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Abstract: A series of experiments studying neutrinos from intense radioactive sources
have reported a deficit in the measured event rate which, in combination, has reached
a statistical significance of ∼ 5σ. In this paper, we explore avenues for explaining this
anomaly, both within the Standard Model and beyond. First, we discuss possible biases in
the predicted cross section for the detection reaction νe + 71Ga→ e− + 71Ge, which could
arise from mismeasurement of the inverse process, 71Ge decay, or from the presence of as yet
unknown low-lying excited states of 71Ga. The latter would imply that not all 71Ge decays
go to the ground state of 71Ga, so the extraction of the ground state-to-ground state matrix
element relevant for neutrino capture on gallium would be incorrect. Second, we scrutinize
the measurement of the source intensity in gallium experiments, and we point out that a
∼ 2% error in the branching ratios for 51Cr decay would be enough to explain the anomaly.
Third, we investigate the calibration of the radiochemical germanium extraction efficiency
as a possible origin of anomaly. Finally, we outline several new explanations beyond the
Standard Model, including scenarios with sterile neutrinos coupled to fuzzy dark matter or
to dark energy, as well as a model with decaying sterile neutrinos. We critically assess the
viability of these scenarios, and others that have been proposed, in a summary table.
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1 Introduction

Neutrino detection using the reaction νe + 71Ga→ e− + 71Ge has an eventful history: the
GALLEX experiment was the first to achieve a measurement of the solar pp neutrino flux in
1992 [1, 2] using this method, followed shortly thereafter by the SAGE experiment [3]. SAGE
— the “Soviet-American Gallium Experiment” — was also seen as demonstrating the power
of scientific collaboration in building bridges between politically antipodal countries. Later,
SAGE was caught in the crossfire of the Chechen war, with skirmishes taking place directly
outside its host laboratory near Baksan, Russia. Currently, a new gallium-based neutrino
detector is operating in that same laboratory: carrying the assertive name “BEST” (Baksan
Experiment for Sterile Transitions), the goal of this experiment is to probe a purported
∼ 20% flux deficit of neutrinos from intense radioactive sources. Such a deficit had been
reported in measurements carried out in GALLEX and GNO, albeit with a combined
statistical significance of only . 3σ [4–14]. Intriguingly, BEST has recently confirmed this
result, dubbed the “gallium anomaly”, at the & 4σ level [15–18]. The current status of the
discrepancy, commonly expressed through the ratio of the number of measured to predicted
events, is R = Nmeas/Npred = 0.803± 0.035.

One explanation that has been put forward for the gallium anomaly is mixing between
active neutrinos and hypothetical sterile states [9, 10]. In fact, for some time, reactor
experiments appeared to support this hypothesis by reporting a similar deficit [19–27]. More
recently, however, it has emerged that the apparent deficit in the reactor neutrino flux was
most likely, caused by imperfections in the measured beta spectra from nuclear fission that
are used as input to reactor neutrino flux calculations [28–31].
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It is therefore more imperative than ever to search for explanations of the gallium
anomaly within the Standard Model (SM). This is the main goal of the present paper.
We will discuss several attack vectors, in particular the measured 71Ge decay rate which
serves as input to the calculation of the νe + 71Ga cross-section (section 2), the calorimetric
measurement of the source intensity (section 3), and the calibration of the radiochemical
germanium extraction efficiency (section 4). While, at face value, none of these potential
single points of failure can be responsible for the anomaly, our study quantifies the degree
to which supporting measurements would need to be off to resolve it. In the second part
of the paper (section 5), we explore what it would take to explain the gallium anomaly in
scenarios beyond the Standard Model (BSM). We entertain the possibility that resonant
active-to-sterile neutrino conversion, driven by sterile neutrino couplings to a fuzzy dark
matter (DM) condensate or to dark energy, efficiently depletes electron neutrinos at the
energies relevant to gallium experiments using a 51Cr source. In addition, we elaborate
on scenarios where sterile neutrinos with eV-scale mass are produced but quickly decay to
active neutrinos. We conclude in section 6 with a comprehensive summary table that also
encompasses other BSM explanations from the literature.

2 Detection: The cross section for neutrino capture on gallium-71

Already after the first anomalous measurements of the neutrino capture rate in radioactive
source experiments, the cross-section, σ(νe + 71Ga) for the detection process

νe + 71Ga→ e− + 71Ge , (2.1)

has been called into question [8]. σ(νe + 71Ga) has been thoroughly studied by Bahcall [32]
and Haxton [33] (see also refs. [13, 34, 35]), and more recently by Barinov et al. [36] as
well as Semenov [37]. There are two contributions: transitions to the ground state of 71Ge
(for which the nuclear matrix element is the same as for the well-studied inverse process,
electron capture decay of 71Ge) and transitions to excited states of 71Ge, which can only be
calculated theoretically, with sizeable uncertainties. Crucially, the anomaly persists even
when the latter contribution is set to zero [18].

The most important ingredient for the prediction of σ(νe + 71Ga) is therefore the
measured 71Ge half-life. In the following, we discuss the robustness of this measurement.

2.1 The measured germanium-71 decay rate

The most precise and comprehensive measurement of the 71Ge half-life dates back to ref. [38],
published in 1985. In that reference, six different measurements were carried out, using two
different experimental techniques, and all yielding consistent results. The adopted value for
the 71Ge half-life is

T1/2(71Ge) = 11.43(3) days . (2.2)

To fully explain the gallium anomaly, this value would need to be larger by at least 2 days
(67σ), and a reduction of its significance to below 3σ would still require an increase of
T1/2(71Ge) by about one day (33σ) [18].
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71Ge decays via electron capture from the K, L, or M shell, so the only observable
signal are the X-rays emitted when the electron shell of the nucleus relaxes after the decay,
plus possible additional photons from internal bremsstrahlung. As ref. [38] is very concise,
it is difficult to assess in detail the robustness of the measurements reported there. We
outline here a few potential pitfalls that may be worth checking, even though the authors
of ref. [38] were likely aware of them.

1. The measurement from ref. [38], which is the most precise one to date, disagrees with
other, previous measurements. This has been previously emphasized in ref. [39]. Two
publications dating back to the 1950s have reported half-lives of 12.5(1) days [40]
and 10.5(4) days [41], respectively,1 and a third measurement from 1971 has resulted
in a value of 11.15(15) days [42]. These statistically significant discrepancies have
never been explained, though the two more recent measurements (refs. [38, 42]) are
in agreement with each other at the 1.9σ level. It is noteworthy that if we took the
half-life from ref. [40] at face value, the significance of the gallium anomaly would be
reduced to . 3σ [18].

2. The fact that precision measurements of electron capture decays in general and of
71Ge decay in particular are challenging is highlighted by the reported evidence for a
17 keV neutrino in this decay [43]. The infamous and ill-fated 17 keV neutrino had
first been “discovered” in 1985 in tritium beta decay studies [44, 45], but the fact
that it was falsely “confirmed” using the internal bremsstrahlung spectrum in 71Ge
decays [43] is certainly a testament to the difficulty of such measurements. (One
may argue, though, that a measurement of a decay rate is less error-prone than an
investigation of internal bremsstrahlung spectra.)

