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Abstract

We present a method to calculate the x–space expressions of massless or massive oper-
ator matrix elements in QCD and QED containing local composite operator insertions,
depending on the discrete Mellin index N , directly, without computing the Mellin–space
expressions in explicit form analytically. Here N belongs either to the even or odd positive
integers. The method is based on the resummation of the operators into effective propaga-
tors and relies on an analytic continuation between two continuous variables. We apply it
to iterated integrals as well as to the more general case of iterated non–iterative integrals,
generalizing the former ones. The x–space expressions are needed to derive the small–x
behaviour of the respective quantities, which usually cannot be accessed in N–space. We
illustrate the method for different (iterated) alphabets, including non–iterative 2F1 and
elliptic structures, as examples. These structures occur in different massless and massive
three–loop calculations. Likewise the method applies even to the analytic closed form solu-
tions of more general cases of differential equations which do not factorize into first–order
factors.

http://arxiv.org/abs/2303.05943v1


1 Introduction

Precision measurements of important observables in QCD and QED [1–5] require precision pre-
dictions through higher–order corrections. For many measurements at current and future col-
liders these are corrections up to three–loop order or even higher. The application of these
corrections to the data allows precision predictions of fundamental parameters of the Stan-
dard Model of elementary particle physics. The underlying theoretical calculations require the
development of efficient technologies to calculate the Feynman integrals contributing to the re-
spective order needed. In this paper we describe a method, which allows to perform the inverse
Mellin transform for massless and single–mass problems in these higher–order calculations. The
method is instrumental in cases, where Mellin space representations cannot easily be derived.
The method can also be applied in the presence of more scales, leading to more involved iterated
alphabets, however. Also the non–first–order–factorizing equations become more involved due
to real–valued parameters, additional cuts, etc.

For massive operator matrix elements (OMEs), massless off–shell operator matrix elements
or Wilson coefficients, a central variable t can be identified, in which the differential equations
of the respective master integrals are formulated. In the case of the OMEs this variable emerges
through the resummation of the local composite operators into linear propagators and in the case
of the Wilson coefficients it is the ratio t = 2p.q/Q2 of two kinematic invariants. Here q2 = −Q2

denotes the virtuality of the process, q = l− l′, with the initial state lepton (l), final state lepton
(l′), and nucleon momentum (p). The corresponding series are formal Taylor series with t ∈ R

and can be interpreted as generating functions.
While the variable t emerges naturally in the case of Wilson coefficients, it has to be considered

an auxiliary variable in the case of OMEs. At the end of the calculation one would like to perform
the principal transformation

t→ ±1

x
, (1)

where x = Q2/(2p.q) denotes the first Bjorken variable. As we will outline below, special care
is necessary because of the occurrence of δ(1− x) and of +-distributions [6] in x–space and one
finally would like to consider different regions in x. In the case of deep–inelastic scattering this
is x ∈ [0, 1].

In previous calculations we have already made use of generating functions in t. However,
in those cases we performed a formal Taylor expansion in which the Nth Mellin moment arises
as the coefficient of the expansion term tN . In many cases it is possible to obtain the Mellin
space result analytically [7–20]. One possibility is to calculate a large number of moments for the
master integrals, assemble them into moments for the physical quantity that is being calculated,
guess recurrences for them [21] and finally solve those recurrences using the algorithms of the
package Sigma [22, 23]. Calculating moments for the master integrals is often mathematically
easier than computing them analytically.1 For certain calculations we were able to push the
number of moments that we could generate to O(15000) [24].

In the present paper we advocate for a complementary method. As a starting point the
master integrals all have to be solved in analytic form in terms of the auxiliary variable t,
including also eventual non first–order factorizing cases, which leads to iterated non–iterative

1In this way, we could compute the three–loop anomalous dimension (∆)γ
(2)
qg (N) in a massive environment,

despite the fact that the master integrals contain elliptic structures, in Refs. [14]. As expected the elliptic
structures cancel up to the 1/ε terms in the final result, which is not evident by looking at the solutions of
individual master integrals. Here ε = D − 4 denotes the dimensional parameter.
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integrals [25] in general. The expressions in the variable t still have to be considered as a
mathematical representation close to Mellin N–space. We will then construct the representations
of the integrals in the Bjorken variable x by analytic continuation. This method has already
been applied in one of our recent calculations [26] in the case of iterated integrals. In the present
paper we will not treat OMEs in the two–mass case although the same method applies. Many of
the contributions leading to iterated integrals have been calculated, cf. [17–19]. These integrals
depend also on the real–valued mass ratio m2

c/m
2
b of the charm and bottom quark mass and the

alphabet is square–root valued.
The massive and massless OMEs are obtained from scattering amplitudes after performing

the light–cone expansion [27]. Physically they are defined at integer values of the Mellin variable
N only. The set of all Mellin moments encodes the complete analytic information, cf. [28]. The
corresponding x–space expressions, e.g. [29], are related via a Mellin transform

