) into Eq. (3.34),
we find〈∑

`

τ `2A
(`)
〉

=
π

3
lim
τ2→0

∑
`

τk+`
2

∑
n

annA
(`)
nn e

−πα′M2
nτ2 .

(3.35)
The issue then boils down to how we evaluate the right

side of Eq. (3.35). Since we are taking the τ2 → 0 limit,
one natural possibility would be to Taylor-expand the
exponential. Taking k = −1 (as appropriate for a four-
dimensional theory) and recognizing that terms with r >
1− ` vanish in the τ2 → 0 limit, we would then obtain〈∑
`

τ `2A
(`)
〉

=
π

3
lim
τ2→0

∑
`

1−∑̀
r=0

τ `+r−1
2

(−1)r

r!

∑
n

annA
(`)
nn (πα′M2

n)r

=
π

3
lim
τ2→0

∑
`≤1

1−∑̀
r=0

τ `+r−1
2

(−1)r

r!
Str
[
A(`) (πα′M2)r

]
(3.36)

where the supertrace continues to be defined as below
Eq. (3.31) and where in passing to the final line we have
recognized that the conditions on the r-sum have im-
posed an upper limit on the `-sum. However, for theo-
ries in which the original string amplitude

〈∑
` τ

`
2A

(`)
〉

is finite, we know that the right side of Eq. (3.36) can-
not diverge as τ2 → 0. We thus obtain a set of auxiliary
conditions which must hold in all such theories, namely

Str
[
A(`) (πα′M2)r

]
= 0 (3.37)
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for all 0 ≤ r ≤ −` with ` ≤ 1. As long as these auxiliary
conditions are satisfied, we then have〈∑

`

τ `2A
(`)
〉

=
π

3

∑
`≤1

(−1)1−`

(1− `)!
Str
[
A(`)(πα′M2)1−`

]
,

(3.38)
thereby exactly matching the result we obtained in
Eq. (3.31). We thus see that the Mellin-transformed re-
sult has not only reproduced the result in Eq. (3.31),
but has also furnished the explicit extra conditions in
Eq. (3.37) which must be satisfied in order for this re-
sult to be valid. Indeed, these auxiliary conditions may
be viewed as the conditions under which the exchange
of the order of n-summation and s-integration/residue
extraction are valid. For example, in the case of the
vacuum amplitude 〈1〉, these auxiliary conditions reduce
to the condition Str1 = 0. This condition, which we
have already mentioned in Eq. (2.5), is quite remarkable,
indicating that even when spacetime supersymmetry is
broken in a given string model, the residual misaligned
supersymmetry continues to ensure that this supertrace
vanishes — even though such theories do not permit any
possible pairing of bosonic and fermionic states.

The results in Eqs. (3.37) and (3.38) hold for the vast
majority of string theories as long as we are avoiding
the edges of moduli space corresponding to decompacti-
fication limits. Indeed, we continue to issue this proviso
because we have still made a further critical algebraic as-
sumption in this analysis. This occurred when we eval-
uated the right side of Eq. (3.35) by Taylor-expanding
the exponential and then passing the r-summation past
the n-summation. While this may be a valid step in
many string theories, in this paper we shall need to con-
sider cases in which the insertions A(`) have eigenvalues
(m,n)-eigenvalues which are growing functions of m and
n, thereby rendering our sums over states badly diver-
gent. In such cases, the exponential suppression is crit-
ical for a finite result and it is therefore not possible to
Taylor-expand this exponential and consider the different
terms in the Taylor expansion separately.

As we have explained above, the fundamental difficulty
is that the different `-terms which contribute to g(τ2)
have different apparent powers of τ2, but in reality these
powers of τ2 can be exchanged between these different
`-terms as the result of algebraic manipulations (such
as Poisson resummations) that become appropriate in
certain limiting regions of moduli space. For this reason,
we should really consider g(τ2) as a single object with its
own overall τ2-dependence without attempting to draw a
correspondence between this overall τ2-dependence and
the different `-terms within g(τ2).

We can accomplish this by following the approach orig-
inally taken in Ref. [8]. This approach has also been
generalized in Ref. [17], and in the remainder of this sub-
section we shall quickly derive the important results from
Refs. [8, 17] that we shall require in the rest of this paper.
In particular, returning to Eq. (3.35), we can begin by
isolating our sum over states with all modular-invariant

operator insertions included, i.e.,

S(τ2) ≡
∑
`

τ `2
∑
n

annA
(`)
nn e

−πα′M2
nτ2 . (3.39)

However, let us now assume that S has an overall τ2-
dependence as τ2 → 0 given by

S(τ2) ∼
∑
j

Cjτ
j
2 (3.40)

where the coefficients Cj are completely arbitrary. Note
that our assumption that this sum is finite as τ2 → 0
allows us to assume that j ≥ 0. Indeed, this sum is
finite because we have assumed that our theory is free
of physical tachyons; because the degeneracies grow no
more rapidly than |ann| ∼ e

√
n according to the Hagedorn

phenomenon; and because the charge-operator eigenval-

ues A
(`)
nn typically grow no faster than a polynomial in

n. By contrast, the exponential suppression goes as e−n

since α′M2
n ∼ n. In this context, we remark that we

are not imposing the condition that Cj 6= 0 only for
integer values of j. There indeed exist examples for
which non-integer values of j contribute within the sum
in Eq. (3.40). However, we shall be concerned with the
lowest-lying values of j, and for these we can take j ∈ Z.

Once we assume a τ2-dependence of the form in
Eq. (3.40), we can take the τ2-derivative of both sides
of Eq. (3.40) to obtain

d

dτ2

[∑
`

τ `2
∑
n

annA
(`)
nn e

−πα′M2
nτ2

]

=
∑
n

ann
d

dτ2

[∑
`

τ `2A
(`)
nn

]
e−πα

′M2
nτ2

+
∑
`

τ `2
∑
n

annA
(`)
nn (πα′M2

n) e−πα
′M2

nτ2

set
=

d

dτ2

∑
j

Cjτ
j
2

 =
∑
j

(j + 1)Cj+1 τ
j
2 .

(3.41)

Indeed, these relations hold for τ2 � 1. Taking the
τ2 → 0 limits of Eqs. (3.40) and (3.41) then yields ex-
plicit expressions for the leading coefficients [8, 17]

C0 = lim
τ2→0

[∑
`

τ `2
∑
n

annA
(`)
nn e

−πα′M2
nτ2

]

C1 = lim
τ2→0

{∑
n

ann
d

dτ2

[∑
`

τ `2A
(`)
nn

]
e−πα

′M2
nτ2

}

− lim
τ2→0

[∑
`

τ `2
∑
n

annA
(`)
nn (πα′M2

n) e−πα
′M2

nτ2

]
.

(3.42)

Likewise, the coefficients Cj with j ≥ 2 can be calculated
in a similar fashion by taking additional τ2-derivatives
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(and will ultimately be useful only for theories in space-
time dimensions D > 4).

Substituting Eq. (3.40) into Eq. (3.35) and taking
k = −1 as appropriate for four-dimensional string the-
ories then yields〈∑
`

τ `2A
(`)
〉

=
π

3
lim
τ2→0

τk2

∞∑
j=0

Cjτ
j
2

=
π

3
C1

=
π

3
lim
τ2→0

{∑
n

ann
d

dτ2

[∑
`

τ `2A
(`)
nn

]
e−πα

′M2
nτ2

}

− π

3
lim
τ2→0

[∑
`

τ `2
∑
n

annA
(`)
nn (πα′M2

n) e−πα
′M2

nτ2

]
.

(3.43)

Critically, we now see that all of our expressions are prop-
erly convergent as a result of the exponential damping
factors. Indeed, motivated by comparison with our ear-
lier results, we define the regulated supertrace [8]

StrA ≡ lim
τ2→0

∑
n

annAnn e
−πα′M2

nτ2 . (3.44)

Indeed, this is nothing but the supertrace we introduced
in Eq. (2.4), with y now identified as πτ2. Moreover,
we now see that Eq. (3.44) serves as the correct for-
mal definition of the supertrace previously defined below
Eq. (3.31).

Written in terms of these supertraces we thus have
our general result that expresses our full one-loop string
amplitude in terms of supertraces over physical string
states:〈∑

`

τ `2A
(`)
〉

=
π

3
Str

[
d

dτ2

(∑
`

τ `2A
(`)

)]

− π

3
Str

[(∑
`

τ `2A
(`)

)
(πα′M2)

]
. (3.45)

Equivalently, for any modular-invariant operator inser-
tion X in four dimensions, we have [17]〈

X
〉

=
π

3
Str

(
d

dτ2
X
)
− π

3
Str
[
X (πα′M2)

]
=

π

3
Str (Dτ2X ) (3.46)

where

Dτ2 ≡
d

dτ2
− πα′M2

=
d

dτ2
− 1

4πM2
M2 . (3.47)

For modular-invariant insertions X that are τ2-
independent (so that we can write X = X where X is
itself modular invariant), this result simplifies to〈

X

〉
= − 1

12M2
Str
(
XM2

)
. (3.48)

Likewise, for operator insertions of the form X = τ2X1 +
τ2
2X2, we have〈

τ2X1 + τ2
2X2

〉
=

π

3
Str
(
X1 + 2τ2X2

)
− 1

12M2
Str

[(
τ2X1 + τ2

2X2

)
M2

]
.

(3.49)

Moreover, under our assumption that the string ampli-
tude is finite, we learn from the first line of Eq. (3.43)
that we must have C0 = 0 as an auxiliary condition.
Given the coefficients in Eq. (3.42), this then yields [17]

StrX = 0 . (3.50)

This auxiliary condition thus accompanies our result in
Eq. (3.46) or its simplifications in Eqs. (3.48) or (3.49).

Before proceeding further, it is worth emphasizing that
the quantity in Eq. (3.44) is properly viewed as a regu-
lated supertrace only if the inserted operator A is itself
τ2-independent. In such cases, the τ2-dependent expo-
nential factor in Eq (3.44) functions as a true regulator,
with τ2 functioning as a dummy regulator variable whose
regulating effects are ultimately removed by taking the
τ2 → 0 limit. By contrast, in cases in which our in-
serted operator A has its own τ2-dependence, we are no
longer free to view τ2 as an independent regulator vari-
able; rather, the quantity whose limit must be taken in
Eq. (3.44) becomes inextricably identified with the τ2
that appears within A, so that the τ2 → 0 limit not only
removes the damping exponential but also deforms the
operator A. However, in either case, the operational pre-
scription is clear: we insert our full operator A within
Eq. (3.44), along with any τ2-dependent factors which
may appear, and then evaluate the sum and limit ac-
cordingly.

The results in Eqs. (3.48) and (3.50) were originally
derived in Ref. [8] for the case X = X = 1, but we
now see [17] that they hold for all modular-invariant τ2-
independent insertions X that lead to finite string am-
plitudes. Moreover, we now also see that the result in
Eq. (3.48) is actually only a special case of the more gen-
eral result in Eq. (3.46). Indeed, as we have stressed
above, our formulation of the Rankin-Selberg transform
in Eq. (3.46) is completely general and holds for any oper-
ator insertion X ≡

∑
` τ

`
2A

(`) regardless of the values of `
involved, so long as the regulated supertrace in Eq. (3.44)
is used and the inserted operator X does not disturb
the modular invariance of the amplitude integrand or the
finiteness of the resulting amplitude.

Thus far, we have shown that our desired amplitude
〈τ2X1 + τ2

2X2〉 is given in Eq. (3.49). However, there
is an alternate way in which we might have evaluated
this amplitude [17]. Given the sum S in Eq. (3.39), we
immediately recognize that

g(τ2) = τ−1
2 S(τ2) . (3.51)



17

We therefore directly have〈∑
`

τ `2A
(`)
〉

=
π

3
lim
τ2→0

τ−1
2 S(τ2)

=
π

3
lim
τ2→0

[∑
`

τ `−1
2

∑
n

annA
(`)
nn e

−πα′M2
nτ2

]

=
π

3
Str

(∑
`

τ `−1
2 A(`)

)
. (3.52)

Indeed, for any modular-invariant operator insertion X ,
this becomes [17]〈

X
〉

=
π

3
Str
(
τ−1
2 X

)
. (3.53)

Comparing this with our result in Eq. (3.46), we thus
obtain the remarkable identity [17]

Str
(
τ−1
2 X

)
= Str (Dτ2X ) (3.54)

where the derivative Dτ2 is given in Eq. (3.47). This iden-
tity applies to any modular-invariant operator insertion
X in four dimensions.

Note that this identity does not imply that τ−1
2 X and

Dτ2X are equal. Rather, it implies that both of these
quantities have the same supertrace when this super-
trace is evaluated over the entire string spectrum. For
τ2-independent insertions X = X this identity takes the
simple form [17]

Str
(
τ−1
2 X

)
= − 1

4πM2
Str
(
XM2

)
. (3.55)

Moreover, for the special case in which X = X = 1, we
find

Str
(
τ−1
2

)
= − 1

4πM2
StrM2 . (3.56)

In conjunction with Eq. (2.3), this then provides an alter-
nate supertrace expression for the cosmological constant
Λ in Eq. (2.2), specifically

Λ = − π

6
M4 Str

(
τ−1
2

)
. (3.57)

Finally, for X = τ2X1 + τ2
2X2, the identity in Eq. (3.54)

takes the form

Str
(
τ2X2

)
=

1

4πM2
Str

[(
τ2X1 +τ2

2X2

)
M2

]
. (3.58)

This then allows us to express the amplitude in Eq. (3.49)
in the simpler form〈

τ2X1 + τ2
2X2

〉
=

π

3
Str (X1 + τ2X2) , (3.59)

in agreement with Eq. (3.53).
The identity in Eq. (3.54) is rather astonishing, leading

to results such as those in Eqs. (3.55), (3.56), and (3.58)

in which a change in the power of τ2 within a supertrace
can be traded for the insertion of an additional factor
of the squared mass. Moreover, within this context, the
condition in Eq. (3.50) helps us to interpret results such
as those in Eq. (3.55). Recall that the definition of the
supertrace in Eq. (3.44) involves taking the τ2 → 0 limit.
Thus, when we insert a factor of τ−1

2 into a supertrace —
such as on the left side of Eq. (3.55) — or when we equiv-
alently insert a factor of M2 into the supertrace — such
as on the right side of Eq. (3.55) — it would a priori seem
that we are pushing this supertrace towards a divergence,
especially since our supertrace involves summing over an
infinite tower of states with ever-increasing masses. How-
ever, these relations come with the additional constraint
in Eq. (3.50) which tells us that the supertrace without
these factors of τ−1

2 or M2 actually vanishes. These ex-
tra factors thus “lift” the value of this supertrace away
from zero and thereby allow it to have the non-zero result
which matches the value of the corresponding amplitude.