3. One could speculate whether cosmic rays, or cosmic ray-induced radioactive decays,
could mimic the 71Ge decay signal, leading to a spuriously large decay rate measure-
ment. The authors of ref. [38] comment on possible radioactive impurities, but judge
them to be irrelevant. (They do not explicitly comment on radioisotopes produced
during the measurement campaign.) Spurious events due to cosmic ray activity would
alter the shape of the decay curve. In particular, the extracted instantaneous decay
rate would not asymptote to zero in this case. Ref. [38] does not provide enough
information to judge if such deviation appears in the data, but it is clear that an effect
as large as required to explain the gallium anomaly would not have gone unnoticed.

2.2 Germanium-71 decay to new excited states of gallium-71?

It is generally assumed that electron capture in 71Ge goes to the ground state of the
daughter nucleus, 71Ga. In fact, the lowest-lying known excited state of 71Ga has an energy
of 389.94(3) keV, which is above the Q-value of 71Ge decay, 232.49(22) keV [46].

Here, we speculate on the possibility that there is an additional, yet undiscovered,
low-lying excited state of 71Ga. If a ∼ 20% fraction of 71Ge went into this state, the nuclear

1We have been unable to access ref. [41], neither online nor via the University of Uppsala library, therefore
we rely here on the results from that reference quoted in the literature.
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Figure 1. Statistical significance of the gallium anomaly as a function of the 71Ge half-life,
T1/2(71Ge), and the fraction of 71Ge decays ending up in the ground state of 71Ga, ξ. The 1σ,
3σ, 5σ, and 6σ regions are shown as colored bands. The measurement of T1/2(71Ge) from ref. [38]
is included as a black vertical line, and the 1σ confidence intervals from previous measurements
of this quantity are shown in gray (see text for a discussion of the discrepancies between these
measurements). For parameter points within the green band, the anomaly is fully resolved; we see
that this would require either ξ to be ∼ 20% smaller than previously thought, or the measured
half-life to be off by a similar amount (2–3 days).

matrix element for ground state-to-ground state transitions (which enters the calculation of
σ(νe + 71Ga)) would have been overestimated by the same amount. Correcting for such a
bias could resolve the gallium anomaly. Of course, it is unclear how the existence of such
an excited state could have been missed, when the state at ∼ 390 keV has been observed in
numerous nuclear reactions, including 71Ge decay [46].

In figure 1 we show the statistical significance of the gallium anomaly as a function of
T1/2(71Ge) (the 71Ge half-life) and ξ (the fraction of 71Ge decays that go to the ground state
of 71Ga). Our estimates are based on the cross-section calculations by Bahcall [32], and on
the statistical procedure proposed by Giunti et al. in ref. [39] (with a small modification
described below). More precisely, we define the test statistic

χ2(R̄) ≡ min
η

[∑
exp

(
Rexp − ηR̄

∆Rexp

)2
+ χ2

η

]
, (2.3)

where R̄ is the fitted ratio between the observed and predicted event rates, Rexp is the
measured value of this ratio in a particular experiment denoted by the subscript “exp”,
∆Rexp is the corresponding uncertainty, and exp ∈ {GALLEX-1,GALLEX-2, SAGE-Ar,
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SAGE-Cr,BEST-inner,BEST-outer}. The nuisance parameter η accounts for the cross-
section uncertainty which is correlated between experiments. The philosophy here is that R̄
is the ratio of measured and predicted event rates in a particular scenario (possibly including
new effects like the ones described here, or BSM physics), normalized to the SM prediction
assuming the central value from the Bahcall model for the neutrino-gallium scattering
cross-section. η parameterizes the wiggle room in the predicted event rate afforded by
the cross-section uncertainty. Note that the values for ∆Rexp quoted by the experimental
collaborations (except SAGE-Cr) include the systematic uncertainty in the neutrino-gallium
cross-section (based on Bahcall’s cross-section calculation). As we include this uncertainty
separately through η we need to remove it from ∆Rexp to avoid double-counting. We do so
by replacing ∆Rexp with [∆R2

exp− (Rexp×∆σBahcall/σBahcall)2]1/2. The nuisance parameter
η is constrained by the pull term2

χ2
η ≡


(

(1−η)σBahcall
∆σBahcall

)2
for η ≥ ηcrit ,(

σBahcall−σgs
∆σBahcall

)2
+
(

(1−η)σBahcall−(σBahcall−σgs)
∆σgs

)2
for η < ηcrit .

(2.4)

The first line of this expression is a standard pull term that constrains the nuisance parameter
to remain within the stated uncertainty, ∆σBahcall, of the cross section calculated by Bahcall,
σBahcall. This uncertainty is dominated by the uncertainty in the excited-state cross-section
σ(ν + 71Ga → e− + 71Ge∗). However, since this contribution to the total cross-section
cannot be less than zero, it is inappropriate to use its uncertainty at small η. In that
regime, the first term in the second line of eq. (2.4) accounts for the bias in the excited-state
cross-section needed to set it to zero, and the second term constrains any additional bias to
be within the much smaller uncertainty ∆σgs of the ground-state cross-section, σgs. The
critical value, ηcrit, is determined by equating the expressions in the first and second line of
eq. (2.4). It is simply ηcrit = σgs/σBahcall. The numerical values of the parameters appearing
here are σgs = 5.539× 10−45 cm2, ∆σgs = 0.019× 10−45 cm2, σBahcall = 5.81× 10−45 cm2,
∆σBahcall = 0.16× 10−45 cm2 [39].

In order to account for a possible bias in the measurement of T1/2(71Ge) and for the
possible existence of excited states in 71Ga, we rescale both Rexp and ∆Rexp in eq. (2.3) by
a factor

(1 + 0.051)×
(

0.051 + ξ
THR

1/2
T1/2(71Ge)

)−1
, (2.5)

where 0.051 represents the contribution from the transition into the excited states of 71Ge
(this number is also obtained in [39]) and THR

1/2 is the standard value of the germanium
lifetime from the measurements by Hampel and Remsberg [38], quoted in eq. (2.2).

Figure 1 confirms that, with the most recent measurements of T1/2(71Ge) [38] and with
the standard assumption ξ = 1, the significance of the gallium anomaly is ∼ 5σ. The plot

2While this is a consistent approach in searches for BSM physics, one could argue that it is not quite
appropriate when we consider modifications to the event rate due to changes in T1/2(71Ge) or ξ because by
postulating such changes we effectively claim that the estimate for the amount of wiggle room, ∆σBahcall,
which enters eq. (2.4) is incorrect.
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also illustrates the conclusions from section 2.1, namely that the statistical significance
would be reduced to below 1σ if the true half-life were larger, T1/2(71Ge) ∼ 14 days. Finally,
we clearly observe how a reduction of ξ has the same effect. If only 80% of the 71Ge decays
contributing to the event sample in ref. [38] were ground state-to-ground state decays, the
gallium anomaly could be explained.