M[f(x)](N) =

∫ 1

0

dxxN−1f(x) (2)

to the former ones and have to be considered rather a derived quantity in general.2 The inverse
Mellin transform is given by

f(x) =
1

2πi

∫ c+i∞

c−i∞

ds x−sM[f(x)](s), (3)

where the integration contour surrounds all singularities of M[f(x)](s) in the complex plane. It
will be shown below that the functions in x–space may have definitions on subsets or supersets
of the interval x ∈ [0, 1] only, cf. [18,19] at intermediate steps, and require (various) distribution
valued regularizations.

In this paper we apply the method outlined above to integrals contributing to the massless
and massive OMEs and massless Wilson coefficients to three–loop order and illustrate it by
characteristic examples for the different function spaces. The calculation of these building blocks
is of central importance for single–scale hard scattering cross sections in pp, ep and e+e− processes
to three–loop order in QCD and QED. These results form also the basis of precision measurements
of the strong coupling constant αs(M

2
Z) [31], the value of the charm quark mass [32], and precision

determinations of the twist–2 parton distribution functions [33] at colliders such as HERA [34],
the LHC, and facilities planned for the future, such as EIC [35], LHeC [36], and the FCC [37].

The paper is organized as follows. In Section 2 we discuss the basic method for the inverse
Mellin transform. In Section 3 we show how to use our proposed method on different classes
of iterated integrals, such as harmonic polylogarithms [38], generalized harmonic polylogarithms
[39–41], cyclotomic harmonic polylogarithms [42], and iterated integrals containing square root
valued letters [43]. In Section 4 we investigate the case where also iterated non–iterative integrals
are present, [25, 44]. In Section 5 we comment on ways of efficient numerical representations of
the results in x–space and Section 6 contains the conclusions. Some technical aspects are given
in the Appendices.

2 The method

The Feynman rules for the local operator insertions are given in [16,45] up to three–loop order.
The operator matrix elements (OMEs) are proportional to (∆.p)N , with p the through flowing

2Curiously, in the massless case, the corresponding lowest order functions were known about 50 years earlier
before Mellin space representations have been considered [28], which founded the method of equivalent photons,
[30].
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momentum, ∆ a light–like vector and N the Mellin index, which is given by an even or odd
integer, depending on the physical problem. Furthermore, the crossing–relations [1,46] determine
the range of the values N ≥ N0, N,N0 ∈ N\{0}. One may resum all operator insertions by
introducing an auxiliary parameter t in terms of a formal Taylor series. For the simplest operator
insertion one e.g. finds [47]

∞∑

k=0

tk(∆.p)k =
1

1− t∆.p
, t ∈ R. (4)

The more involved operator insertions result in related structures, always leading to products
of effective propagators as given in Eq. (4). Respecting the crossing relations one has, more
generally,

∞∑

k=0

tk(∆.p)k
1

2
[1± (−1)k] = 1

2

[
1

1− t∆.p
± 1

1 + t∆.p

]

. (5)

This representation has the advantage that the information on the operators is now fully con-
tained in propagators and one may use the integration-by-parts (IBP) relations [48] without
specifying the different operator structures for each value of N , which grow rapidly in size for
growing N .

The complete OMEs or the Wilson coefficients have a definite crossing behaviour, i.e.

A+(N) = 1
2
[1 + (−1)N ]A(N), or B−(N) = 1

2
[1− (−1)N ]B(N), (6)

with

A(N) = M[A(x)](N), B(N) = M[B(x)](N), (7)

and either only even or odd moments contribute. In t–space one obtains

Ã(t) =

∞∑

N=1

tNA+(N) =

∫ 1

0

dx
t2x

1− t2x2
A(x), or (8)

B̃(t) =

∞∑

N=1

tNB−(N) =

∫ 1

0

dx
t

1− t2x2
B(x), (9)

where

Ã(t) = Ã(−t), B̃(t) = −B̃(−t). (10)

Structures of the kind of Eq. (5) also emerge in normal Feynman diagram calculations, such as
for sub–system scattering processes or Wilson coefficient functions [20, 49]. Here the role of the
parameter t is taken by the fraction

t =
2p.q

Q2
. (11)