Because of its central importance, it is critical that we
understand the implications of Eq. (3.50). As we have
shown, this relation holds regardless of whether X con-
tains leading τ2 factors. If X does not contain any explicit
leading τ2 factors of its own (e.g., X = X = 1), then this
constraint is at its most powerful, requiring that∑

n

annXnn e
−πα′M2

nτ2 → 0 as τ2 → 0 . (3.60)

More precisely, in four uncompactified dimensions, we
have from Eq. (3.43) that∣∣∣∣∣∑

n

annXnn e
−πα′M2

nτ2

∣∣∣∣∣ <∼ τ2 as τ2 → 0 . (3.61)

However, even if X has leading τ2 factors, the constraint
in Eq. (3.50) has teeth. As an example, let us suppose
that X has a leading power τ `2 with some value ` > 0, so
that we can write X = τ `2X. In such cases the constraints
in Eqs. (3.50) and (3.61) tell us that∣∣∣∣∣∑

n

annXnn e
−πα′M2

nτ2

∣∣∣∣∣ <∼ τ1−`
2 as τ2 → 0 .

(3.62)
This constraint continues to provide a significant bound
on the spectral sum on the left side of this equation: as
τ2 → 0, we find that this spectral sum can grow no more
rapidly than a power of 1/τ2, with the power given by `−
1. This constraint is obviously strongest for small values
of `, but nevertheless rules out all exponential growth as
τ2 → 0. This is a significant exclusion, since exponential
growth would be the näıve expectation in string theory
given that the numbers of bosonic and fermionic states in
string theory generically grow exponentially with mass.

To illustrate this phenomenon numerically, let us ex-
amine a spectrum with alternating, exponentially grow-
ing boson/fermion surpluses, as predicted by misaligned

supersymmetry, where the growth rates scale as ∼ e
√
n
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(as required by conformal invariance and the Hagedorn
transition). For numerical simplicity, we shall model ann
(the net number of bosons minus the number of fermions
at a given level n) as having the functional form

ann = (−1)ne
√
n (3.63)

where n schematically represents the string level and thus
can be associated with the eigenvalue of the correspond-
ing mass α′M2 or charge Q2. Here the factor (−1)n

indicates that the even levels are presumed to have sur-
pluses of bosons relative to fermions while the odd levels
have surpluses of fermions relative to bosons. Of course,
such a functional form cannot correspond to any actual
modular-invariant string theory — for example, the ann
values in this little exercise are not even integers — and
far more sophisticated functional forms of this general
type emerge in actual string models [1, 8, 9]. However,
this simple functional form does capture the essential
consequence of misaligned supersymmetry, namely that
we have alternating bosonic and fermionic surpluses for
which no boson/fermion pairings are possible anywhere
in the infinite string spectrum, with the degeneracies ann
lying along equal but opposite bosonic and fermionic “en-
velope functions” ∼ e

√
n [1, 8, 9]. We shall also imagine

that that our insertion X has eigenvalues Xnn ∼ nβ for
some exponent β, and consider the spectral sums

fβ(τ2) ≡
∞∑
n=0

ann n
β e−nτ2 . (3.64)

For example, the different values of β might correspond
to different powers of mass/charge insertions, with an
insertion of nβ corresponding to an insertion of 2β powers
of mass M or charge Q. Indeed, in such cases the fully
modular-invariant insertion would also include an overall
factor τβ2 , and thus the different values of β correspond
to different values of ` in Eq. (3.62).

In general, we know that for all β > 0 we must have
fβ(τ2) → 0 as τ2 → ∞, since in this limit only the con-
tributions from the massless (n = 0) states survive, and
these vanish for all β > 0. However, as we dial τ2 to
smaller values, there will be less and less suppression of
the contributions from the heavier states. Our functions
fβ(τ2) therefore become increasingly sensitive to the ex-
ponentially growing oscillations that exist throughout the
massive levels with n > 0. Thus, as τ2 → 0, we expect
that fβ(τ2) will diverge exponentially while simultane-
ously experiencing rapid oscillations which prevent the
extraction of any smooth τ2 → 0 limit.

In Fig. 2 we plot fβ(τ2) as a function of τ2 for 0 ≤ β ≤
6. As expected, we see that fβ(τ2) → 0 as τ2 → ∞ for
all β > 0, as discussed above. However, as τ2 becomes
smaller, we find that for each β our function |fβ(τ2)|
does not diverge exponentially as τ2 → 0, but instead
remains within the bounds indicated in Eq. (3.62). In-
deed, this happens even without the ability to realize any
boson/fermion pairings within the associated spectrum.
Moreover, for the simple functional form in Eq. (3.63), we

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

τ2

FIG. 2. The infinite sums fβ(τ2) in Eq. (3.64), plotted
as functions of τ2 for 0 ≤ β ≤ 6. The β = 0 curve is the
upper blue curve which asymptotes to 1 as τ2 → ∞, while
the β = 1, 2, ..., 6 curves all asymptote to 0 as τ2 → ∞ and
can be identified according to the increasing values that they
have at any fixed large value of τ2 (with n = 1 orange, n = 2
green, n = 3 red, etc.). As τ2 drops to zero from a large value,
we see that our functions fβ(τ2) do not diverge (as would have
been expected as we slowly remove the τ2 cutoff), but instead
remain within the bounds indicated in Eq. (3.62), leading to
finite values for fβ(τ2) as τ2 → 0.

even find that fβ(τ2) approaches a finite value as τ2 → 0.
Thus, we see that the spectrum in Eq. (3.63) already does
a good job of satisfying our supertrace constraints, and
even has a τ2 → 0 limit which comes close to vanishing
in the β = 0 case.

Once again, we stress that the simple spectrum in
Eq. (3.63) is only a caricature of an actual fully modular-
invariant string spectrum. This exercise nevertheless il-
lustrates how even the constraint in Eq. (3.62) has teeth.

As a final remark, we note that not every oscillating
functional form for ann will exhibit this behavior. Indeed,
the functional form in Eq. (3.63) is particularly “stringy”:
rather than relying on boson/fermion pairings at any
mass level, the controlled behavior as τ2 → 0 occurs
as the result of tight constraints that involve the num-
bers of states across the entire (infinite) string spectrum.
From this perspective the critical aspect of the spectrum
in Eq. (3.63) is that the bosonic and fermionic states
share the same exponentially growing degeneracy profile
function e

√
n while nevertheless sampling this function at

“misaligned” values (in this case, with even n for bosons
and odd n for bosons). This is the underpinning of mis-
aligned supersymmetry, as discussed in Ref. [9].

To see that this is the critical feature, let us imagine
a more “field-theoretic” spectrum in which the bosonic
states continue to have degeneracies ann ∼ e

√
n but in

which their fermionic would-be superpartners have these
same degeneracies but with masses lifted by some small
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supersymmetry-breaking scale δn:

f
(B)
β (τ2) ≡

∑
n

ann e
−nτ2

f
(F)
β (τ2) ≡

∑
n

ann e
−(n+δn)τ2 . (3.65)

Here the two distributions in Eq. (3.65) indicate bosonic
and fermionic states respectively. Of course, this is a
very natural spectrum from a field-theoretic perspective,
exhibiting a clear boson/fermion pairing. However, such
cases lack modular invariance, and indeed we find that

the corresponding fβ(τ2) ≡ f (B)
β (τ2)− f (F)

β (τ2) functions
not only grow exponentially as τ2 → 0, thereby violating
the constraints in Eq. (3.62), but also exhibit increasingly
violent oscillations that preclude numerical extraction of
any smooth limiting values as τ2 → 0. Similar prob-
lematic results arise for other paired bosonic/fermionic
splitting patterns as well.

Thus, to summarize the results of this section, we find
that any four-dimensional string amplitude 〈X 〉 with a
modular-invariant insertion X can be written as [17]〈

X
〉

=
π

3
Str (Dτ2X ) =

π

3
Str
(
τ−1
2 X

)
(3.66)

where Dτ2 is defined in Eq. (3.47). In conjunction with
Eq. (3.66), we also have the constraint in Eq. (3.50)
which tightly constrains the spectrum of states and ren-
ders the quantities in Eq. (3.66) finite. Given the discus-
sion above, we see that supertrace expressions such as
these are meaningful and convergent precisely because
we are working within a string-theoretic context wherein
the corresponding spectra are governed by modular in-
variance and misaligned supersymmetry, even though
bosonic/fermionic pairings are no longer possible. In-
deed, it is in this way that string theory maintains its
finiteness — even without spacetime supersymmetry, and
even in the face of not only exponentially growing tow-
ers of states but also exponentially growing net (bosonic
minus fermionic) numbers of states [1, 8, 9].

D. Entwined amplitudes and entwined supertraces

In the previous subsection we derived the general re-
sults in Eqs. (3.46) and (3.50) for the Rankin-Selberg
transform. At first glance, our next task would then ap-
pear to be to apply these results for the specific operator
insertions that arise in our calculation of the gauge cou-
plings. In particular, as evident from Eq. (3.20), there
are four specific operator insertions that will be required
in our gauge-coupling calculation:

Q
2

H , Q
2

HQ
2
G , E2 , and E2Q

2
G . (3.67)

The first and third of these come from the insertion of
X1, while the second and fourth come from the insertion
of X2.

Unfortunately, we cannot yet apply the Rankin-Selberg
formalism to all of these operator insertions. The inser-

tions Q
2

H and Q
2

HQ
2
G behave as assumed above for A(`),

depositing their corresponding (m,n) eigenvalues A
(`)
mn

within the partition-function trace as in Eq. (3.26). The
same is also true of the factor Q2

G within the fourth op-

erator in Eq. (3.67). However the “operator” E2 is actu-
ally a function of the complex parameter τ and thus has
its own double power-series expansion in (q, q). More-
over, because we are to insert the same E2 function
for each state within the string spectrum, insertion of
this E2 function into any partition-function trace yields
nothing but a product of the original partition-function
trace and the E2 function. As a result, if ZX denotes
the partition-function trace with an operator X inserted
(i.e., if ZX ∼

∑
m,n amnXmnq

mqn), then ZE2
= Z · E2

and ZXE2
= ZX · E2. The integrand of the (unregu-

lated) amplitude for our gauge-coupling calculation thus
generally takes the form

ZA+BE2
= ZA + ZB · E2 (3.68)

where A =
∑
` τ

`
2A

(`) and B =
∑
` τ

`
2B

(`). Here A(`)

and B(`) are the analogues of X1 and X2. Indeed, from
Eq. (3.20) we have

A
(1) =

ξ

2π
Q

2

H , A
(2) = −2Q

2

HQ
2
G ,

B
(1) = − ξ

24π
, B

(2) =
1

6
Q2
G . (3.69)

Note that B(1) is just a constant. Given the form in
Eq. (3.68), we thus expect the results of our calculations
to involve not only the supertraces emerging from ZA,
as discussed in the previous subsection, but also the su-
pertraces emerging from the product ZBE2 in Eq. (3.68).
Unfortunately, as we shall now see, this product structure
renders the extraction of the corresponding supertraces
more complicated than before.

To see the implications of this product structure, let
us begin by considering a completely general product
of the form Z1 · Z2, where the factors Zi are arbitrary
modular-invariant functions which each have their own
(q, q) power-series expansions of the forms

Z1 ∼
∑
m,n

bmn q
mqn

Z2 ∼
∑
r,s

crs q
rqs . (3.70)

In order to apply the Rankin-Selberg procedure as in
the previous subsection, we must first recast the prod-
uct of these two power-series expansions into the form
of a single power-series expansion, as in Eq. (3.26). We
then wish to consider the corresponding g-function, as in
Eq. (3.28).

Given Eq. (3.70), we immediately see that

Z1 · Z2 ∼
∑
m,n

∑
r,s

bm,n cr,s q
m+rqn+s . (3.71)
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It then follows that

gZ1·Z2
∼
∑
p

dpp (qq)p (3.72)

where the “on-shell” degeneracies dpp associated with the
product are given by the discrete convolution

dpp ≡
∑
m,n

bmn cp−m,p−n . (3.73)

This truncation to a single summation in Eq. (3.72) oc-
curs because the τ1-integration within the definition of
gZ1·Z2

(τ2) selects only those terms in Eq. (3.71) for which
m + r = n + s = p. Thus the new “degeneracies” dpp
within gZ1·Z2

depend on the degeneracies of both the
level-matched and non-level-matched states within the
original Z1 and Z2 factors. In other words, the two
factors Z1 and Z2 are now entwined within the prod-
uct Z1 · Z2. Nevertheless, as evident upon comparing
Eq. (3.28) and (3.72), the quantities {dpp} now play the
same role for a product of two modular functions as pre-
viously played by the degeneracies {annAnn} in the case
of a single modular function.