Given that the main purpose of the gallium experiments GALLEX and SAGE was the
measurement of the solar pp neutrino flux at the 10% level, a reduction of the neutrino
capture cross section on gallium would impact this measurement as well [47–50]. In
particular, a decrease of the cross section by ∼ 20%, as suggested by the gallium anomaly,
would lead to a commensurate increase in the extracted pp neutrino flux, in potential tension
with the tight constraints on this flux from the observed total luminosity of the Sun [50].
However, the tension would only be at the ∼ 2σ level, so solar neutrino measurements are
not in statistically significant conflict with the possibility that the neutrino capture cross
section on 71Ga is smaller by ∼ 20%. This conclusion does not change when the more recent
measurement of the solar pp neutrino flux by Borexino is included [51].

3 Source: chromium-51 branching ratios

A second crucial ingredient in the experiments at the origin of the gallium anomaly is
the prediction of the neutrino flux emitted by the source. Most experiments to date have
employed a 51Cr source, which is produced by neutron irradiation of chromium metal
enriched in 50Cr [52]. 51Cr decays via electron capture,

51Cr + e− → 51V + νe , (3.1)

with a half-life of 27.704(4) days [53]. Only SAGE has also used an 37Ar source (electron
capture decay to 37Cl, T1/2 = 35.011(19) days [54]). However, this measurement plays only
a subdominant role in the overall evidence for a neutrino deficit and hence we focus here on
51Cr sources.

The source intensity in these experiments is measured calorimetrically [55], and since
the decay is via electron capture, the main heat sources are X-rays from the de-excitation
of the electron shell and gamma rays from the de-excitation of the daughter nucleus, with
the latter contribution dominant by far. In fact, ∼ 10% of all 51Cr decays populate the
first excited state of 51V at 320.0835(4) keV instead of the ground state. And as almost all
the heat production comes from the ∼ 320 keV de-excitation gamma rays, we see that the
measurement of the source intensity is based on only ∼ 10% of all decays. In other words,
if the true branching ratio for decays to the excited state, BRexc ≡ BR(51Cr→ 51V∗), was
larger by only ∼ 2%, the source intensity would have been overestimated by ∼ 20%, enough
to explain the gallium anomaly.

This is illustrated in figure 2, which shows the significance of the anomaly as a function
of BRexc on the horizontal axis, and the energy of de-excitation gamma, Eγ , on the vertical
axis. This plot is based on an analysis similar to the one underlying figure 1 above (see
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again eq. (2.3)), but with Rexp and ∆Rexp rescaled by

BRexcEγ + 5.03 keV
36.75 keV . (3.2)

In the denominator of this expression, 36.75 keV is the average total visible energy output
per 51Cr decay, including X-rays, internal bremsstrahlung, and gamma rays, and accounting
for the relative probabilities for K, L, and M capture, as well as the branching ratio,
BRexc = 0.0991, into the excited state of 51V∗ at Eγ = 320.0835 keV [56]. In the numerator,
the first term describes the contribution to the visible energy from 51V∗ de-excitation under
the assumption of modified BRexc and Eγ , while the second term (5.03 keV) describes the
energy release from X-rays and internal bremsstrahlung, which is present in all 51Cr decays,
including those to the ground state of 51V.

At the established values Eγ ' 320 keV and BRexc ∼ 10%, indicated by gray bands in
figure 2, the anomaly is at ∼ 5σ significance. The figure confirms that increasing BRexc to
∼ 12–13% would lower the significance to below 1σ. We note that different measurements of
BRexc differ by 0.5% [17] (as shown by the width of the gray vertical band in figure 2), but
are consistent with each other at the 3σ level, see ref. [53] and references therein. Pursuing
the hypothesis of a branching ratio mismeasurement further, one would therefore need to
explain why more than ten different measurements should show the same systematic bias.

Another avenue for attaining larger energy per decay is increasing Eγ while keeping
BRexc ' 10%; if the energy of the excited state was 360 keV instead of 320 keV, the
significance of the anomaly would drop from ∼ 5σ to ∼ 3σ. But since measurements of
nuclear excitation energies are rather robust, the only reasonable way to achieve such a
large shift would be to postulate the existence of another, yet undiscovered, excited state in
51V with an energy larger than 320 keV, but below the Q-value of 51Cr decay, 752.39 keV.
In fact, there is weak evidence for a state at 470 keV [53, 57], with hints for it observed also
in 51Cr decay [58]. However, these observations from the 1960s and 70s have not found
further support in more recent measurements. Moreover, ref. [58] suggests that the relative
intensity of the 470 keV line is < 10−5, which would be too faint to explain a 2–3% bias in
the calorimetric source intensity measurement in the gallium experiments. Nevertheless, the
potential relevance of an extra excited state for our understanding of the gallium anomaly
calls for a renewed effort to establish or conclusively refute its existence.

An alternative avenue to increase Eγ is to envision a new heat source that is presently
unaccounted for. But while it may be possible to conceive an extension of the SM featuring
such a heat source in 51Cr decay, it would most likely also impact other radioactive decays.
Given the amount of energy that would need to go into this new channel, it is hard to
imagine that it would have been missed so far. For one, a new heat source in nuclear beta
decays would impact the energy output of nuclear reactors. Typically, around 6.5% of the
total heat in a reactor originates from beta decay of fission products. The additional heat
required to explain the gallium anomaly would constitute an ≈ 0.5% correction to this.
Given the long history of reactor monitoring, and the industry’s excellent understanding
of reactor cores, such an additional heat source would most likely have been noticed.
Furthermore, possible BSM realizations in which photons carry the additional heat (such
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Figure 2. Statistical significance of the gallium anomaly as a function of BRexc, (the branching
ratio for 51Cr decay into the lowest-lying excited state of 51V), and the energy of the de-excitation
gamma rays, Eγ . The 1σ, 3σ, 5σ, and 6σ regions are shown as colored bands. The measured values
for both parameters (with 1σ uncertainties) are shown in gray.

as a sterile neutrino which decays to a photon and an active neutrino via the transition
magnetic moment portal [59]) suffer from strong constraints.

4 Calibration of the radiochemical germanium extraction efficiency

If any experimental technique in the history of physics deserves to be described as a search
for a needle in a haystack, it is certainly radiochemical neutrino detection. Extracting
O(100) 71Ge nuclei from more than 47 tons of liquid gallium, as done in BEST, seems to be
a formidable task. Nevertheless, the GALLEX, SAGE, and BEST collaborations have rather
convincingly demonstrated their ability to pull off this feat. In particular, SAGE [60] and
BEST [17] have deliberately added small (. O(µmol)) amounts of stable germanium with
well-defined isotope ratios to the detection volume. The amount of stable Ge, while tiny,
still exceeds the number of 71Ge nuclei produced in neutrino interactions by many orders
of magnitude. After each run of the experiment, the extracted germanium is studied via
mass spectrometry to verify that the amount and the isotope ratios of the extracted stable
germanium match the known properties of the germanium that was added to the detector
before the run. As the chemical behavior of different Ge isotopes should be identical, the
extraction efficiency determined this way (which is close to 100%) can be assumed to hold
also for unstable 71Ge.
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Figure 3. Statistical significance of the gallium anomaly as a function of the 71Ge extraction
efficiency, εtrue. The gray band indicates the nominal extraction efficiency and its standard deviation,
εcal = 0.95± 0.016, based on calibration measurements in BEST [17].