Let us get back to Eq. (5), where the light–like vector ∆ has been introduced. By deriving
the OMEs in the light–cone expansion [27], cf. [1,46], in Fourier–space their Nth moment scales
also with 1/xn, cf. e.g. Eqs. (52,53) of Ref. [46]. Therefore, the situation is the same as in the
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case of the Wilson coefficients. The resummed OMEs behave mathematically very similar to the
forward Compton amplitude Tµν [20, 49] and one may formally use the relation

Wµν =
1

π
ImTµν , ∀t ∈ R. (12)

Here Wµν is the hadronic tensor. For the present application Wµν is the final function depending
on the Bjorken variable x, while Tµν contains the variable t. The imaginary part in (12) results
from the monodromy of the iterated, or iterated non–iterative integrals [25] around t = 1, t = −1,
and complex valued contributions of other kind by setting

t = ±1

x
. (13)

This way the result in x–space can be obtained. Because of even and odd moments being
present in intermediate results, one has to consider also the case t = −1/x, according to the cuts
in the forward Compton amplitude, cf. [1–5]. In the case of iterated integrals, the monodromy is
described by the Drinfeld–Knizhnik–Zamolodchikov [50] equations and related equations. Special
care has to be taken in the case of distribution–valued contributions in x–space, cf. Section 2.1.

In Eq. (12) only the main cut is considered, since all hadronic cut–(final) states are summed
over. This relation applies also to the individual Feynman diagrams and the associated scalar
integrals. Equivalently, one may consider the associated (subtracted) dispersion relations, cf. [46],
also known as Kramers–Kronig relation [51] or Källen–Lehmann representation [52].

In the following, we will elaborate on the extraction of the x–space representation by analytic
continuation of the generating function expressed in t. Let us consider a function F (N) which
has the representation

F (N) =

∫ 1

0

dxxN−1[f(x) + (−1)N−1g(x)], (14)

with f(x) = g(x) = 0, for x ∈ R, x < 0, x > 1. Terms of this kind appear e.g. in the flavor
non–singlet anomalous dimensions [15, 53, 54].

Its t–representation is then given by

F̃ (t) =

∞∑

N=1

tNF (N) =

∫ 1

0

dx′

[
tf(x′)

1− tx′
+

tg(x′)

1 + tx′

]

. (15)

For the physical variable x ∈ [0, 1] one finds

F̃

(

t =
1

x

)

=

∫ 1

0

dx′

[
f(x′)

x− x′
+

g(x′)

x+ x′

]

, (16)

F̃

(

t = −1

x

)

=

∫ 1

0

dx′

[

− f(x′)

x+ x′
+

g(x′)

x′ − x

]

. (17)

We can use the Sochocki formulae [6, 55]3

lim
δ→0+

1

ξ ± iδ
= P

1

ξ
∓ iπδ(ξ) (18)

3These relations can also be derived by using residue theory, cf. [56], see Appendix A.
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with P Cauchy’s valeur principale [57], to replace the denominators in (16, 17) with ξ = x ± x′

and obtain

− 1

2πi
DiscxF̃

(
1

x

)

= lim
δ→0+

1

π
ImF̃

(
1

x− iδ

)

=

∫ 1

0

dx′f(x′)δ(x− x′) = f(x), (19)

1

2πi
DiscxF̃

(

−1

x

)

= lim
δ→0+

1

π
ImF̃

(

− 1

x+ iδ

)

=

∫ 1

0

dx′g(x′)δ(x− x′) = g(x). (20)

One therefore may reconstruct

f(x) + (−1)N−1g(x) =
1

2πi

[

−DiscxF̃
(
1

x

)

+ (−1)N−1DiscxF̃

(

−1

x

)]

. (21)

One realizes that the branch of the solution that scales proportional to (−1)N introduces a
monodromy at the point t = −1, which has to be accounted for. Similarly, one may consider
branches which scale more generally as rN , r ∈ R, introducing a monodromy at a t = 1/r, which
has to be handled accordingly and will lead to x–space representations with support different
from x ∈]0, 1[. For single iterated integrals and Feynman diagrams this has been already observed
in the case of the massive pure singlet and two–mass OMEs. However, in the physical amplitude
these contribution outside of the physical region canceled and one was left with the usual support.