If Z2 is purely anti-holomorphic, we can set s = 0
above. We then find that p = n, whereupon

dpp ≡
rmax∑
r=0

bp−r,p cr0 . (3.74)

In general, right-moving worldsheet energies in string
theory are bounded from below by the right-moving
worldsheet vacuum energy ∆. For example, we have
∆ = −1 for the bosonic string and ∆ = −1/2 for the
superstring and heterotic string. In all cases, we must
therefore have p − r ≥ ∆. For any value of p, as in
Eq. (3.74), this therefore imposes an upper bound

rmax ≡ bp−∆c (3.75)

where bxc denotes the greatest integer ≤ x.

For the special case with Z2 = E2, we find cr0 = χr in
Eq. (3.74), where χr is defined in Eq. (3.13). This then
yields

dpp = bpp − 24

rmax∑
r=1

σ(r) bp−r,p

=

rmax∑
r=0

χr bp−r,p . (3.76)

We thus see that we obtain the expected result dpp = bpp
(for r = 0) along with a “correction” term (for r ≥ 1)
which reflects the entwining of the theories and which is
induced by the modular completion.

There is interesting physics in this entwinement. For
the lowest-lying levels with p = 0, p = 1, and so forth,

we have

d00 = b00

d11 = b11 − 24σ(1)b01

d22 = b22 − 24σ(1)b12 − 24σ(2)b02

d33 = b33 − 24σ(1)b23 − 24σ(2)b13 − 24σ(3)b03 .

(3.77)

Of course, if Z1 represents the string partition func-
tion itself without any insertions, we then have bmn =
amn where amn tallies the number of bosonic minus
fermionic string states with worldsheet energies (m,n), as
in Eq. (3.25). Otherwise, if Z1 represents the string par-
tition function with an insertion whose (m,n) eigenvalues
are given by Amn, then bmn = amnAmn. In either case,
we see from Eq. (3.77) that off-shell (non-level-matched)
purely stringy states are entering into the entwinement.
Moreover, we should also remember that these are not
the only states in the theory. For example, for p = 1/2,
p = 3/2, etc., we also have

d 1
2
,
1
2

= b 1
2
,
1
2
− 24σ(1)b− 1

2
,
1
2

d 3
2
,
3
2

= b 3
2
,
3
2
− 24σ(1)b 1

2
,
3
2
− 24σ(2)b− 1

2
,
3
2
.

(3.78)

Thus even off-shell states with right-moving tachyonic
mass contributions (i.e., with α′M2

R < 0) are now en-
tering into the entwinement, even though our theory
is presumed to lack physical on-shell tachyons! (In-
deed, if this had been the holomorphic E2-function rather
than the anti-holomorphic E2-function, even the proto-
graviton [18] would have entered into the entwinement.)
Of course, this analysis pertains to heterotic strings. For
Type II theories, by contrast, the proto-graviton states
will enter the entwinement even for E2, given that the
Type II string has a holomorphic/anti-holomorphic (or
worldsheet left-moving/right-moving) symmetry.

We also note that in all cases we must always have
p ≥ 0. This restriction arises for two reasons: because our
original theory is presumed tachyon-free (with bpp = 0 for
all p < 0); and because dpp with p < 0 cannot emerge via
entwinement (i.e., from some state bp−r,p with r ≥ 1) be-
cause right-moving worldsheet energies in string theory
are never smaller than −1, even for the bosonic string.
The values of p within the p-sum are otherwise uncon-
strained, and depend on the spectrum of string modes,
Kaluza-Klein modes, and winding modes of the particu-
lar string under study.

Given this understanding of the nature of the entwine-
ment induced by the presence of the E2 factor, we can
now proceed to derive the general Rankin-Selberg trans-
formation of the amplitude whose integrand is given in
Eq. (3.68). Following from Eq. (3.34), we have〈

A+ BE2

〉
=

π

3
lim
τ2→0

gA+BE2
(τ2) (3.79)

where

gA+BE2
(τ2) = gA(τ2) + gBE2

(τ2) . (3.80)
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As before, the first contribution is given by

gA(τ2) =
∑
`

τ `−1
2

∑
p

appA
(`)
pp e

−4πpτ2 (3.81)

where in the exponential we identify p with αM2/4, as
usual, with M denoting the total mass of the given string
state within the p-sum. By contrast, for the second con-
tribution in Eq. (3.80), we see from Eqs. (3.72) and (3.74)
that

gBE2
(τ2) =

∑
`

τ `−1
2

[∑
p

rmax∑
r=0

χr ap−r,pB
(`)
p−r,p

]
e−4πpτ2

(3.82)
where χr is given in Eq. (3.13) and where the quantity in
square brackets is nothing but dpp in Eq. (3.72). Indeed,
the double (p, r)-sum in Eq. (3.82) is essentially a sum
over all of the string states with right- and left-moving
worldsheet energies (m,n) with m ≤ n, even those with
m 6= n. Of course, all string states have m − n ∈ Z as
a result of the invariance of the string partition function
under τ → τ + 1.

The expression in Eq. (3.82) is properly convergent:
the r-summation has only a finite range 0 ≤ r ≤ rmax for
any fixed value of p, while the subsequent p-sum — al-
though infinite — is kept convergent by the p-suppressed
exponential. However, it is possible to rearrange the
terms of this double (p, r) sum in a manner which con-
tinues to include all (m,n) string states with m ≤ n but
which renders this convergence more explicit and is closer
to the fundamental string symmetries.

To see this, let us imagine the different (m,n) ≡ (p −
r, p) string states as populating a matrix, with m ≡ p− r
and n ≡ p indicating the corresponding row and column,
respectively. Such an arrangement is illustrated in Fig. 3.
Indeed, we see that for any fixed p there is a maximum
corresponding value of r, as already noted in Eq. (3.75).
The (p, r) double sum as written in Eq. (3.82) then corre-
sponds to tallying our states vertical column by vertical
column within the upper triangular m ≤ n portion of
the matrix (i.e., the portion on or above the diagonal).
However, as evident from Fig. 3, there is another way
in which we might sum these states. First, we can sum
the states which lie along the diagonal (which we will
now call the principal diagonal) — these are the physi-
cal string states, all of which have r = 0. Next, we can
sum the states along the “first shifted diagonal” which
is one column/row displaced (or shifted) from the princi-
pal diagonal. These entries tally the contributions from
the unphysical string states whose left- and right-moving
worldsheet energies differ by one unit, i.e., states with
r = 1. Next, we can sum over the “second shifted di-
agonal” which is two units removed from the principal
diagonal, and so forth. In this way, we can equivalently
reach all of our (m,n) states with m ≤ n and m−n ∈ Z.
However, organizing our states according to the diago-
nals on which they lie is tantamount to organizing our
states according to their L0−L0 eigenvalues, where L0 is

r=0 r=1 r=2

0 1/2 23/2-1 1

1

0

-1

1/2

3/2

-1/2

-1/2

p

p-r

FIG. 3. String states arranged as a matrix according to their
right-moving (vertical) and left-moving (horizontal) world-
sheet energies (m,n) ≡ (p − r, p), respectively. The states
with r = 0 lie along the principal diagonal, while the states
with r = 1, 2, ... lie along successive shifted diagonals. The
requirement r ≥ 0 selects only those string states along or
above the principal diagonal, and the τ → τ + 1 invariance
of the partition function ensures that only those “squares”
shaded in green with m− n ∈ Z can be populated. The pink
square is necessarily empty in any tachyon-free theory, and the
row shaded in orange is excluded for heterotic strings because
such strings have right-moving worldsheet energies ≥ −1/2.
In drawing this figure we have assumed that states populate
only integer or half-integer mass levels, but in general the
spectrum of states can be far denser and may even approach
a continuum in (m,n) [or equivalently in p] for exceedingly
large or small compactification radii.

the zero-mode Virasoro operator. Indeed, this method of
summing along diagonals is even suggested by the p and
r variables themselves, since r essentially specifies the di-
agonal on which a given state lies while p then indicates
the location along this diagonal.

Performing our summation along successive diagonals
rather than column-by-column is tantamount to replac-
ing

∞∑
p

rmax∑
r=0

−→
∞∑
r=0

∞∑
p

(3.83)

within Eq. (3.82), where as always the p-sum is an in-
finite one which includes all of the values relevant for
the particular string model in question. These values
include not only integers [for states such as those in
Eq. (3.77)] but also half-integers [for states such as those
in Eq. (3.78)], etc. Of course, while the p-sum on the left
side of Eq. (3.83) nominally begins at p = 0, the p-sum
on the right side of Eq. (3.83) begins at higher values of
p so that p − r ≥ ∆. Implementing Eq. (3.83) within
Eq. (3.82) is thus equivalent to reshuffling the contri-
butions from the different terms within Eqs. (3.77) and
(3.78) so that we sum along the vertical columns (rather
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than horizontal rows) within these equations. We there-
fore obtain

gBE2
(τ2) =

∑
`

τ `−1
2

∞∑
r=0

∑
p

χr ap−r,pB
(`)
p−r,p e

−4πpτ2 .

(3.84)
Our next step is to understand the exponential sup-

pression factor e−4πpτ2 that appears in Eq. (3.84). In
Eq. (3.81), a similar exponential factor appeared, and
we identified p in the exponential with the total squared
mass α′M2/4 of the corresponding string state, where
M2 ≡ (M2

L + M2
R)/2. However, this identification is no

longer appropriate for Eq. (3.84). Because of the en-
twinement that appears in Eq. (3.74), we see that our
exponential factor (qq)p actually represents the product

(qq)p =
(
qp−rqp

)
· qr (3.85)

where only the parenthesized first factor encapsulates the
mass contributions from the states in the original theory.
By contrast, the second factor emerges purely from the
entwinement function. Indeed, for r 6= 0 this is precisely
why our results are sensitive to the off-shell string states.
However, this means that our identification of p and r
with the masses of our underlying string states must now
take the form

α′M2
R = 4(p− r) , α′M2

L = 4p , (3.86)

implying that r = α′(M2
L −M2

R)/4 ≡ α′(∆M2)/4. This
is consistent with our identification of r as indicating how
far from the principal diagonal a given state lies. How-
ever, we now see directly from Eq. (3.86) that p repre-
sents only the left-moving contribution α′M2

L/4 to the
total mass of the state. Thus our exponential suppres-

sion factor is given by e−πα
′M2

Lτ2 .
This result may seem strange, especially given that the

exponential damping factor within the g-function has the
level-matched form (qq)p, as it must. However, in the
present circumstance we identify

(qq)p = (qp−rqp) · qr

=
(
qα

′M2
R/4 qα

′M2
L/4
)
qr

= e
−2πτ2

(
1
2
α′M2+r

)
e

2πiτ1
[

1
4
α′(M2

L−M
2
R)−r

]
.

(3.87)

Moreover, we know that r = α′(M2
L −M2

R)/4. Inserting
this result for r then eliminates the second exponential
in Eq. (3.87) — as it must, given that g(τ2) cannot have
any residual τ1-dependence — and the first exponential
becomes

e−2πτ2(α′M2+r) = e
−2πτ2

[
1
4
α′(M2

L+M2
R)+

1
4
α′(M2

L−M
2
R)
]

= e−πα
′M2

Lτ2 , (3.88)

thereby reproducing the same exponential suppression as
given above.

Thus, putting the pieces together, we find that the E-
entwined portion of our g-function takes the form

gBE2
(τ2) = (3.89)∑
`

τ `−1
2

∞∑
r=0

∑
p

χr ap−r,pB
(`)
p−r,p e

−πα′M2
Lτ2 ,

whereupon we have〈
A+ BE2

〉
=

π

3
lim
τ2→0

τ−1
2

[
∑
`

τ `2
∑
p

appA
(`)
pp e

−πα′M2τ2

+
∑
`

τ `2

∞∑
r=0

∑
p

χr ap−r,pB
(`)
p−r,p e

−πα′M2
Lτ2
]
.

(3.90)

The rest of our analysis proceeds precisely as for the
case without entwinement. Following Eq. (3.40), we can
assume that the total quantity within square brackets
in Eq. (3.90) has an overall τ2-dependence of the form∑∞
j=0 Cjτ

j
2 . We then have

C0 = lim
τ2→0

[...] ,

C1 = lim
τ2→0

d

dτ2
[...] (3.91)

where [...] represents the quantity in square brackets in
Eq. (3.90). The presumed finiteness of

〈
A + BE2

〉
then

leads us to conclude that

C0 = 0 ,〈
A+ BE2

〉
=

π

3
C1 . (3.92)

Just as in the case without entwinement, these results
can be given a direct interpretation in terms of super-
traces over our string states. We have already remarked
that our un-entwined supertrace in Eq. (3.44) is nothing
but an operator eigenvalue-weighted sum over the states
that lie along the principal diagonal. Given this, let us
also define an analogous shifted supertrace as the sum
over the states that lie along the rth shifted diagonal:

Str(r)X ≡ lim
τ2→0

∑
p

ap−r,pXp−r,p e
−πα′M2

Lτ2 (3.93)

where α′M2
L = 4p and where the p-sum, as always, is

over all of the states in the spectrum of the string model
under consideration. Note that for r = 0, level-matching
implies thatML = MR = M . We thus find that the r = 0
shifted supertrace is nothing but our ordinary supertrace:

Str(r=0)X = StrX . (3.94)

The shifted supertraces with r > 0 may thus be con-
sidered to be the generalizations of the ordinary super-
trace to off-shell states — i.e., states that lie along non-
principal diagonals. As noted above, the p-sums along
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non-principal diagonals typically begin with non-zero val-
ues of p, so that p−r continues to exceed the right-moving
vacuum energy ∆ of the string model under considera-
tion (with ∆ = −1/2 for the heterotic string). However,
this restriction merely characterizes the existing states
in the theory. No states are excluded by these observa-
tions, and indeed these sums continue to tally all of the
(off-shell) states that exist in the theory.