A second indication that germanium extraction seems to be well understood is the
fact that measurements of the solar neutrino flux in GALLEX and SAGE agree with other
solar neutrino measurements. However, as we discussed at the end of section 2, such
measurements still suffer from O(10%) uncertainties; this means that an overestimation of
the germanium extraction efficiency by this amount would not be excluded by solar data.

In fact, if the true extraction efficiency εtrue was different from the estimate from
calibration measurements, εcal ≈ 0.95, the ratio of the observed to predicted event rate in
gallium experiments would change by a factor

εcal

εtrue
. (4.1)

To account for such a bias, we rescale Rexp and ∆Rexp in eq. (2.3) by the factor in eq. (4.1).
The result is illustrated in figure 3, which shows the statistical significance of the anomaly
as a function of εtrue. It is clear that resolving the anomaly would require the calibration to
be off by around 20%, namely εtrue ∼ 0.75. Barring an analysis error, this would imply the
existence of an unidentified route for (stable) germanium to enter the detector. The amount
of extra germanium needed may seem small (< µmol), but still corresponds to ∼ 1017 atoms.
This is more than can be realistically produced by cosmic rays for instance. (Even though
a route for cosmic ray-induced production of a small number of stable germanium atoms
may exist via neutron capture on 71Ga, followed by β− decay to stable 72Ge.)

Note however that in one extraction of the SAGE experiment, an anomalously large
amount of stable Ge (about 10 times larger than expected) was found [60]. At the time,
this result was attributed to an unidentified experimental accident and the corresponding
data point was discarded. But no source for the apparent contamination has been identified.
Nevertheless, this occurrence illustrates that there appear to be pathways for sizable
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amounts of extra germanium to enter a liquid gallium detector. We cannot rule out the
possibility that such contamination (albeit at a smaller level) has occurred in many runs
of the SAGE and BEST experiments, and that the germanium extraction efficiency has
therefore been overestimated.

5 Ideas beyond the Standard Model

In the previous sections we have discussed several possible explanations for the “gallium
anomaly” within the SM. Nevertheless, the observed deficit and its high statistical signifi-
cance could also provide an intriguing hint for new physics. The “usual” BSM interpretation
of the gallium anomaly features eV-scale sterile neutrinos which mix with electron neutri-
nos [9, 10]. However, given that the large mixing angle required in this scenario is heavily
constrained by solar and reactor data [18, 29] it is tempting to explore other possibilities.
In this section we will investigate several such scenarios which have not been discussed
in the literature before. We will begin in section 5.1 with a model in which oscillations
between active and sterile states are stimulated by a Mikheyev-Smirnov-Wolfenstein (MSW)
resonance [61, 62] or a parametric resonance [63, 64]. This will be followed by a decaying
sterile neutrino scenario in section 5.2. Other new physics efforts that have been proposed
over the last decade will be brought up in section 6 where we will present a summary table.

5.1 Sterile neutrinos coupled to fuzzy dark matter or dark energy

Solar and reactor constraints on the mixing between active and sterile neutrinos do not allow
for the O(20%) νe disappearance that would be required to explain the gallium anomaly.
Avoiding these constraints is challenging because neutrinos produced in the Sun and in
nuclear reactors have energies similar to those emitted from 51Cr decay. In the following,
we will circumvent this problem by invoking a sharp resonance — either an MSW resonance
or a parametric resonance — whose position coincides with two of the four neutrino lines
in 51Cr decay. The energies and relative intensities of these lines are 747 keV (81.63%),
427 keV (8.95%), 752 keV (8.49%), and 432 keV (0.93%) [10]. (For the 37Ar source used in
some SAGE runs, the neutrino energies and line intensities are 811 keV (90.2%) and 813 keV
(9.8%) [65]). These energies are above the cutoff of the solar pp neutrino flux at ∼ 420 keV,
but below the energy of solar 7Be neutrinos at 861.8 keV; other components of the solar
neutrino flux are subdominant in this energy range. Further, neutrinos with sub-MeV
energies cannot be recorded via inverse beta decay, which is the typical detection channel for
reactor neutrinos. Therefore, if active-sterile mixing is locally enhanced around the neutrino
energies emitted by 51Cr, there may be no observable effect at other neutrino experiments.

5.1.1 MSW resonance from interaction with fuzzy dark matter

A straightforward way to realize a sharp resonance is the MSW effect which neutrinos
experience as they travel through background matter [61, 62]. Working in the effective two
flavor (electron neutrino νe and sterile neutrino νs) framework, the mixing angle in matter,
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θeffe4 , is given by

sin 2θeffe4 =
∆m2

2Eν sin 2θvace4√(
V − ∆m2

2Eν cos 2θvace4

)2
+
(

∆m2

2Eν

)2
sin2 2θvace4

, (5.1)

where θvace4 is the vacuum mixing angle, ∆m2 is the mass squared difference between the
two neutrino mass eigenstates in vacuum, Eν is the neutrino energy, and V is the difference
between the matter potential felt by νe and νs. The mixing angle is resonantly enhanced for

V = ∆m2

2Eres
ν

cos 2θvace4 , (5.2)

as can be easily seen from eq. (5.1).
Unfortunately, the SM matter potential generated by the weak interaction does not

suffice to achieve close-to-maximal active-sterile mixing at energies as low as those probed
by gallium experiments. It is suppressed by the Fermi constant, GF , which induces MSW
resonances only at higher energies. We therefore need to introduce a new interaction, which
we choose to be an interaction with an ultralight DM particles, in particular an ultra-light
vector boson φµ [66, 67].3 The relevant part of the Lagrangian reads

L ⊃ gsφµνsγµνs . (5.3)

Here, νs is the sterile neutrino field and gs is a dimensionless coupling constant. The
interaction in eq. (5.3) leads to an effective MSW potential [67]

V = − 1
2Eν

(
2(pν · φ)gs + g2

sφ
2
)
. (5.4)

We treat φµ as a classical field which coherently oscillates in time, i.e. φµ = φ0ξ
µ cos(mφt),

where ξµ is a polarization vector. We assume that the DM field is uniformly polarized over
macroscopic regions of at least several meters (the size of the gallium experiments), see
ref. [67] for a discussion of this assumption. Without polarization, fuzzy vector DM would
affect neutrino oscillations in the same way as scalar DM, that is, it would not induce an
MSW resonance, but merely an energy-independent correction to neutrino masses. We
discuss such a scenario in the next subsection. It is crucial that the cos(mφt) term has
remained nearly constant over the last ∼ 30 years when gallium experiments have been
operating (for simplicity, we will use cos(mφt) = 1 in the following; for smaller values,
the coupling constant gs would need to be rescaled accordingly); otherwise, detuning of
the MSW resonance would have occurred, moving it away from the 51Cr emission line.
This imposes the constraint mφ . 10−24 eV, which appears to be in conflict with, for
instance, Lyman-α forests [70, 71]. To evade this type of constraint while keeping mφ low,
we assume that fuzzy DM constitutes only ∼ 1% of the total DM energy density in the
Universe. Lyman-α constraints become insensitive if the fuzzy DM fraction drops below

3Couplings to an ultralight scalar do not lead to a new MSW resonance, but rather to an energy-
independent correction to neutrino masses and mixing angles [67–69], see also next subsection.
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0.2 for mφ < 10−22 eV [70], and other large scale structure-related observables sensitive to
the fuzziness of DM should weaken in a similar way. Given that the local DM density is
0.3 GeV/cm3 [72], we hence take ρφ ' 0.003 GeV/cm3.

The oscillation amplitude of the fuzzy DM field is given by

φ0 =
√

2ρφ
mφ

. (5.5)

We choose the sign of the sterile neutrino-DM coupling, gs, such that the new MSW
resonance lies in the neutrino sector, while antineutrino mixing is never resonantly enhanced.
As a result, neutrinos produced at gallium experiments as well as solar neutrinos could
experience enhancements, as illustrated in eq. (5.1), while antineutrinos would not be
significantly affected.

The interaction between ultralight DM and active neutrinos in the context of neutrino
oscillations has been extensively studied for instance in refs. [67–69, 73, 74]. In ref. [67],
bounds on ultralight vector DM coupling to active neutrinos were derived using accelerator
neutrino data from T2K, solar as well as reactor data. For the case considered here, where
DM only couples to sterile neutrinos, the situation is more involved. First, at baselines
where standard oscillations matter, we can no longer work in the two-flavor approximation.
Instead, let us generalize the above scenario to three sterile neutrinos, which we take to
be mass-degenerate for simplicity. We assume each sterile neutrino to mix with exactly
one of the mostly active mass eigenstates, and that the three corresponding mixing angles
are all identical. Finally, we take the couplings of the three sterile neutrinos to DM to be
identical.4 In this case, constraints from terrestrial experiments are significantly alleviated.
This is because we are interested in an MSW resonance that is strongly peaked in energy.
This implies small θvace4 as the resonance width is given by ∆Eres

ν = Eres
ν tan 2θvace4 [61, 62].

With a small vacuum mixing angle, active-to-sterile neutrino oscillations are suppressed
away from the resonance, which renders reactor and accelerator experiments, which probe
energies higher than the ones accessible in 51Cr decay, insensitive to the existence of the
sterile neutrino. In the case of accelerator constraints, there is extra suppression because
at energies far above the MSW resonance, the denominator of eq. (5.1) is ≈ V and the
effective mixing angle, sin 2θeffe4 , is further reduced by a factor ' ∆m2,vac

41 /(2EνV ) compared
to sin 2θvace4 .

Similar arguments can be made for solar neutrinos: the high-energy part of the
spectrum remains largely unperturbed thanks to the small θvace4 , supported by moderate
MSW suppression. Low-energy pp neutrinos, whose energy is below the MSW resonance,
still benefit from the small mixing angle in vacuum θvace4 . The most critical component
are the 7Be neutrinos, from which a limit of θvace4 . 4.5◦ can be derived, based on the
requirement that the resonance should be sufficiently narrow not to affect the 7Be lines:

4With only one sterile neutrinos, or with multiple sterile neutrinos whose mixing structure is not the
same as the one of the SM neutrinos, the effective mixing angles between active neutrinos would be distorted.
This may not be a fundamental problem as the changes could be absorbed into a redefinition of these mixing
angles as long as the DM field is constant over the time and distance scales over which neutrino oscillation
experiments have been carried out.
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∆Eres
ν < E7Be − E51Cr ≈ 120 keV. These arguments are based on the assumption that the

DM density in the Sun is similar to the one in the rest of the solar system, so that no
adiabatic flavor transitions occur as neutrinos travel out of the Sun. This is reasonable
based on the weakness of the “gravitational focusing” effect that the Sun’s gravitational field
has on the local DM density (see ref. [75] for the case of ordinary WIMP DM, and ref. [76]
for fuzzy DM).5 If there was an overdensity of DM inside the Sun, adiabatic conversion
would still affect only pp neutrinos. This is because at higher density, the resonance moves
to lower energies. pp neutrinos could then cross it, while all other components of the solar
neutrino flux have energies that are above the resonance both inside and outside the Sun.

For these reasons, we can use the solar neutrino constraint on θvace4 from the literature at
face value, assuming no additional resonances in the Sun. The correction to the (high-energy)
solar electron neutrino survival probability due to the existence of a fourth neutrino flavor
is ∝ (θeffe4 )4 [67], which for θvace4 . 5◦ is at the sub-per mille level, far below experimental
sensitivities. For example, the 7Be neutrino flux, with an energy closest to the neutrinos
from 51Cr, has been measured with an impressive, but in this case insufficient, uncertainty
of 3.5% [51]. The survival probability of lower-energy solar pp neutrinos is only modified by
terms of order (θeffe4 )2, but this is still small enough to be compatible with current experiments.

With the above constraints in mind, we have constructed a benchmark point which
satisfies all of them. The benchmark point features an MSW resonance at Eres

ν ≈ 750 keV
and an oscillation length L . 1 m (smaller than the baseline of gallium experiments) for
active-to-sterile transitions at this energy. It thus successfully explains the gallium anomaly.
The benchmark point reads

θvace4 = 0.2◦, m2
s ≈ ∆m2 ≡ 100 eV2 , (5.6)

where ms is the mass of the mostly sterile mass eigenstate. The matter potential at the
benchmark point is V = 6.7× 10−5 eV, which corresponds to gs/mφ = 0.311 eV−1. In
figure 4, we show in purple the electron neutrino survival probability as a function of Eν
for this benchmark scenario. It reads

P (νe → νe) = 1− sin2 2θeffe4 sin2
(

∆m2
effL

4Eν

)
, (5.7)

where ∆m2
eff = ∆m2 (sin 2θvace4 / sin 2θeffe4 ). (We have checked that electron neutrino survival

probability in the 2-flavor picture matches the one in the full 6-flavor picture; in other
words, eq. (5.7) suffices here.)

For comparison, in figure 4, we also show in green the region in which the gallium
anomaly can be explained; to draw this band we have adopted the union of the allowed
3σ regions given different models for the cross section to excited states of 71Ge [18]. In
dashed we also show the survival probability of solar electron neutrinos, computed using
the adiabatic approximation. The energies of neutrinos from the 51Cr and 37Ar sources
used in gallium experiments are indicated by vertical lines, and those of solar neutrinos

5This argument would be invalidated if DM had substantial self-interactions, or interactions with ordinary
matter, as in this case the Sun could capture DM and accumulate it at its center.
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Figure 4. The electron neutrino survival probability as a function of energy for the scenario from
section 5.1.1, where a new MSW resonance enhances active-to-sterile neutrino oscillations near
the 51Cr emission lines. The solid purple line, for which we have used a baseline of L = 50 cm,
corresponds to the gallium experiments, while the dashed purple line shows the solar neutrino
survival probability. We use the benchmark parameter point from eq. (5.6), which explains the
gallium anomaly while being consistent with all constraints. We show in cyan and orange the
monochromatic neutrino energies from 51Cr and 37Ar sources. The BOREXINO measurements of
the 7Be and pp neutrino fluxes, including their 1σ uncertainties, are shown as red data points with
error bars [51]. The blue and red arrows at the bottom of the plot indicate the energy ranges of
CNO and pp solar neutrinos, respectively. The survival probability range preferred by the gallium
anomaly [18] is shown in green.

are shown as well. As the resonance is narrow, we choose to center it around the energy of
the dominant neutrino line from the 51Cr source at ∼ 750 keV. As can be seen from the
figure, this implies that we cannot simultaneously explain the anomalous results for the
37Ar source; this does not seriously limit the model’s ability to explain the gallium anomaly
as the deficit observed with the 37Ar source is statistically not very significant [8].