We can also define an E-entwined supertrace StrE as
the χr-weighted sum of all of these shifted supertraces:

StrE X ≡
∞∑
r=0

χr Str(r)X . (3.95)

As such, this entwined supertrace StrEX not only tal-
lies both the physical and the unphysical string states,
but also organizes the latter naturally according to how
non-level-matched they are. In this way the E-entwined
supertraces elegantly capture the string-theoretic nature
of our full string spectrum, where the E2 function de-
termines the χr coefficients and thereby determines the
precise nature of the entwinement (motivating us to re-
fer to this as an E2-entwinement, or E-entwinement for
short).

The definition in Eq. (3.95) has an important simplifi-
cation if our supertrace is restricted to only those states
with ML = 0. Such states have p = 0, but for heterotic
strings this in turn implies that we can only have r = 0,
since any greater value of r would result in a right-moving
worldsheet energy L0 less than −1/2. We therefore have

StrE
ML=0

X = χ0 Str
M=0

(0)X = Str
M=0

X (3.96)

where the first equality is a consequence of the restric-
tion to r = 0 while the second equality is a consequence
of Eq. (3.94) in conjunction with the fact that χ0 = 1.
Indeed, the quantity in Eq. (3.96) is nothing but a00X00.

Our results in Eqs. (3.91) and (3.92) can be easily ex-
pressed in terms of these shifted and entwined super-
traces. In particular, we see that

C0 = StrA+ StrE B ,

C1 = Str

(
dA
dτ2

)
− Str

[
A(πα′M2)

]
+ StrE

(
dB
dτ2

)
− StrE

[
B(πα′M2

L)
]

= Str
[
Dτ2A

]
+ StrE

[
D(L)
τ2 B

]
(3.97)

where, in analogy to Eq. (3.47), we have

D(L)
τ2 ≡ d

dτ2
− πα′M2

L . (3.98)

Our Rankin-Selberg relations for the entwined case then
become

StrA = − StrEB〈
A+ BE2

〉
=

π

3

{
Str [Dτ2 A] + StrE

[
D(L)
τ2 B

]}
.

(3.99)

In cases for which the operator insertions A and B are
τ2-independent, this last result reduces to

〈
A+BE2

〉
= − 1

12M2

[
Str
(
AM2

)
+ StrE

(
BM2

L

)]
.

(3.100)
We also note that the results in Eq. (3.99) reduce to
those in Eqs. (3.50) and (3.46) for the case in which the
entwinement is removed, i.e., the case in which E2 → 0,
or χr → 0 for all r ≥ 0.

We have already seen in Eq. (2.5) that Str1 = 0 in
any closed-string theory which is free of physical (on-
shell) tachyons. Indeed, this is a completely general re-
sult which was first obtained in Ref. [8] and which holds
even if the string model in question lacks spacetime su-
persymmetry. Indeed, this result is one of the fundamen-
tal predictions of misaligned supersymmetry [8, 9], a hid-
den symmetry which must always exist in any string spec-
trum and which plays a critical role in ensuring the finite-
ness of closed-string amplitudes. Given this result, it is
natural to wonder whether the corresponding entwined
supertrace StrE 1 vanishes as well. From Eq. (3.95) we
see that this would require either that the shifted su-

pertraces Str(r)1 each vanish individually or take values
which cancel in the sum over r in Eq. (3.95). However,
just as Str1 vanishes when evaluated along the principal
diagonal for any self-consistent tachyon-free closed string

theory, it can be shown [19] that Str(r)1 = 0 as well —
i.e., that this supertrace also necessarily vanishes along
each of the shifted diagonals. This result is ultimately
the result of an off-shell misaligned supersymmetry that
exists within the off-shell structure of any tachyon-free
string theory [9, 19]. We thus find the general result

Str(r)1 = 0 for all r

=⇒ StrE 1 = 0 . (3.101)

Given these results, it is now straightforward to evalu-
ate the supertraces of the overall operator insertions X1

and X2 in Eq. (3.20). We thus obtain the relations

StrX1 =
ξ

2π
StrQ

2

H

StrX2 = − 2 StrQ
2

HQ
2
G +

1

6
StrE Q

2
G (3.102)

where StrE is defined as in Eq. (3.95) in terms of principal
and shifted supertraces and where we have eliminated a
term proportional to StrE 1 that would otherwise have
appeared in the first line of Eq. (3.102). Indeed, with
these results we have succeeded in writing the supertraces
of our operator insertions X1 and X2 in terms of the

supertraces of our physical charges Q
2

H and Q2
G across

the states in the string spectrum.
We see, then, that the entwinement has had a pro-

found effect on our theory, leading to supertraces over
more than merely the physical string states. At first
glance, this might seem to violate our claim — as ex-
pressed in Sect. II — that the Rankin-Selberg procedure
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leads to supertraces over only the physical string states.
However, the Rankin-Selberg procedure always involves
performing the τ1-integral when defining g(τ2), and thus
it always projects onto those overall qmqn contributions
for which m = n. By contrast, what has occurred is that
the presence of the E2 insertion — which has its own
intrinsic τ -dependence — has effectively deformed how
the different (m,n) states ultimately contribute within
the relevant modular integrands, ultimately allowing off-
shell states within the original theory to become “physi-
cal” (i.e., level-matched) within the modular-completed
calculation of the gauge couplings. This then allows such
states to contribute in the large-τ2 limit (i.e., in the deep
IR), just as we expect for physical states. Thus, in this
sense, it is the modular completion — along with the
appearance of the E2 factor — which has deformed the
notion of “physicality” insofar as the Rankin-Selberg pro-
cedure is concerned, allowing string states which were
originally non-level-matched to behave as physical states
in our gauge-coupling calculation. Entwinement thereby
widens the class of states which can ultimately contribute
to the supertraces when calculating string amplitudes.

E. Generic picture of running gauge couplings in
string theory

Having assembled all of the relevant conceptual ingre-
dients, we are now ready to tackle our main task: to
utilize the Rankin-Selberg procedure in order to evaluate
the string amplitude that yields the regulated one-loop
contribution to the gauge coupling, and to recast this
amplitude in terms of spectral supertraces. As we have
seen in Eqs. (3.21) and (3.68), this amplitude is given by

∆̂G =
〈(
τ2X1 + τ2

2X2

)
Ĝ
〉

=
〈(
A+ BE2

)
Ĝ
〉

=
〈[(

τ2A
(1) + τ2

2A
(2)
)

+
(
τ2B

(1) + τ2
2B

(2)
)
E2

]
Ĝ
〉

(3.103)

where the X` are given in Eq. (3.20), where A, B, A(`),
and B(`) are given in Eq. (3.69), and where the regulator

function Ĝρ(a, τ) is given in Eq. (3.22).
The first thing we notice from the last term on the fi-

nal line of Eq. (3.103) is that we are now dealing not
with a mere entwinement between two modular func-
tions ZB(τ, τ) and E2(τ), but rather a triple entwine-
ment between ZB(τ, τ), E2(τ), and our regulator func-

tion Ĝρ(a, τ, τ). Thus, in principle, we should first de-
velop a formalism for handling such a triple entwinement.
Moreover, as we have discussed in Sect. III B, we would
like to evaluate this amplitude as a function of a, since
ρa2 will eventually be identified with our running scale µ
in units of Ms. However, the value of a affects the nature
of the triple entwinement in a highly non-trivial way.

For these reasons, we shall adopt a different approach.
In particular, we shall follow the methodology first es-
tablished in Appendix A of Ref. [2] for calculations of
the Higgs mass, only suitably adapted for our gauge-
coupling calculation. To do this, we observe upon com-
paring Eqs. (2.6) and (3.103) that the one-loop Higgs
mass has the same algebraic structure as the one-loop
contribution the gauge coupling. Indeed, the only dif-
ference between the two expressions is a change in the
particular operator insertions X`. However, the calcu-
lation in Appendix A of Ref. [2] does not rely on the
precise operator insertions as long as they have the gen-
eral modular structure τ2X1 + τ2

2X2. For this reason, we
can borrow the results from Appendix A of Ref. [2] and
then simply update these results using the new operator
insertions appropriate for our gauge-coupling calculation.

This procedure is greatly facilitated by first observ-

ing that the form of the regulator function Ĝρ(a, τ) in

Eq. (3.22) allows us to reduce the calculation of ∆̂G to a
calculation of the “reduced” amplitude

P (a) =
〈(
τ2X1 + τ2

2X2

)
Zcirc(a, τ)

〉
(3.104)

where Zcirc(a, τ) is the circle-compactification function
in Eq. (3.23). Indeed, once we have evaluated P (a), it
follows from Eq. (3.22) that we can then easily evaluate

∆̂G through the relation

∆̂G(ρ, a) =
a2

1 + ρa2

ρ

ρ− 1

∂

∂a

[
P (ρa)−P (a)

]
. (3.105)

Our task is therefore to evaluate P (a). However, this
is precisely what is done in Ref. [2] for cases in which the
operators X` do not contain any entwinements. Indeed,
in such cases it is shown that P (a) is given by

P (a) = Str
M=0

X1 [f1(a) + f2(a)]

+ Str
M=0

X2 [f3(a)]

+ Str
M>0

X1 [f2(a) + f4(M,a)]

+ Str
M>0

X2 [f5(M,a)] (3.106)

where

f1(a) =
πa

3

f2(a) =
π

3a

f3(a) = − 2

a
log a

f4(M,a) =
2

π

∞∑
r=1

(
M

rM

)
K1

(
rM

aM

)

f5(M,a) =
4

a

∞∑
r=1

K0

(
rM

aM

)
. (3.107)

HereM = Ms/(2π) is the reduced string scale and Kν(z)
denotes the modified Bessel function of the second kind.
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Likewise, the notations Str
M=0

Xf(M) and Str
M>0

Xf(M) re-

spectively indicate contributions from purely massless
and massive string states. The result in Eq. (3.106)
is exact for all a and holds for general un-entwined
modular-invariant operator insertions of the form X =
τ2X1 + τ2

2X2. Thus we see from Eq. (3.106) that our re-
duced amplitude in Eq. (3.104) for un-entwined operators
X1 and X2 can ultimately be expressed in terms of com-
binations of supertraces of the form Str

[
Xf(M)

]
for var-

ious combinations ofX1 andX2 and for various functions
f(M). We further note that the functions f1 through f3

are wholly independent of any aspect of the spectrum
of the string theory under study, and thus these func-
tions can be taken outside their respective supertraces.
By contrast, the functions f4 and f5 depend not only on
the regulator parameter a but also on the mass M of the
contributing state. Such functions are thus intrinsically
part of the supertrace and cannot be factored out.

Although the result in Eq. (3.106) was derived for op-
erators X` that do not involve any entwining, it is not
difficult to generalize this result to the case in which
a given operator X is entwined, i.e., takes the form
X = A + B · E2 with B 6= 0. Indeed, tracing through
the derivations that originally led to Eq. (3.106), we find
that in such cases we can simply replace

Str
[
X f(M)

]
−→ Str

[
A f(M)

]
+ StrE

[
B f(ML)

]
(3.108)

within Eq. (3.106). This illustrates the power of
the entwined-supertrace formalism we have developed.
Moreover, when restricting to massive states [i.e., states
whose contributions to g(τ2) have an exponential τ2-
dependent suppression], we have

Str
M>0

[
X f(M)

]
−→ Str

M>0

[
A f(M)

]
+ StrE
ML>0

[
B f(ML)

]
(3.109)

The critical point here is that the restriction to mas-
sive states for X becomes a restriction to states with
positive left-moving mass ML for the E-entwined super-
trace. This makes sense since the exponential suppression
within g(τ2) for the entwined supertrace depends on M2

L
rather than M2. By contrast, when restricting to mass-
less states [i.e., states that contribute to g(τ2) without
exponential suppression], the f(M) function becomes a
constant which can be pulled outside the trace. We can
then push this one step further and write

Str
M=0

X −→ Str
M=0

A+ StrE
ML=0

B

= Str
M=0

A+ Str
M=0

B . (3.110)

The top line is of course analogous to what occurs in
Eq. (3.109), but the additional step — the passage to
the second line — follows from Eq. (3.96).

As an example of Eq. (3.110), let us consider the cases
when X = X1 and X = X2. In these cases we have

Str
M=0

X1 =
ξ

2π
Str
M=0

Q
2

H −
ξ

24π
StrE
ML=0

1

=
ξ

2π
Str
M=0

(
Q

2

H −
1

12

)
(3.111)

and

Str
M=0

X2 = − 2 Str
M=0

Q
2

HQ
2
G +

1

6
StrE
ML=0

Q2
G

= − 2 Str
M=0

(
Q

2

H −
1

12

)
Q2
G . (3.112)

Interestingly, we see that in both cases the restriction to
massless states has completely eliminated the modular
completion that we originally performed in Eq. (3.15).
We further note the identity

StrE
ML>0

1 = StrE1− StrE
ML=0

1

= − Str
M=0

1 = Str
M>0

1 . (3.113)

Here the first equality follows from the observation orig-
inally made in the paragraph below that containing
Eq. (3.78), namely that p ≥ 0 (implying that ML ≥ 0).
Likewise, the second equality follows from Eq. (3.101)
and the final equality follows from Eq. (2.5).

Let us now start with Eq. (3.106) and insert our ex-
pressions for X1 and X2, where these expressions are
given in Eq. (3.20). Bearing in mind the substitutions
and simplifications in Eqs. (3.108) through (3.113), we
obtain

P (a) = Str
M=0

{
ξ

2π

(
Q

2

H −
1

12

)[
f1(a) + f2(a)

]}
− Str
M=0

[
2

(
Q

2

H −
1

12

)
Q2
G f3(a)

]
+ Str
M>0

[
ξ

2π

(
Q

2

H −
1

12

)
f2(a)

]
+ Str
M>0

[
ξ

2π
Q

2

H f4(M,a)

]
−StrE
ML>0

[
ξ

24π
f4(ML, a)

]
− Str
M>0

[
2Q

2

HQ
2
G f5(M,a)

]
+ StrE
ML>0

[
1

6
Q2
G f5(ML, a)

]
. (3.114)

This expression represents the line-by-line result of
substituting the values of the Xi from Eq. (3.20)
into Eq. (3.106) and implementing the identities in
Eqs. (3.108) through (3.113).