Let us finally comment on early Universe observables, which in general tightly constrain
eV-scale sterile neutrinos with large active-sterile mixing. Considering only vacuum mixing,
our scenario is safe from these constraints because sterile neutrinos will never thermalize
thanks to their small mixing angle [77].6 The presence of the MSW resonance, however,
may change this picture. To see if the active-sterile mixing angle in the early Universe
is resonantly enhanced we calculate the redshift-dependence of the MSW potential and
compare it to the neutrino energy. In the early Universe, the DM density is increased
according to ρ(z) = ρ0(1 + z)3, where z is the redshift and ρ0 is the fuzzy DM density
today. The increased fuzzy DM density shifts the resonance to lower energies such that at

6Note that the fact that our sterile neutrino interacts with DM does not change this conclusion, unlike in
other scenarios in which sterile neutrinos possess “secret interactions” [78–84]. In these scenarios, frequent
hard scatterings enhance the production of sterile neutrinos, whereas in ours, the tiny coupling between
neutrinos and DM, gs ≈ 0.311× 10−24 × (mφ/10−24 eV), such scattering is negligible.
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the time of Big Bang Nucleosynthesis (BBN) — the earliest epoch that can be constrained
observationally — the resonance is at Eres

ν (BBN) ∼ 10−9 eV, which is much smaller than
typical neutrino energies at this redshift, Eν ≈ O(MeV). Therefore, active-sterile mixing
is suppressed at BBN. However, at a redshift of z ∼ 7000, the average neutrino energy
matches the resonance energy. Neutrinos are already decoupled from the plasma at this
point, so the resonance leads to the production of sterile neutrinos via adiabatic conversion
of active ones, without affecting the total energy density in the neutrino sector. By the time
of recombination, sterile neutrinos have turned non-relativistic, implying that analyses of
the cosmic microwave background (CMB) would measure an effective number of relativistic
neutrino species, Neff, well below the SM value. Moreover, sterile neutrinos would act as
warm DM, which would unfavorably affect structure formation. One possibility of avoiding
these constraints is to introduce a new decay channel for the sterile neutrino, with an active
neutrino and an auxiliary scalar in the final state.7 This new scalar would need to be
light enough to act as radiation at least until recombination, or it would need to quickly
decay into fuzzy DM or active neutrinos before the temperature of the Universe drops to
T ≈ 100 eV to avoid CMB constraints.

The small active-sterile mixing angle at our benchmark point also suppresses any
potential effect of neutrino-DM interactions on neutrino free streaming — the cross section
for such scatterings is proportional to g4

s .
In summary, the scenario presented here appears to successfully explain the gallium

anomaly, while being consistent with all terrestrial and, with a small extension of the
model, also with cosmological probes. Nevertheless, its success comes at the expense of
moderate fine-tuning between the MSW resonance energy and the energy of the dominant
51Cr emission line. In the future, our scenario could be probed by making use of CNO
neutrinos (which have been recently observed for the first time [85, 86]), given that their
energies extend over the whole range of interest for the required resonance. In addition, a
precise measurement of neutrinos from a 65Zn source at BEST [87] would be illuminating.
Our prediction is that no neutrino deficit should be observed with such a source as the
neutrino energy of 1.35 MeV is well above the MSW resonance energy. The same would be
true for an experiment with an 37Ar source.

5.1.2 MSW resonance from interaction with dark energy

The scenario introduced above, namely an interaction between sterile neutrinos and fuzzy
DM, is not the only option for realizing an MSW resonance aligned with the 51Cr emission
lines. An alternative is a coupling between sterile neutrinos and dark energy in the form
of a vector field [88–90]. The equations of motion from ref. [89] show that the value of
the dark energy field today would need to be φ & 107 eV. Looking at our eq. (5.4), the
MSW potential reads approximately φgs, so our benchmark point with V = 6.7× 10−5 eV
would correspond to gs . 10−11. With such a tiny coupling in the dark sector and in the
absence of kinetic mixing between the SM photon field and the field representing the dark
energy, the presented scenario is experimentally viable. As in section 5.1.1, cosmological

7Due to the small coupling between sterile neutrinos and DM of gs ≈ 0.331× 10−24 × (mφ/10−24 eV),
decays involving the DM particle would be too slow.
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constraints again require that the field value, φ, was larger in the early Universe than it
is today to avoid abundant production of sterile neutrinos before BBN. Production after
BBN may then still be a problem, but could be resolved in the same way as in section 5.1.1
by introducing a new decay mode for νs.

5.1.3 Parametric resonance

Another avenue for enhancing oscillations between active and sterile neutrinos is through a
parametric resonance [63, 64]. Such resonances have recently been discussed in the context
of neutrino couplings with ultralight DM in ref. [91]. Unlike in section 5.1.1, we assume here
that DM is not a polarized vector boson, but either an ultralight scalar, φ, or an unpolarized
vector field, φµ. As far as the phenomenology of neutrino oscillations is concerned, the two
cases are equivalent [67] and we will derive all expressions assuming a scalar field. In the
neutrino mass basis, the Yukawa interaction between the active (ν) and the sterile (ν4)
state is off-diagonal with a coupling strength y:

L ⊃ y φνν4 or L ⊃ y φµνγµν4 . (5.8)

Here, we work for simplicity in the 2-flavor approximation, see below for a discussion of
this assumption. Eq. (5.8) effectively modifies the neutrino mass matrix. In particular,
it induces flavor transitions between active and sterile neutrino even in the absence of
vacuum mixing. This effect is similar to Rabi oscillations in atoms subject to an oscillating
electromagnetic field. In our case, the role of the external oscillating field is played by
ultralight DM. In such a scenario, the active-sterile mixing can even be taken to vanish
completely in the absence of the DM background and only be non-zero when a resonance
condition is realized. This condition reads [91]

m2
s

4Eν
= mφ

2 . (5.9)

In other words, the oscillation frequency, m2
s/(4Eν), should equal half the oscillation

frequency of the scalar field, mφ/2. In this case the quantity

εφ ≡
2y
ms

√
2ρφ
mφ

(5.10)

controls the height of the resonance peak, i.e. the maximum transition probability. In the
two-flavor approximation, and assuming zero vacuum mixing, the latter is given by [91]

P res
αβ = sin2

(
εφmφL

4

)
, (5.11)

where L for gallium experiments is around 50 cm. This expression follows from the full
transition probability (without vacuum mixing) [91]

Pαβ =
ε2φ(1− δE)2

ε2φ(1− δE)2 + 4δ2
E

sin2
(
mφL

4
√
ε2φ(1− δE)2 + 4δ2

E

)
(5.12)

in the limit δE ≡ 1−m2
s/(2Eνmφ)→ 0.
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As in section 5.1.1, we choose the resonance energy such that it coincides with the
dominant 51Cr lines at Eres

ν ≈ 750 keV. Roughly, we need 20% neutrino disappearance
to explain the gallium anomaly, and eq. (5.11) then suggests that εφmφL ∼ 2. At the
same time, we also require the width of the resonance (which is ∆Eres

ν = Eres
ν εφ [91]) to be

. 10 keV in order not to induce significant disappearance of reactor and solar neutrinos. A
benchmark point where these requirements are satisfied is given by

εφ = 0.01 , mφL = 170 . (5.13)

For this benchmark point, ms ≈ 10.0 eV (see eq. (5.9)), y ≈ 0.0016 (see eq. (5.10)) and
mφ ≈ 6.7× 10−5 eV. In figure 5 we show the electron neutrino survival probability (one
minus the transition probability from eq. (5.12)) at this benchmark point.