Additional manipulations can further simplify this ex-
pression and render it more compact while also simulta-
neously elucidating its algebraic structure. This rewrit-
ing will also be useful for understanding certain proper-
ties of the resulting running of the gauge couplings. In
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particular, we note that the final f2(a) term on the first
line of Eq. (3.114) can be joined with the third line of this
equation in order to remove the M > 0 restriction on the
latter. The removal of this restriction then further allows
us to eliminate the −1/12 term as a result of the identity
Str1 = 0. Likewise, the f1(a) term on the first line can
be combined with the expressions on the fourth and fifth
lines in order to remove their M > 0 and ML > 0 restric-
tions as well; indeed, these latter observations follow as a
result of the fact that K1(z) ∼ z−1 as z → 0, whereupon
we see that

lim
M→0

∞∑
r=1

(
M

rM

)
K1

(
rM

aM

)
=

∞∑
r=1

a

r2
=

π2a

6
,

(3.115)
or equivalently

lim
M→0

f4(M,a) = f1(a) . (3.116)

Interpreting the quantity in Eq. (3.116) as f4(0, a), we
thus find that Eq. (3.114) simplifies to

P (a) = − Str
M=0

[
2

(
Q

2

H −
1

12

)
Q2
G f3(a)

]
+ Str

[
ξ

2π
Q

2

H f2(a)

]
+ Str

[
ξ

2π
Q

2

H f4(M,a)

]
−StrE

[
ξ

24π
f4(ML, a)

]
− Str
M>0

[
2Q

2

HQ
2
G f5(M,a)

]
+ StrE
ML>0

[
1

6
Q2
G f5(ML, a)

]
. (3.117)

At first glance it might seem that the first line of
Eq. (3.117) could be rewritten in an analogous manner
as the M → 0 limit of the terms in the final two lines.
This would require that f3(a) somehow emerge as the
M → 0 limit of f5(M,a). However, this is ultimately not
the case: we instead find that

f5(M,a) ∼ f3(a) +
Ms

M
+

2

a
log

(
eγ

M

2Ms

)
asM → 0 .

(3.118)
While the extra a-independent constant Ms/M would
ultimately prove irrelevant under the operation in
Eq. (3.105), the logarithmic divergence in Eq. (3.118)
spoils the uniform convergence of the Bessel-function
sum. This issue has important implications and is dis-
cussed in detail in Sect. V of Ref. [2].

There is also a third way of rewriting these expressions
which can be useful for understanding the ramifications
of the entwinement in these theories. From Eqs. (3.95),
(3.94), and (3.13) we can write

StrEX = StrX +

∞∑
r=1

χr Str(r)X . (3.119)

However, as we discussed below Eq. (3.94), we must have
p − r ≥ ∆ where ∆ is the right-moving vacuum energy
within the type of string theory under study. We thus
find that p ≥ ∆ + r, which implies that we cannot have
r ≥ 1 unless p ≥ ∆ + 1. This last constraint is evident in
Fig. 3 for the heterotic case in which ∆ = −1/2. From
Eq. (3.86) this last constraint corresponds to α′M2

L ≥
4(∆ + 1). We can thus write

StrEX = Str
M<ME

X + StrE
ML≥ME

X (3.120)

where ME denotes the entwinement scale

ME ≡ 2
√

∆ + 1Ms (3.121)

at which the entwinement first appears. For heterotic
strings we have ME =

√
2Ms. Note that Eq. (3.120) is a

general result, valid for all strings. Despite the M < ME

upper limit on the first of the sums in Eq. (3.120), this
sum can nevertheless involve a large number of states;
this is especially true for cases in which compactification
radii are far from the string scale.

Using Eq. (3.120), we can finally rewrite Eq. (3.117) in
the form

P (a) = − Str
M=0

[
2

(
Q

2

H −
1

12

)
Q2
G f3(a)

]
+ Str

[
ξ

2π
Q

2

H f2(a)

]
+ Str
M<ME

[
ξ

2π

(
Q

2

H −
1

12

)
f4(M,a)

]
+ Str
M≥ME

[
ξ

2π
Q

2

H f4(M,a)

]
− StrE
ML≥ME

[
ξ

24π
f4(ML, a)

]
− Str

0<M<ME

[
2

(
Q

2

H −
1

12

)
Q2
G f5(M,a)

]
− Str
M≥ME

[
2Q

2

HQ
2
G f5(M,a)

]
+ StrE
ML≥ME

[
1

6
Q2
G f5(ML, a)

]
. (3.122)

Although this expression has more individual terms than
its two predecessors, it explicitly shows that the entwine-
ment is wholly restricted to string states with ML ≥ME .
Indeed, all terms that receive contributions from states

with masses M < ME depend not on Q
2

H but rather on

the explicit un-entwined combination Q
2

H − 1/12. This
statement includes the contribution on the second line
of Eq. (3.122) once we realize that the 1/12 term that
would otherwise appear there has vanished as a result of
the identity Str1 = 0.

Eqs. (3.106), (3.114), (3.117), and (3.122) represent
fully modular-invariant evaluations of the reduced string
amplitude P (a) in Eq. (3.104), expressed purely in terms
of supertraces over our string states. Given that these su-
pertraces are to be evaluated over the states within the
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spectrum of whatever the string model happens to be,
these results are completely general and model-agnostic,
applicable to any four-dimensional string model — with
or without spacetime supersymmetry — so long as the
model lacks physical tachyons. Although the modular in-
variance of P (a) in each of these expressions is not man-
ifest, it is hidden in supertrace identities that relate the
various terms in these expressions to each other.

Using these expressions in conjunction with Eq. (3.105)
we can then trivially evaluate our full desired amplitude

∆̂G(µ) for the running of the gauge couplings. Indeed, we

see from Eq. (3.105) that we can turn P (a) into ∆̂G(µ)
simply by replacing each term within P (a) according to
the schematic substitution Str[Xfi(a)] → Str[Xφi(µ)]
where the operators X are unchanged and where the new
functions φi(µ) for each fi(a) are given by

φi(µ) ≡ 1

1 + ρa2

ρ

ρ− 1
a2 ∂

∂a

[
fi(ρa)− fi(a)

]
(3.123)

where we first evaluate the right side of Eq. (3.123) as a
function of ρ and a, and then identify µ2 ≡ ρa2M2

s with
ρ = 2 chosen as a benchmark value. Indeed, given the
fi-functions given in Eq. (3.107), we find

φ1(µ) =
π

3

µ2/M2
s

1 + µ2/M2
s

φ2(µ) =
π

3

1

1 + µ2/M2
s

φ3(µ) =
2

1 + µ2/M2
s

log

(
2
√

2eMs

µ

)

φ4(M,µ) =
1

1 + µ2/M2
s

1

π

(
M

M

)2[
K(0,1)

0 (z)+K(0,1)
2 (z)

]
φ5(M,µ) =

2

1 + µ2/M2
s

[
K(1,2)

1 (z)− 2K(0,1)
0 (z)

]
(3.124)

where z ≡ 2
√

2πM/µ and where we have defined the
Bessel-function combinations [2]

K(n,p)
ν (z) ≡

∞∑
r=1

(rz)n
[
Kν(rz/ρ)− ρpKν(rz)

]
.

(3.125)
Note that φ1(µ) + φ2(µ) = π/3.

These φi-functions are extremely important and have
direct physical interpretations. While the specific charges
that enter into the Xi expressions tell us which specific
quantity is under study (such as the Higgs mass versus
the gauge coupling), and while the particular numeri-
cal values of these charges tell us about the particular
string model under study, the φi functions are essentially
universal and tell us how these phenomenological quan-
tities run as functions of the scale µ in the corresponding
EFT. As we have seen, these running functions are uni-
versal for all quantities (such as the one-loop Higgs mass
or gauge couplings) which have at most a logarithmic di-
vergence in string theory prior to regularization. More

specifically, substituting P (a)→ ∆̂(µ) and fi(a)→ φi(µ)
within our previous expression for P (a) in Eq. (3.114),
we find that

• φ1(µ) is the contribution to ∆̂G(µ) per unit (A(1) +
B

(1)) charge from each massless physical state;

• φ2(µ) is the additional contribution to ∆̂G(µ) per
unit (A(1) +B(1)) charge from each physical state,
regardless of mass;

• φ3(µ) is the additional contribution to ∆̂G(µ) per
unit (A(2) +B(2)) charge from each massless phys-
ical state;

• φ4(M,µ) is the additional contribution to ∆̂G(µ)
per unit A(1) charge for each physical state of non-
zero mass M , while φ4(ML, µ) is χ−1

r times the ad-

ditional contribution to ∆̂G(µ) per unit B(1) charge
for each physical or unphysical string (m,n) state
with left-moving mass ML for which n − m ≡ r
with r ≥ 0; and

• φ5(M,µ) is the additional contribution to ∆̂G(µ)
per unit A(2) charge for each physical state of non-
zero mass M , while φ5(ML, µ) is χ−1

r times the ad-

ditional contribution to ∆̂G(µ) per unit B(2) charge
for each physical or unphysical string (m,n) state
with left-moving mass ML for which n − m ≡ r
with r ≥ 0.

Here the A(i) and B(i) charges are given in Eq. (3.69),
and the above results are quoted for bosonic states;
fermionic states of course contribute with opposite signs.
Once again, we stress that these results are completely
general for all phenomenological quantities which diverge
at most logarithmically when unregulated; it is only
when we substitute the particular forms of A(i) and B(i)

in Eq. (3.69) that we limit our attention to ∆̂G(µ) of
the gauge couplings. Indeed, in the case of the Higgs
mass in Ref. [2], no entwinement occurs and we have
B

(1) = B(2) = 0.
As we have seen, the results quoted above for P (a)

in Eqs. (3.114), (3.117), and (3.122) come directly from
the result in Eq. (3.106). This in turn is taken directly
from Eq. (A15) of Ref. [2]. Although the derivation given
in Ref. [2] is sufficient for the Higgs mass, it makes the
implicit assumption that supertraces of the general form
Str [τ2X2f(M)] are all vanishing as a result of the explicit
factor of τ2 within the supertrace. Otherwise, such terms
would also have appeared in Eq. (3.106). At first glance,
the absence of such terms from all calculations might
appear to be justified, given that our supertraces are de-
fined in Eq. (3.44) in terms of a limiting procedure that
involves taking the τ2 → 0 limit. Indeed, in most circum-
stances (including those considered in Ref. [2], where the
Higgs mass was calculated), the extra factor of τ2 inside
the supertrace would drive the overall supertrace to van-
ish, as assumed. However, as discussed earlier, it is possi-
ble (especially near the borders of moduli space) that our



28

spectrum of string states can become extremely dense. In
such cases, the accumulated “pile-up” of states can cause
quantities such as StrX2f(M) to diverge, thereby allow-
ing supertraces such as Str [τ2X2f(M)] to have non-zero
values. This “pile-up” phenomenon will be discussed in
more detail in Ref. [20].

In the present calculation of gauge couplings, we would
like to maintain complete generality and allow our results
to remain valid even as we approach the boundaries of
moduli space. For this reason, we must amend our results
for P (a) quoted above. However, it turns out that this
is relatively straightforward and amounts to introducing
only one additional contribution

Str
M>0

τ2X2 [f2(a)] (3.126)

within Eq. (3.106). This extra term will then propagate
into Eqs. (3.114), (3.117), and (3.122). In fact, given that
the “pile-up” phenomenon that gives rise to this term
involves the infinite towers of massive states, we note that
Str
M=0

τ2X2 [f2(a)] = 0. The contribution in Eq. (3.126)

can thus be equivalently written as

Str τ2X2[f2(a)] , (3.127)

with no restriction on the masses of the states in the
supertrace.

At this stage, we have now completed Step 8, as out-
lined in Sect. II. This enables us to extract a consider-
able amount of information about the running of ∆̂G(µ).

For example, let us consider the behavior of ∆̂G(µ) in
the deep-IR limit, i.e., as µ → 0. As µ → 0, we find
that φ1(µ), φ4(µ), and φ5(µ) all vanish; in the latter two
cases this happens because the Bessel functions K2(z) in
Eq. (3.124) all vanish exponentially as z → ∞. Thus,
only φ2(µ) and φ3(µ) survive in the deep-IR limit. Of
course, φ3(µ) actually diverges in this limit. This diver-
gence is not a surprise, however, since the deep-IR limit
corresponds to the limit a → 0 in which our regulator
is removed. Thus this divergence corresponds to the log-
arithmic divergence of our original unregulated quantity.
As anticipated in Sect. III B, and as apparent from each
of our above expressions for P (a), this divergence is pro-
portional to

Str
M=0

(
A

(2) +B(2)
)

= − 2 Str
M=0

(
Q

2

H −
1

12

)
Q2
G .

(3.128)
However, in theories for which this quantity vanishes, we
find that only φ2(µ) survives, with limµ→0 φ2(µ) = π/3.
In such cases we find from Eqs. (3.114) and (3.127) that

lim
µ→0

∆̂G(µ) =
π

3
Str (X1 + τ2X2)

=
ξ

6
StrQ

2

H −
2π

3

(
Str τ2Q

2

HQ
2
G −

1

12
StrE τ2Q

2
G

)
.

(3.129)

The fact that ∆̂G(µ) asymptotes to a constant as µ→ 0 is
not particularly surprising, given the assumed vanishing

of the quantity in Eq. (3.128). However, what is surpris-
ing is that the asymptotic value in Eq. (3.129) receives
contributions not only from the light or massless string
states, but from the entire tower of string states, all the
way up into the UV! Indeed, all of the string states
contribute to the unrestricted supertraces in Eq. (3.129).
This is a graphic example of the UV/IR mixing inherent
in a modular-invariant theory such as string theory.

Let us now consider the behavior of ∆̂G(µ) as we pro-
ceed upwards in energy scale µ away from the deep-IR
limit. Indeed, much of the following discussion mirrors
the discussion for the Higgs mass in Ref. [2], to which
we refer the reader for details not provided here. Let
us first focus on energy scales for which µ � Ms. In
this regime, we find that φ1 and φ4 continue to remain
vanishingly small. However, whether φ5 remains small
as well for a particular state of mass M depends on the
value of z ∼ M/µ — i.e., on whether the state whose
contribution we are assessing is heavier or lighter than
µ. In this connection it is important to realize that our
supertraces receive contributions from the entire string
spectrum. This necessarily includes states with masses
M >∼Ms, but may also include potentially light states
with non-zero masses far belowMs. The existence of such
light states depends on our string construction and on the
specific string model in question. Thus, even though we
are considering situations in which µ � Ms, there need
not be any fixed hierarchical relationship between µ and
M .

In Fig. 4, we have plotted φ5(M,µ) as a function of

µ/M . Recalling that this is the contribution to ∆̂G(µ)
per unit A(2) charge from a given physical bosonic string
state of mass M , certain aspects of this behavior are easy
to understand. For example, when µ � M the state is
much heavier than the relevant energy scale µ and is ef-
fectively “integrated out” of our theory. Thus all running
stops, and φ5(M,µ) becomes flat. Mathematically, this
occurs because

K(n,p)
ν (z) ∼

√
πρ

2
zn−1/2 e−z/ρ as z →∞ . (3.130)

Thus all running is exponentially suppressed as z ∼
M/µ → ∞, leaving behind only an exponential tail. By
contrast, for energy scales µ � M , our state is still dy-
namical. We then see from Fig. 4 that the effective con-
tribution to the running from this state is effectively log-
arithmic. Indeed, as z → 0, we find that [21]

K(0,1)
0 (z) ∼ − 1

2
log z + 1

2
[log (2π)− γ]

K(1,2)
1 (z) ∼ 1 (3.131)

where γ is the Euler-Mascheroni constant. For µ �
M , this leads to an asymptotic logarithmic running for
φ5(M,µ) of the form

φ5(M,µ) ≈ − 2 log

[
1√
2
e−(γ+1) µ

M

]
. (3.132)
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FIG. 4. The function φ5(M,µ) in Eq. (3.124) and the corre-
sponding contribution to the beta function β∆ in Eq. (3.137),
plotted as functions of log10(µ/M) [green and blue, respec-
tively]. Note that φ5(M,µ) is the Bessel-function contribu-

tion to ∆̂G(µ) per unit A(2) charge from a given physical
bosonic string state of non-zero mass M . When µ� M , the
state is effectively integrated out of the theory, whereupon
the running contribution φ5(M,µ) asymptotes to a constant.
However, at larger energy scales µ � M , the state is fully
dynamical and produces a running which is effectively loga-
rithmic. Finally, within the intermediate µ ∼ M region, the
Bessel-function expression for φ5(M,µ) in Eq. 3.124) provides
a smooth connection between these two asymptotic behaviors
and even gives rise to a transient “hump” in the value of

∆̂G(µ), or equivalently a “dip” in the value of the running
coupling gG(µ).

Finally, between these two extremes, we see that
φ5(M,µ) interpolates smoothly and even gives rise to

a transient “hump” in ∆̂G(µ), or equivalently a “dip”
in gG. This behavior results from the specific combi-
nation of Bessel functions within φ5(M,µ). Of course,
the statistics factor (−1)F within the supertrace flips the
sign of this contribution for degrees of freedom which are
fermionic.

Likewise, for any fixed scale µ, adjusting the mass M
upwards or downwards simply corresponds to shifting
this curve rigidly to the right or left, respectively. In this
way one can imagine summing over all such contributions
to the running (while also weighting each contribution by
the appropriate net numbers of states at each mass level)
as one takes the supertrace over the entire string string
spectrum. Of course, for any energy scale µ, the contri-
butions from states with M � µ are exponentially sup-
pressed, as discussed above. Thus, at any energy scale µ,

the only states which contribute meaningfully to ∆̂G(µ)

are those with M <∼ µ.

Thus, combining these Bessel-function contributions
with those from Eq. (3.129) and keeping only those (lead-

ing) terms which dominate when M <∼ µ � Ms, we see
that we can approximate the exact result in Eq. (3.122)

as

∆̂G(µ) ≈ π

3
Str (X1 + τ2X2)

+ 2 Str
M=0

(
A

(2) +B(2)
)

log

(
2
√

2eMs

µ

)

− 2 Str
0<M.µ

(
A

(2) +B(2)
)

log

[
1√
2
e−(γ+1) µ

M

]
(3.133)

or equivalently

∆̂G(µ) ≈ ξ

6
StrQ

2

H

− 2π

3

(
Str τ2Q

2

HQ
2
G −

1

12
StrE τ2Q

2
G

)
− 4 Str

M=0

(
Q

2

H −
1

12

)
Q2
G log

(
2
√

2eMs

µ

)

+ 4 Str
0<M.µ

(
Q

2

H −
1

12

)
Q2
G log

[
1√
2
e−(γ+1) µ

M

]
.

(3.134)

Given these results, our gauge couplings gG(µ) can
exhibit a variety of running behaviors. These will ulti-
mately depend on the spectrum of states associated with
the string model under study. Of course, the final terms
in Eqs. (3.133) and (3.134) do not exhibit any running
until we reach µ ∼ Mlightest, where Mlightest is the mass
of the lightest massive string state carrying a non-zero
(A(2) + B(2)) charge. Therefore, if we first restrict our

attention to energy scales µ <∼Mlightest, the only running

that arises is due to the massless (A(2) + B(2))-charged
states. These are the contributions that appear on the
second and third lines of Eqs. (3.133) and (3.134), re-
spectively.

This running can be expressed in a manner which
is more traditional for describing the running of gauge
couplings in string theory, namely in terms of an RGE
that relates the couplings gG(µ) to their values at the
string scale Ms (see, e.g., Refs. [13, 14, 22, 23]). From
Eq. (3.2), we obtain the general running equation for the
total gauge couplings gG(µ):

16π2

g2(µ)
− 16π2

g2
tree

= ∆̂G(µ) (3.135)

where from Eq. (3.134) can write

∆̂G(µ) = ∆̂G(Ms)− 2 Str
M=0

(
A

(2) +B(2)
)

log

(
µ

Ms

)
≡ ∆̂G(Ms) + β∆(0) log

(
µ

Ms

)
. (3.136)

Here the quantity β∆(0) may be regarded as the µ =

0 value of the general beta function β∆(µ) for ∆̂G(µ),
which in turn is defined as

β∆(µ) ≡ ∂∆̂G(µ)

∂ log µ
= − 32π2

g3
G

βg(µ) (3.137)
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where βg(µ) ≡ ∂gG/∂ logµ is the usual beta function for
the gauge coupling gG. Indeed, we see from Eq. (3.136)
that β∆(0) is precisely −2 times the quantity given in
Eq. (3.128), i.e.,

β∆(0) = − 2 Str
M=0

(
A

(2) +B(2)
)

= 4 Str
M=0

(
Q

2

H −
1

12

)
Q2
G . (3.138)

Likewise, using an asterisk ‘∗’ to indicate the couplings
that would have arisen in our theory if β∆(0) had van-
ished, we can write

∆̂G(Ms) = ∆̂∗G(0) + κ (3.139)

where ∆̂∗G(0) is given in Eq. (3.129) and where [within
our regulator scheme defined by our regulator function

Ĝρ(µ) with ρ = 2] we have

κ = − β∆(0)
[
1 + log

(
2
√

2
)]

. (3.140)

Thus, putting the pieces together, we have the RGE

16π2

g2(µ)
− 16π2

g2
tree

= ∆̂G(Ms) + β∆(0) log

(
µ

Ms

)
(3.141)

where ∆̂G(Ms) is given in Eq. (3.139).
Thus far, Eq. (3.141) captures the effects of the mass-

less (A(2) + B(2))-charged string states. However, as µ
increases still further, additional (A(2) + B(2))-charged
string states enter the EFT and contribute their own in-
dividual logarithmic contributions. Of course, if these
additional states have masses M �Mlightest, the loga-
rithmic nature of the running shown in Fig. 4 from the
state with mass Mlightest will survive intact until µ ∼M .
However, if the spectrum of states is relatively dense be-
yond Mlightest, the logarithmic contributions from each
of these states must be added together, leading to a far
richer behavior.

One interesting possibility arises in cases of string
theories with large compactification radii R � M−1

s .
In such cases, our theory will have Kaluza-Klein (KK)
modes with masses mn ∼ n/R that appear well be-
low Ms. Thus, as µ increases towards Ms, increasingly
many KK states enter the EFT. Although each KK
state contributes the same logarithmic running, our nat-
ural field-theoretic expectation is that the full supertrace
over the string spectrum will begin to experience an ac-

cumulated effective power-law growth, with ∆̂G(µ) ∼ µδ
where δ is the number of spacetime dimensions whose
inverse compactification radii R−1 lie below µ. Indeed,
this is precisely the field-theoretic behavior discussed in
Refs. [24, 25], which can algebraically be interpreted as
resulting from a beta function β∆(µ) which itself is grow-
ing polynomially with µ. However, as we shall shortly
see, in a string context we also have a scale-duality sym-
metry under µ → M2

s /µ. This means that even at en-
ergy scales µ � Ms the winding modes associated with

such compactifications can also contribute. Remarkably,
these have the generic effect of cancelling this power-
law running (and even the original logarithmic running),
thereby producing a situation in which there can be no
running at all! We will refer to the region in which such
running terminates as a “fixed-point region”. This non-
renormalization phenomenon, surprising as it is, is ac-
tually quite general and will be discussed in detail in
Ref. [20].

Thus far our results are valid for energy scales below
the string scale. However, as mentioned above, it turns
out that we also have information about what happens in
the opposite region, namely that with µ > Ms: we simply
enter a “dual” infrared region in which this same behav-
ior again emerges, but in reverse. This is a direct con-
sequence of the modular invariance which we have been
careful to maintain throughout our calculations. Indeed,
modular invariance ensures that the running is symmet-
ric under the scale-inversion duality transformation

µ → M2
s

µ
. (3.142)

As a result, when plotted as a function of log(µ/Ms), the

behavior of ∆̂G(µ) for µ�Ms is reflected symmetrically
through the self-dual point µ∗ = Ms to yield the reverse
behavior for µ�Ms.

As discussed in Ref. [2], the origins of this scale-duality
symmetry are easily understood. To see this, we note
that in general the contribution of a string states of
mass M to the one-loop partition function experiences

a Boltzmann-like suppression factor ∼ e−πα′M2τ2 . Thus,
for any particular benchmark value τ2 = t, we can sepa-
rate our string spectrum into two groups: “heavy” states
whose Boltzmann suppressions at τ2 = t are significant
according to some convention, and whose contributions
therefore do not require regularization, and “light” states
whose Boltzmann suppressions are not significant, and
whose contributions therefore require regularization. On
this basis, with an eye towards interpreting these re-
sults in terms of an EFT with a running scale µ, we
are directly led to identify µ2 inversely with t. However,
modular invariance tells us that any physical quantities
which depend on τ must be invariant under τ → −1/τ .
Along the τ1 = 0 axis, this becomes an invariance under
τ2 → 1/τ2. This then immediately implies an invariance
under t→ 1/t, or equivalently under µ→ µ2

∗/µ where µ∗
is an arbitrary self-dual mass scale. Of course, the choice
of normalization for µ in relation to t is purely a matter of
convention, since the former is a dimensionful spacetime
quantity while the latter is a dimensionless worldsheet
quantity. In keeping with the traditional string-theoretic
conventions relating worldsheet and spacetime physics,
we take this conversion factor to be given by α′. This
then tells us that µ∗ = Ms.

Although this scale-duality symmetry follows directly
from modular invariance, its implications are profound.
Ultimately, the existence of such a symmetry implies the
existence of a fundamental limit on the extent to which
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an EFT perspective can possibly remain valid in string
theory. We have already noted in the Introduction that
string theory is rife with duality symmetries which defy
EFT notions: an immediate example of this is T-duality,
under which the physics associated with a closed string
propagating on a spacetime with a compactified dimen-
sion of radius R is indistinguishable from the physics
associated with a closed string propagating on a space-
time with a compactified dimension of radius R′ ≡ α′/R.
This is true as an exact symmetry not only for the string
spectrum but also for all interactions. Thus such strings
cannot distinguish between large and small compactifica-
tion geometries, thereby preventing us from establishing
a Wilsonian EFT-like ordering of length scales from large
to small, or equivalently from IR to UV. Phrased some-
what differently, the existence of a T-duality symmetry
tells us that there is a fundamental limit to which we
may consider a spacetime compactification radius to be
“small”. However, what we are seeing now is that a some-
what different phenomenon — namely the scale-duality
symmetry under µ→M2

s /µ which is guaranteed by mod-
ular invariance — implies a fundamental limit on the ex-
tent to which our EFT can exhibit UV behavior. Indeed,
pushing µ beyond Ms only serves to reintroduce the orig-
inal IR behavior of our theory — a behavior which we
may now associate with the dual energy scale µ′ ≡M2

s /µ
associated with a “dual” EFT. In this sense, the energy
scales near Ms exhibit the “most possible UV” behavior
that can be realized.