To discuss terrestrial and solar neutrinos, we will once again need to go beyond the
2-flavor approximation. As in section 5.1.1, we extend the model to include not one,
but three, sterile neutrinos to avoid unacceptable modifications to the active neutrino
mixing angles. If we do so, the DM-induced time-dependent active-sterile mixing angle at
our benchmark point is never larger than 0.57◦, which implies that, outside the narrow
parametric resonance region, oscillation probabilities remain the same as in the SM.

We note that the neutrino-DM interaction which we introduce here induces invisible de-
cays of Z bosons and mesons involving the ultralight DM field, which are constrained [92, 93].
We have checked that our benchmark point satisfies these limits. In addition, the parametric
resonance scenario faces cosmological constraints. Notably, the Yukawa interaction from
eq. (5.8) with the sizeable Yukawa coupling at our benchmark point could lead to efficient
production of ν4, in violation of constraints on the effective number of relativistic degrees
of freedom, Neff. To avoid such constraints, one could invoke the dynamics of φ in the early
Universe: assuming that the dark matter we observe today is produced via the misalignment
mechanism [94–96], we can postulate that, at BBN, φ was still rolling down its potential. Its
field value during the BBN epoch could then have been much larger than today, rendering
ν4 very heavy through a coupling of the form φ ν̄4ν4 [97]. After φ has settled down at its
present-day value, sterile neutrinos could still be produced, but only at the expense of the
energy density stored in the by-then decoupled active neutrinos. After the temperature has
dropped below ms ≈ 10 eV, sterile neutrinos will quickly decay back to active neutrinos and
relativistic φ particles, so that Neff at recombination will again be close to its SM value.
Let us also point out that the value of the Yukawa coupling y at our benchmark point is
sufficiently large (y � 10−5) to prevent neutrinos and DM particles from leaving a hot
proto-neutron star unhindered. They will remain trapped and therefore will not lead to
significant anomalous cooling, meaning that limits from supernovae are evaded.

A particular concern is the propagation of astrophysical neutrinos. Notably, scattering of
ultra-high energy neutrinos from distant cosmic ray sources on the relic neutrino background
could significantly reduce the neutrinos’ optical depth. Since neutrino point sources at
cosmological distances have been observed [98, 99], this is disfavored. At our benchmark
point, this could be a problem if the dark matter is scalar, but not if it is a vector field,
given that the cross section for the process νν → ν4ν4 in the latter case is significantly
smaller [67].
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Figure 5. The electron neutrino survival probability as a function of energy for the scenario from
section 5.1.3, where a parametric resonance enhances active-to-sterile neutrino oscillations near the
51Cr emission lines. The solid purple line corresponds to the gallium experiments (L = 50 cm),
while the dashed purple line shows the solar neutrino survival probability. We use the benchmark
parameter point from eq. (5.13), which explains the gallium anomaly while being consistent with
all constraints. We show in cyan and orange the monochromatic neutrino energies from 51Cr and
37Ar sources. The BOREXINO measurements of the 7Be and pp neutrino flux, including their 1σ
uncertainties, are shown as red data points with error bars [51]. The blue and red arrows at the
bottom of the plot indicate the energy ranges of CNO and pp solar neutrinos, respectively. The
survival probability range preferred by the gallium anomaly [18] is shown in green.

5.2 A decaying sterile neutrino

Another interesting scenario, which has already been studied to explain the LSND [100]
and MiniBooNE anomalies [101–103], is a decaying sterile neutrino. The idea there is that
the sterile neutrino gets produced via mixing with muon neutrinos and then subsequently
sources active neutrinos (mainly electron neutrinos) via its decay [104–108].

The idea in the context of gallium anomaly would be to invoke a very short-lived sterile
neutrino state which decays just outside of the detector in gallium experiments. This way,
gallium experiments can experience a sizeable deficit of active neutrinos, but the “missing”
flux is quickly regenerated, alleviating the otherwise strong constraints from reactor and
solar experiments. The baselines of gallium experiments are ∼ 50 cm in BEST [17], ∼ 70 cm
in SAGE [7], or 1.90 m in GALLEX [4], while the reactor experiments with the shortest
baselines are located & 8 m from the reactor core [109–112].

The maximal neutrino energy achievable in 51Cr (or 37Ar) decay presents a kinematic
upper limit on the sterile neutrino mass of around 750 keV.8 Sterile neutrinos are also
severely constrained by searches for kinks in beta decay spectra [18, 119–122]; to avoid

8Heavier sterile neutrinos, which are kinematically inaccessible, would lead to a non-unitary mixing
matrix [113, 114]. To explain the gallium anomaly in this way, the normalization of the first (electron flavor)
row of the leptonic mixing matrix would need to different from unity by 15–20%, but has been constrained
to be smaller than O(1%) [115–118].
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these limits, we need to resort to sterile neutrino masses of . 10 eV. In this mass range,
the decay rate of the sterile neutrino into three active neutrinos via Z boson exchange is
too small to allow for the short decay lengths < 10 m that we are interested in. Therefore,
we need to introduce a new decay channel to allow for faster decays.

To do so, we extend the model with a very light scalar mediator, S, which couples to
sterile neutrinos, νs, via a Yukawa interaction of the form ys Sνsνs. Via mixing, the sterile
neutrino can then decay to S + νe, with a decay rate ∝ (y2

sms/16π2) sin2 θe4. For simplicity,
we have here assumed that νs mix only with electron neutrinos. We assume that, unlike in
the model introduced in ref. [105], S cannot further decay into active neutrinos due to its
small (or even vanishing) mass. Therefore, the constraints from the non-observation of solar
antineutrinos do not apply [108]. For ys . 1, it is now possible to achieve sterile neutrino
decay lengths as short as 1.9 m to 4 m. The fraction of νs that survive out to ∼ 10 m is
then already < 0.1. The total flux of active neutrinos passing through a typical detector at
a reactor site would hence be similar to the flux in the SM.

However, there are two effects which nevertheless put the model in tension with reactor
data. Firstly, the energy of active neutrinos from sterile neutrino decay is smaller by
approximately a factor of two than the energy of the primary νs, and since the detection
cross section scales with E2

ν , this implies a suppression in the measured event rate. Secondly,
around 80% of the reactor antineutrino flux are at neutrino energies below ∼ 3.5 MeV; for
sterile neutrinos produced in this energy range, the regenerated active neutrinos would
typically have energies below the threshold for detection via inverse beta decay (∼ 1.8 MeV).
In the end, the regeneration effect is therefore only at the level of 1% (relative difference
between event rates with and without regeneration for a reactor neutrino detector at a
distance of 10 m). Clearly, this does not resolve the tension between gallium and reactor
data. By similar arguments, also the tension with solar data is only mildly alleviated. On
the other hand, the decaying sterile neutrino scenario would engender a mild improvement
in the global fit when compared to the vanilla eV-scale sterile neutrino scenario.