At first glance, it may be tempting to associate this
scale-duality symmetry with T-duality, since both tend
to place limits on UV behavior and have similar alge-
braic forms. We stress, however, that T-duality is a
spacetime symmetry, and as such comes with certain as-
sumptions about the spacetime geometry. By contrast,
modular invariance is a fundamental worldsheet symme-
try which is required for the self-consistency of the theory
itself. As such, modular invariance and T-duality are un-
related. Indeed, T-duality relates two a priori different
string theories to each other, one with a large compact-
ification volume and the other with a small compacti-
fication volume, and maps a given state with KK- and
winding-numbers (m,n) in the first theory to the equally
massive (n,m) state in the other. By contrast, modular
invariance is a symmetry that operates within a single
string theory and involves Poisson resummations across
the entire string spectrum simultaneously. As such, no
two string states in the theory are directly related to
each other under modular transformations. Indeed, only
through such non-trivial resummations involving the en-
tire string spectrum — including the oscillator states as
well — could we ever hope to obtain features such as mis-
aligned supersymmetry and supertrace constraints (such
as Str1 = 0) that simultaneously balance all of our string
states at all energy scales against each other within a sin-
gle string theory, even without supersymmetry.

Taken together, all of these observations lead to a

running for ∆̂G(µ) as sketched in Fig. 5. In the deep

IR, ∆̂G(µ) approaches a constant unless the quantity in
Eq. (3.128) is non-zero. As µ increases, our theory then
passes through a “dip” region and a subsequent EFT re-
gion characterized by logarithmic running. If our theory
has large compactification radii R � M−1

s , the contri-
butions from the corresponding Kaluza-Klein and wind-
ing states can then conspire to eliminate this running,
leading to the existence of a higher-dimensional string-
scale fixed-point region. Beyond Ms, our theory enters
a “dual” regime in which further increases in µ only re-
produce the IR behavior we have already seen, only in
reverse.

We conclude this section with three comments. First,
we observe that the running of the gauge coupling is es-
sentially the same as the running of the Higgs mass in
Ref. [2] — indeed for µ <∼ME the only differences are the
coefficients of the different running terms. These coeffi-
cients change because they tally the appropriate charges
of our states across the string spectrum, and the charges
that are appropriate or relevant change when we switch
our attention from the Higgs mass to the gauge couplings.

Our second comment concerns the running of the gauge
couplings themselves. Within our calculations we have
implicitly assumed that these couplings remain pertur-
bative throughout the running shown in Fig. 5; oth-
erwise our one-loop calculation is no longer applica-
ble and higher-loop (and even non-perturbative) calcu-
lations would be needed. Depending on the relative
signs and magnitudes of the various supertraces involved,
these couplings could be in danger of becoming non-
perturbative either as µ→MS (which represents one ex-
tremum of the gauge-function plotted in Fig. 5) or within
the “dip” region.

Most importantly, however, there is a deep and fun-
damental difference between the running of the gauge

couplings ∆̂G and the running of the Higgs mass in
Ref. [2]. As we see directly from Eqs. (3.114), (3.117),
and (3.122), the gauge-coupling calculation now includes
contributions from off-shell string states for which ML 6=
MR. This is a strange but not entirely unexpected fea-
ture: states which are not physical in the underlying
string theory, and which therefore can only contribute
in string loop diagrams, also contribute to the running
of the gauge couplings in the corresponding low-energy
EFT! This feature did not appear in the running of the
Higgs mass in Ref. [2]. However, as we have seen, this
feature ultimately stems from the fact that the contri-
butions to the Higgs mass are proportional not to the

square of the helicity charge Q
2

H , but rather to this quan-
tity minus 1/12. In field theory, this extra −1/12 is not
problematic. However, in string theory it has deep reper-
cussions because a pure number such as −1/12 cannot
be subtracted from a squared-charge operator such as

Q
2

H because a pure number has modular weight k = 0
while the squared-charge operator has modular weight
k = 2. Modular invariance thus requires that the −1/12
term be “completed” to the weight-two modular function
E2/12, and this in turn has reverberations throughout
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FIG. 5. The one-loop running of the inverse gauge coupling ∆̂G = 16π2/g2
G for any gauge group G, as calculated from first

principles in a fully modular-invariant string framework. The tree-level contribution is sketched in red, and the total one-loop
coupling is sketched in green. In the deep IR, the coupling approaches an asymptotic value which receives contributions from

all of the states in the string spectrum which carry non-trivial helicity A(1) ∼ Q
2

H charges. This assumes that our theory

contains no net massless states charged under A(2) + B
(2) ∼ (Q

2

H − 1/12)Q2
G where Q2

G is the sum of the squares of the

charges in the Cartan subalgebra of G; otherwise ∆̂G(µ) diverges in the IR limit. Moving towards higher values of µ, we see
that a non-trivial scale-dependence does not emerge until µ ∼ Mlightest, where Mlightest collectively represents the masses of

the lightest massive states which are charged under A(2) +B(2). The non-monotonic “dip” in gG (or “hump” in ∆̂G) that is
observed in this region is a transient effect which smoothly connects the asymptotic deep-IR region µ�Mlightest to an EFT-like

region Mlightest
<∼ µ � Ms. Beyond the dip region, the theory then enters an EFT-like region in which the gauge coupling

experiences a logarithmic running. As µ→Ms, it is possible that we might cross the energy threshold R−1 associated with large
compactification radii. In such cases, this logarithmic running can be modified by the appearance of Kaluza-Klein and winding
states which might appear at mass scales significantly below Ms and which might tend to cancel this logarithmic running,
leading to the existence of a higher-dimensional fixed-point regime, as shown. The subtleties involved in this behavior will be

discussed further in Ref. [20]. However, as a general principle, modular invariance requires that the running of ∆̂G exhibit an
invariance under µ→M2

s /µ. Thus, as µ increases beyond Ms, the theory inevitably begins to re-enter an IR-like regime which
we may associate with a “dual” EFT, followed by a dual dip region and then a dual deep-IR region. The background colors
of this sketch indicate the transition from the deep IR (red) to the UV (blue) and then back to IR (red). As such, there is a
maximum degree to which our theory can approach the UV: once the energy scale µ passes the self-dual point µ ∼Ms, further
increases in µ only push us towards increasingly IR behavior. The quantity κ is defined in Eq. (3.139).

the string spectrum, shifting left-moving string masses
ML relative to right-moving string masses MR. This is
why the non-level-matched string states now survive the
Rankin-Selberg procedure and appear in our running cal-
culation.

That said, these states do not contribute to the low-
energy running in a standard way. Normally, we would
expect a string state to contribute in the low-energy the-
ory according to its mass M2 = (M2

L + M2
R)/2. Indeed,

this quantity in some sense tells us how much worldsheet

energy (as measured by eigenvalues of L0 and L0 respec-
tively) has been “invested” in creating that state as an
excitation in the underlying worldsheet theory. However,
what we are now learning from Eqs. (3.114), (3.117), and
(3.122) is that although a given entwined string state
may have a string-theoretic mass given by M , it con-
tributes to the low-energy EFT precisely as if it had a
mass simply given by ML! In other words, the combined
string-theoretic mass M is irrelevant; what matters —
and what we may therefore consider to be the effective
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EFT mass in such theories, at least as far as the gauge
couplings are concerned — is determined by ML alone.
This, of course, is the effect of the shift in left-moving
masses relative to right-moving masses induced by E2.

We also observe that the entwined resonances all have
left-moving masses that exceed the string scale: ML ≥
ME =

√
2Ms. Thus, one might be tempted to argue that

these states have no effects at energy scales below Ms.
However, this would not be correct. Thanks to scale-
inversion duality, any state that affects the running of
quantities above the string scale will also affect the run-
ning of these quantities below the string scale. This is
not a new phenomenon unique to the entwined states.
After all, we have already seen that the behavior of our
amplitudes in the deep IR is in part determined by the
extremely heavy string states in the deep UV. In a sim-
ilar way, the entwined states also have effects below the
string scale and thereby also have an indirect role in af-
fecting the low-energy EFT below the string scale.

Ultimately, this can be understood from the perspec-
tive of modular invariance and misaligned supersymme-
try. In the two cases studied in Ref. [2] (namely the
cosmological constant and the Higgs mass), the relevant
supertraces involved only physical states and closed un-
der modular transformations into themselves. Thus the
corresponding amplitudes in each case were fully modu-
lar invariant and yet could be written purely in terms
of supertraces over only physical string states. How-
ever, for the present gauge-coupling calculation, slightly
different supertraces are involved. Amongst these su-
pertraces, those involving only physical string states do
not close into each other under modular transformations.
Rather, closure for these supertraces also involves certain
entwined supertraces as well. This is ultimately why the
entwinement occurs in these theories. Through the en-
twinement, the off-shell string states continue to make
explicit contributions to the relevant amplitudes.

This last observation is in fact part of a more general
lesson. In ordinary quantum field theory, one can mean-
ingfully seek to identify the physical effects that arise
due to the existence of specific states in the spectrum.
For example, we might attempt to determine the energy
scales at which a given state of mass M contributes to
the running of a given quantity. However, in a modular-
invariant theory, this question has no meaning because
of UV/IR mixing. Every state within the spectrum is
deeply connected to the states at all other energy scales.
It is therefore impossible to uniquely isolate the contribu-
tions of a single state within the spectrum because there
is no modular-invariant way to perform such an analysis.

As a dramatic example of this phenomenon, let us
consider the unphysical (m,n) = (0,−1) proto-graviton
states [18] that arise within all string models, and ask
whether these states contribute to the corresponding one-
loop cosmological constant Λ. On the one hand, we might
claim that the proto-graviton states do not contribute
to Λ because we know that we can write Λ as the su-
pertrace of M2 over the purely physical states in the

spectrum, as in Eq. (2.3). However, a direct calculation
of the one-loop torus integral associated with Λ demon-
strates that these states not only contribute, but actu-
ally provide contributions that dominate over those of all
other states (see, e.g., Table 2 of Ref. [26]). The under-
lying reason for this apparent contradiction is that our
question about which states contribute does not have a
modular-invariant answer. Modular transformations al-
low us to reshuffle our contributions so that the effects
of one state can be re-interpreted as the resummed ef-
fects of other states instead. Indeed, as we have already
asserted, the un-entwined supertraces that contribute to
the gauge-coupling running do not close into themselves
under modular transformations; they also involve the en-
twined supertraces. All supertraces — both entwined
and un-entwined — therefore contribute together in a
modular-invariant way.

In this connection, we observe that the lightest en-
twined states actually have vanishing string-theoretic
masses! These are the states that populate the (m,n) =
(−1/2,+1/2) square in Fig. 3. Such states require only a
minimal amount of energy to produce on the worldsheet
— indeed, exactly the same amount of energy as required
to produce the physical massless states that populate the
(0, 0) square and presumably include the Standard-Model
states. It will be interesting to explore the ramifications
of this observation [19].

IV. CONCLUSIONS, DISCUSSION, AND
FUTURE DIRECTIONS

In this paper we developed a general framework for
analyzing the running of gauge couplings within closed
string theories. Unlike previous discussions in the liter-
ature, our calculation fully incorporates the underlying
modular invariance of the string and includes the con-
tributions from the infinite towers of string states which
are ultimately responsible for many of the properties for
which string theory is famous, including its enhanced de-
gree of finiteness and UV/IR mixing. In order to perform
our calculations, we adopted a formalism [2] that was re-
cently developed for calculations of the Higgs mass within
such theories.

In general, this formalism — which builds upon the
Rankin-Selberg technique [4, 5] but which also includes
additional critical features such as an identification be-
tween worldsheet parameters and an effective spacetime
energy scale µ — gives rise to an “on-shell” EFT descrip-
tion in which the final results are expressed in terms of
supertraces over the physical string states, and in which
these quantities exhibit an EFT-like “running” as a func-
tion of the scale µ. We found, however, that the calcula-
tion of the gauge couplings differs in one deep way from
that of the Higgs mass: while the latter results depend
on purely on-shell supertraces, the former results have a
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different modular structure which causes them to depend
on supertraces over off-shell string states as well. Indeed,
as explained at the end of Sect. III D, the entwinement
induced by the modular completion of the helicity oper-
ator needed for calculating the gauge couplings has “de-
formed” the notion of physicality for the string states,
allowing states which are not level-matched to neverthe-
less act as physical states which contribute to the physical
supertraces describing the values of physical string ampli-
tudes. We have also seen that although our results yield
the expected logarithmic running of the gauge couplings
within certain energy scales, they also yield a number of
intrinsically stringy behaviors that transcend what might
be expected within an effective field theory approach.

A central feature of our treatment is our use of a
modular-invariant regulator Ĝρ to define a physical en-
ergy scale µ in the system and simultaneously elimi-
nate any logarithmic divergences that might arise from
the contributions of certain massless states in the the-
ory. Since this regulator is modular invariant, it sup-
presses the contributions from the lighter string states in
a smooth manner which is consistent with UV/IR mix-
ing and which therefore naturally incorporates the con-
tributions from the infinite towers of string states in a
modular-invariant way. Use of this regulator not only
eliminates logarithmic IR divergences but more impor-
tantly but also allows us to study how the gauge cou-
plings “run” as a function of the spacetime energy scale
µ. Indeed this procedure can be thought of as a “func-
tional renormalization group” (FRG) approach to scal-
ing [27–29] for UV-complete modular-invariant theories.
Notably, the use of such a regulator allows us to sidestep
the need to introduce a sharp cutoff which would be very
difficult if not impossible to reconcile with our fundamen-
tal UV/IR-mixed string symmetries. This also allows us
to avoid the need to designate which states are “light”
with respect to µ (and which therefore contribute to the
running), and which are “heavy” (and therefore do not).
Through such modular-invariant regulator functions, we
can develop a notion of “running” gauge couplings and
beta functions, with our modular-invariant regulator al-
lowing us to extract this apparent EFT-like behavior as
a function of the spacetime energy scale.

The final global picture that emerges is shown in Fig. 5.
Perhaps the most prominent feature is the existence
of a scale-duality symmetry, i.e., an invariance under
µ → M2

s /µ. As we have discussed, this is an inevitable
consequence of the modular invariance that underlies our
calculations. However, the impact of this scale-duality
symmetry is felt even at energy scales below the string
scale. For example, we have seen that the IR value of
the one-loop contribution to the gauge coupling is given
by π

3 Str(X1 + τ2X2) where the supertrace is over all of
the states in the theory, regardless of their masses. From
a näıve field-theory perspective, such a supertrace would
appear to control a quadratic UV divergence. However,
the deep IR in such theories is also equivalent to the deep
UV, where one would expect all of the states to play a

role. Indeed, these IR predictions are RG invariants, in
the sense that they define fixed-point values. These pre-
dictions are also independent of our choice of regulator
function.

As we move away from the µ→ 0 limit and proceed to-
wards higher energy scales, the system evolves away from
this asymptotic IR behavior. Once µ exceeds the masses
of the lowest-lying states, the one-loop contribution to
the gauge couplings passes through a localized “dip” and
then begins to experience a non-trivial logarithmic run-
ning that can be associated with an EFT-like descrip-
tion. This running then continues towards higher energy
scales, possibly passing through a sequence of EFT-like
descriptions. If our string compactification geometry has
effective radii R−1

i � Ms, then this running continues

until µ ∼ R−1
i . Above this scale we find a surprising

new behavior: the running stops, with the gauge cou-
pling entering a string-scale “fixed-point” region. This
surprising behavior will be discussed in more detail in
Ref. [20] and ultimately results from the combined ef-
fects of both KK states and winding states. It may seem
strange that both kinds of states should be playing a role
at scales µ�Ms, but this is a direct consequence of the
scale-duality symmetry under µ→M2

s /µ. The fact that
both KK and winding states are simultaneously play-
ing important roles further implies that the behavior in
this region is not only fully higher-dimensional but also
intrinsically stringy . This transition to entirely stringy
behavior is an inevitable and profound consequence of an
RG procedure which is consistent with modular invari-
ance: a modular-invariant regulator cannot distinguish
between KK and winding modes and therefore can only
act to suppress the contributions of both or neither.

Beyond µ ∼ Ms, we enter the “dual” phase in which
the running of the gauge coupling is inverted. This inver-
sion of the running is quite remarkable. Indeed, from a
näıve field theoretic perspective, this kind of complete re-
versal would be disallowed (by e.g., the a-theorem). Of
course, we do not expect such a theorem to hold in a
UV/IR-mixed theory such as string theory.

Indeed this inversion of the running of the gauge cou-
plings can best be understood by recognizing that the
fundamental degrees of freedom within the dual phase of
the theory are not those of the original low-energy theory.
The original theory and its dual are nothing but modular
transformations of each other — indeed, the relationship
between these two “phases” of the theory is outlined in
Fig. 4 of Ref. [2], where they are shown to lie along dif-
ferent but equivalent “spokes” of the same fundamental
diagram. Thus each phase carries the same information
and can be viewed as representing the same fundamental
theory, consistent with the idea that modular symmetries
(like gauge symmetries) do not relate physically different
theories to each other, but rather represent redundan-
cies of description. However, under modular transforma-
tions, the states within our string theory at all mass levels
are non-trivially mixed with each other. Thus, a given
state in the original theory is mapped to a highly non-
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trivial combination of states in the dual theory, while
each state in the dual theory is likewise mapped to a
highly non-trivial combination of states in the original
theory. Demanding that this mapping nevertheless pro-
duce the same theory is the essence of what it means
for a theory to be modular invariant. More explicitly, as
discussed in Ref. [2], the scale-duality map µ → M2

s /µ
is intimately related to the τ → −1/τ modular transfor-
mation evaluated along the τ1 = 0 line. This modular
transformation induces a Poisson resummation amongst
the states of the original theory, so that the degrees of
freedom in the dual phase of the theory with µ ≥Ms are
Poisson-resummed versions of the degrees of freedom in
the original phase of the theory with µ < Ms. It is ul-
timately this Poisson resummation which is responsible
for the inversion in the running of the gauge couplings
once we cross between the µ < Ms and µ > Ms regions
in any modular-invariant theory.

Although this physical picture is relatively simple,
it actually encapsulates a considerable amount of non-
trivial physics. As we would expect in any UV/IR-mixed
theory, string modes that are light are being mixed with
those which are heavy. However, such heavy string states
are super-Planckian, and may (depending on the string
coupling) include black holes. They are also likely to
include so-called “long” strings, i.e., strings with large
numbers of oscillator excitations. However, as long as we
maintain a constant definition of the physical spacetime
energy scale µ, modular invariance requires that these
states all conspire (through Poisson resummations) to
achieve this apparent reversal in the directionality of the
gauge-coupling running at µ = Ms.

It would be an interesting exercise to develop an un-
derstanding of the dual running directly in terms of these
dual degrees of freedom. Moreover, although we have
concentrated in this paper on the one-loop running of
the gauge couplings, we expect similar results to apply
to other one-loop amplitudes, such as might be involved
in string scattering . Here too one must identify a physical
string scale µ in terms of certain renormalization condi-
tions and then study how such amplitudes depend on µ.

Above the string scale any alternative RG prescrip-
tion derived from such amplitudes — e.g., a prescription
based on suppressing the contributions of certain mo-
mentum modes – should therefore be defined in terms
of dual momenta for those asymptotic eigenstates that
can be prepared in this regime. These would comprise
the long-string modes discussed above. In this way the
µ→M2

s /µ symmetry would be faithfully respected. It is
for this reason that our worldsheet regulator prescription
gives a correct physical picture of renormalization, one
which is applicable for all values of µ. Indeed, such a
regulator prescription is also correctly aligned with both
cosmological [30] and thermal [31, 32] dualities. We leave
such investigations for future work.

Given these observations, we now discuss possible new
approaches to hierarchy problems. We begin by recalling
from Sect. II that within the string context there is no

notion of a spacetime energy scale µ before we insert a
regulator and identify µ in terms of the parameters of
this regulator. Thus, the unregulated modular integrals
that govern the couplings of the theory — integrals such

as ∆G or equivalently ∆̂G(µ = 0) — are simply one-
loop contributions to the effective action. Such integrals
are either logarithmically divergent (if the string spec-
trum contains a non-zero net number of exactly massless
X2-charged states), or finite otherwise. Thus, upon in-

troducing the modular-invariant regulator Ĝρ(a, τ), it is
inevitable that the values of the couplings in the deep
IR (i.e., as µ → 0) are also the “bare” couplings that
we would expect to obtain as µ → ∞. To see this, we
note that within the FRG approach the “average effec-
tive action” is normally taken to interpolate between the
effective action at µ = 0 and the “bare” action at µ→∞.
However, within our UV/IR-mixed context, the effective
actions that one obtains in the µ → 0 and µ → ∞ lim-
its are one and the same. This is because the modular
invariance of our regulator implies that when we are reg-
ulating the IR, we are also equivalently regulating the
UV. Indeed, any divergence that would arise within the
τ → i∞ region of the modular integral (and which there-
fore would normally be interpreted as an IR divergence)
is the same as the divergence that would arise within the
τ → 0 region of the modular integral (and which would
therefore be interpreted as a UV divergence).

This relation between UV and IR divergences has an
important implication. By locking these two types of di-
vergences together, our theory cannot exhibit any UV
divergence that is not also present as an IR divergence.
However, as we have seen, the τ → i∞ limit of our theory
can support at most a logarithmic IR divergence arising
from the contributions of certain massless states. This
is an expected divergence that indicates that in the low-
energy regime the theory will behave like a quantum field
theory. However, modular invariance then implies that
we cannot have quadratic divergences as τ → 0 (i.e.,
in the UV). Indeed, in any modular-invariant theory,
stringy “miracles” (such as the cancellation of certain su-
pertraces) have no choice but to eliminate the quadratic
divergences because there is simply no place left for them.
In this connection, we note that this argument relies di-
rectly on modular invariance alone, and is not specific to
the specific form chosen for our regulator so long as it is
modular invariant.

This suggests that there is a fundamental difference
between hierarchy problems in field theory and hierarchy
problems in string theory (and in UV/IR mixed theories
more generally). In order to analyze hierarchy problems
within a Wilsonian field theory, one starts by separating
operators into “relevant” ones that grow in the IR and
“irrelevant” ones that grow in the UV. Relevant oper-
ators typically begin at (possibly Gaussian) fixed points
in the UV. Their RG trajectories are then determined
by a set of “unpredicted” free parameters that are cho-
sen by hand in order to make the associated couplings
agree with the desired (presumably measured) IR val-
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ues. Meanwhile the irrelevant operators flow to attractive
fixed points in the IR, thereby becoming “predictions” of
the theory. In this language, hierarchy problems arise
whenever there is an extreme sensitivity of the relevant
operators (which control the RG trajectory) to the in-
termediate physics. Such sensitivity confronts us with
what is essentially a “shooting problem” because it re-
quires us to keep fine-tuning our RG trajectory in order
to hit the desired IR values. However the UV/IR mixing
in string theory (and its attendant µ → M2

s /µ symme-
try) removes the underpinnings of this entire picture, as
operators cannot even be designated as “relevant” or “ir-
relevant” until we decide which direction corresponds to
‘UV’ and which corresponds to ‘IR’ within our definition
of the energy scale. In this context we refer the reader
to Fig. 4 in Ref. [2], which graphically demonstrates the
different possibilities. Indeed, the only reliable quantities
before we make this choice are the values of supertraces
over the infinite towers of states. As we have mentioned,
these are by definition invariant under our choice of reg-
ulator and also invariant under changes in the relevant
energy scale. As such, they remain invariant within the
emergent EFT, simultaneously determining from the out-
set both the bare action and the effective action to which
the theory must flow in the deep IR regardless of what
intermediate physics may exist.

We find these observations to be compelling founda-
tions for future, more general, phenomenological studies.
In particular, the transformation of apparent hierarchy
problems into statements about the properties of super-
traces over infinite towers of physical string states sug-
gests that seemingly miraculous cancellations and “magic
zeros” are unavoidable features of the effective field the-
ory stemming from a natural UV/IR-mixed modular-
invariant theory. In such a framework, the solutions to
hierarchy problems such as the gauge-hierarchy problem
and the cosmological-constant problem rely on conspira-
cies between physics at all energy scales simultaneously,
and would thus be essentially invisible to low-energy ob-
servers. In this sense, they might be considered to exhibit
what has recently been dubbed “neutral naturalness”,
except in a form that does not involve pairwise cancel-
lation mechanisms that operate scale-by-scale but rather
through seemingly miraculous cancellations that operate
at all scales simultaneously. Within such frameworks, re-
taining the full spectrum of states within our calculations
is therefore critical for obtaining a full understanding of
naturalness.1

Given these comments, there exist many promising av-
enues for future research targetting the development of

1 This point of view regarding modular symmetries addressing
hierarchy problems was first advocated in Ref. [1]. More recent
discussions along these lines can be found in Ref. [2] and in the
talk delivered by KRD at the CERN Theory Workshop “Exotic
Approaches to Naturalness”, Jan.-Feb. 2023, slides available
at https://indico.cern.ch/event/1204192/contributions/

5217557/attachments/2584637/4458574/dienes cern.pdf.

a fuller understanding of naturalness in UV/IR-mixed
theories. Indeed, one of these is to study the manner
in which the running of the gauge couplings is deformed
in the presence of large extra dimensions. For example,
following Ref. [33], we might study the running of the
gauge couplings when our theory has a compactification
geometry of the form K×T2 where K has a characteris-
tic volume near the string scale and where T2 indicates
a two-torus with radii Ri � M−1

s . The results of this
analysis will be presented in Ref. [20], where we shall
find that the promotion of logarithmic running to power-
law running — as expected from a field-theoretic analy-
sis [24, 25] — does not occur in string theory. Indeed, as
far as power-law running is concerned, this is a kind of
“non-renormalization” theorem for string theory. As we
shall see in Ref. [20], this cancellation of power-law run-
ning is the result of a delicate conspiracy between modu-
lar invariance and the manner in which extra spacetime
dimensions emerge in string theory as their radii become
large. Indeed, this cancellation ultimately reflects a sub-
tle entanglement between the properties of renormaliza-
tion in higher dimensions and the requirements of mod-
ular invariance. Moreover, as we shall demonstrate in
Refs. [17, 20], there are also many additional supertrace
relations which govern the spectra of modular-invariant
string theories with large compactification radii — super-
trace relations whose role is to enforce these remarkable
cancellations. Such supertrace relations are thus also re-
sponsible for the finiteness properties of these theories.

The results shown in Fig. 5 also call for a reap-
praisal of the possibilities for gauge-coupling unification
in modular-invariant theories. Although the gauge cou-
plings continue to exhibit logarithmic running — thereby
suggesting that a traditional logarithmic unification may
continue to be viable — the existence of a possible fixed-
point regime near the string scale has the potential to
alter this situation. This is especially true given that
the scale of unification typically assumed for heterotic
strings is only one or two orders of magnitude below the
string scale [3, 14]. It is even possible that the exis-
tence of this fixed-point regime may serve to reconcile
the long-standing discrepancy [14] between the string-
predicted perturbative heterotic unification scale and the
traditional GUT scale extrapolated from experimental
measurements of the Standard-Model gauge couplings at
low energies.

Overall, the message seems clear. Hierarchy problems
(and even issues related to gauge-coupling unification)
assume traditional field-theory relationships between UV
and IR physics. By contrast, string theory tells us that
we have UV/IR mixing, misaligned supersymmetry, soft-
ened divergences (even finiteness), scale duality, and so
forth. Thus, within the context of string theory, hierar-
chy problems may not be fundamental or survive in the
manner we normally assume.
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