Unlike the model from refs. [104–106, 108], the scenario discussed here is less constrained
by perturbativity arguments thanks to the lower neutrino energies which allow fairly short
decay lengths even for Yukawa couplings . 1. On the other hand, we require lighter
sterile neutrinos to accommodate O(10–20%) mixing in view of constraints from beta decay
spectra. The large mixing implies that active neutrinos feel the new interaction mediated
by S with only mild suppression, so they start free-streaming relatively late in cosmological
history, in conflict with CMB observations. Additional new physics would be required to
resolve this problem [83]. Supernova constraints, on the other hand, are evaded for the same
reason as in section 5.1.3: the new interaction is so strong that neutrinos and S particles
cannot free-stream out of a supernova core.

6 Conclusions

For the past decade, several anomalies have kept the neutrino community on their toes. But
with the reactor anomaly fading away and reactor experiments consequently shifting their
focus to other opportunities [28–31] and the situation surrounding the MiniBooNE anomaly
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more puzzling than ever [123–127], the gallium anomaly now takes center stage, with a
& 4σ effect claimed by BEST [15] and a & 5σ effect emerging when all gallium experiments
are combined [39]. In the present work we have scrutinized several possible ways to explain
the gallium anomaly, both within the SM and beyond. All of them are summarized, and
rated, in table 1, where we also list previous attempts from the literature.

As a leading candidate for the explanation of the gallium anomaly within the SM, we
regard a possible problem with the measurement of the radiochemical 71Ge extraction effi-
ciency.

Regarding BSM explanations, we have identified several promising scenarios consistent
with all constraints, but requiring a fine-tuned MSW or parametric resonance.

Future probes of the proposed solutions will hopefully be able to shine light on the origin
of the gallium anomaly. A probe of the proposed SM solution involving the translation of the
heat output of the Cr source to the neutrino flux could come from using a different source.
A more precise measurement with an Ar source or involving a 65Zn source at BEST [87]
does not require the knowledge of BR(51Cr→ 51V∗) and can therefore test a bias in the
translation of heat output to neutrino flux. On the other hand, SM explanations which
involve neutrino capture on Ga and extraction of Ge will remain viable explanations if future
measurements using different sources confirm the anomaly. Only a real-time measurement
(like the ill-fated SOX experiment at the BOREXINO detector [128]) or a radiochemical
experiment using a different target isotope (for instance 37Cl in combination with a 65Zn
source) could resolve those.

Finally, an interesting complementary probe of the proposed SM solutions consists of
using a 51Cr source and a Ga doped scintillation detector as proposed in [129]. As in this
case, in addition to the neutrino capture signal, also elastic neutrino-electron scattering
processes can be recorded, the source strength can be determined from the latter process,
and by comparing the event rates an incorrect capture cross section could be excluded.
This method also does not rely on the radiochemical germanium extraction efficiency as the
measurement is done in real time.

Regarding extensions of the SM, the scenarios involving a resonance were tuned such
that the resonant enhancement of the oscillations happens at the energies of the dominant
Cr lines. Therefore, such scenarios can be probed using a different source which emits
neutrinos with a different energy. Our prediction is that no neutrino deficit should be
observed in such an experiment with, for example, a Zn or Ar source. Furthermore, the
BSM scenario of a sharp resonance could be probed by making use of CNO neutrinos as
their energies extend over the whole range of interest for the required resonance.

In summary, we have put forward new avenues for explaining the gallium anomaly both
in the SM and beyond, and we have provided an overview of previously proposed BSM
solutions. We encourage new experimental efforts exploring these avenues in the future. A
discovery of an explanation beyond the SM would clearly constitute a major revolution in
particle physics; but even if a SM explanation for the gallium anomaly is uncovered, we
will still have learned important lessons that may guide the design and interpretation of
future experiments.
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scenario comments our rating

Explanations within the Standard Model

increased 71Ge half-life
(section 2.1 and ref. [39])

would lead to smaller matrix element for ν+ 71Ga; but the 71Ge
half-life has been measured many times with different methods
in [38], all of which yield consistent results. So it is hard to
imagine a bias in these measurements.

HHIII

new 71Ga excited state
(section 2.2)

would imply a bias in the extraction of the ν + 71Ga matrix
element from the measured 71Ge half-life. Some very old experi-
ments claim the existence of such a state, but this has not been
confirmed in more recent observations.

HHIII

increased BR(51Cr→ 51V∗)
(section 3)

would cause a bias in translating the heat output of the source to
a neutrino production rate. Measurements of BR(51Cr→ 51V∗)
show some tension, but it is far less than the shift required to
explain the gallium anomaly.

HHHII

71Ge extraction efficiency
(section 4)

one of SAGE’s calibration runs has revealed a large bias. Could
a small, unnoticed, bias have been present in all gallium experi-
ments?

HHHHI

Explanations beyond the Standard Model

νs coupled to ultralight DM
(MSW resonance, section 5.1.1)

several exotic ingredients; somewhat tuned MSW resonance;
new ν4 decay channel required for cosmology.

HHHHI

νs coupled to dark energy
(MSW resonance, section 5.1.2)

several exotic ingredients; somewhat tuned MSW resonance;
cosmology similar to the previous scenario.

HHHII

νs coupled to ultralight DM
(param. resonance, sec-
tion 5.1.3)

several exotic ingredients; somewhat tuned parametric reso-
nance; cosmology requires post-BBN DM production via mis-
alignment.

HHHHI

decaying νs
(section 5.2)

difficult to reconcile with reactor and solar data; regeneration
of active neutrinos in νs decays alleviates tension, but does not
resolve it.

HHIII

vanilla eV-scale νs
(refs. [17, 18])

preferred parameter space is strongly disfavored by solar and
reactor data.

HIIII

νs with CPT violation
(ref. [130])

avoids constraints from reactor experiments, but those from
solar neutrinos cannot be alleviated.

extra dimensions
(refs. [131–133])

neutrinos oscillate into sterile Kaluza-Klein modes that propa-
gate in extra dimensions; in tension with reactor data.

stochastic neutrino mixing
(ref. [134])

based on a difference between sterile neutrino mixing angles at
production and detection (see also [135, 136]); fit worse than
for vanilla νs.

decoherence
(refs. [137, 138])

non-standard source of decoherence needed; known experimental
energy resolutions constrain wave packet length, making an
explanation by wave packet separation alone challenging.

νs coupled to ultralight scalar
(ref. [139])

ultralight scalar coupling to νs and to ordinary matter affects
sterile neutrino parameters; can not avoid reactor constraints

Table 1. A summary of explanation attempts for the gallium anomaly. The first part of the table
explores solutions within the SM, the second part contains potential solutions that require new
physics. Besides the scenarios discussed in the present paper, we also include proposals from the
literature. (We do not include star ratings for the latter.)
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