We illustrate our method with the following example,

F̃ (t) = H0,1,−1(t) + 2H0,0,−1(t). (22)

The Mellin space expression, corresponding to the coefficient of tN , reads

M[F (x)](N) =
(−1)N−1

N3
− S−1(N)

N2
(23)

describing the expansion coefficients of (22)

F̃ (t) = 2t +
7t3

54
+

t4

48
+

59t5

1500
+

t6

80
+

379t7

20580
+

107t8

13440
+O(t9). (24)

Here S~a(N) denotes the harmonic sums [58, 59]

Sb,~a(N) =

N∑

k=1

(sign(b))k

k|b|
S~a(k), S∅ = 1, b, ai ∈ Z\{0}, N ∈ N\{0}. (25)

One obtains the following functions in (21)

f(x) = − ln(2)H0(x) (26)

g(x) = − ln(2)H0(x)−
1

2
ζ2 +

1

2
H2

0(x) + H0,−1(x). (27)

Let us likewise consider the functions with definite crossing relations

F (x) = [1 + (−1)N−1]s(x) + [1− (−1)N−1]a(x), (28)

and resum its Mellin transform into F̃ (t),

F̃ (t) =

∞∑

N=1

tNM[F (x)](N)
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=

∫ 1

0

dx′x′N−1

[

2ts(x′)

1− t2x′2
+

2t2x′a(x′)

1− t2x′2

]

,

=

∫ 1

0

dx′x′N−1

[

t

1− tx′
(s(x′) + a(x′)) +

t

1 + tx′
(s(x′)− a(x′))

]

. (29)

One obtains the combinations

s(x) + a(x) = − 1

2πi
DiscxF

(
1

x

)

, s(x)− a(x) =
1

2πi
DiscxF

(

−1

x

)

. (30)

In cases which are free of the factor (−1)N−1 in x–space it is sufficient to consider F̃ (t = 1/x)
since the monodromy around t = −1 does not play a role. Most of the cases discussed below
receive, however, contributions form both terms. On the other hand, it is evident that in the case
that either s(x) or a(x) vanish, one of the equations (30) is sufficient to determine the respective
distribution.

The strategy to apply Eq. (21) is now to first analytically calculate the master integral in
terms of iterated non–iterative integrals in the variable t, describing the resummed Mellin–space
representation. This is done by solving the corresponding systems of linear ordinary differential
equations over arbitrary bases of master integrals, as has been described in Ref. [60]. The iterated
non–iterative integrals are then found by solving the homogeneous solutions in terms of higher
transcendental functions and the application of Euler–Lagrange [61] variation of the constant.
This is followed by the transformation t → ±1/x and applying 21, leading to another analytic
iterated non-iterative integral. These integrals now depend on the Bjorken variable x, which is
identical to the momentum fraction variable z in collinear factorization [62] for twist–2 operators
and forward scattering that we deal with in the present paper. All expressions in t–space are
understood as generating functions and the resummation (5) traces the N–space solution as the
Nth expansion coefficient.

Concrete master integrals were derived in different projects [11, 15, 16, 20, 26, 63] which were
obtained by using e.g. the packages Reduze 2 [64] and Crusher [65]. We note that the Mellin
N result for each contributing power in N can be directly obtained by expanding in t. We will
demonstrate our new method of directly obtaining the x–space expression from the generating
function in t on different function classes which arose in the aforementioned projects in Sections 3
and 4.

In calculating massless and massive OMEs different alphabets forming iterated and iterated
non–iterative integrals were revealed. The words formed out of these alphabets encode the
whole information of the respective Quantum Field Theory4, like other alphabets provide the
basic building blocks for languages and other structures [67]. The simplest one is formed by
the harmonic polylogarithms (HPLs) [38] and its subsets, the classical [68] and Nielsen poly-
logarithms [69]. These are followed by generalized harmonic polylogarithms [39–41], cyclotomic
polylogarithms [42], and specific root–valued alphabets obtained in Mellin inversions of finite bi-
nomial and inverse central binomial sums [26,43]. All these alphabets lead to iterated integrals,
for which shuffle algebras [70] lead to a reduction of the respective representation.

In massive problems at three–loop order also 2F1–letters occur, cf. e.g. [44], which are no
iterated integrals anymore. They can be dealt with in terms of iterated non–iterative integrals,
however. Going even to higher orders, more and more of these structures will occur. They are
characterized e.g. as solutions of differential equations, which do not factorize at first order.
The 2F1–letters are related to complete elliptic integrals [71] of specific (irrational) functions in

4One may call these alphabets also the genetic code of the micro cosmos, cf. [66].
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t and to modular forms [72]. We also note that among square–root letters one may have those,
leading to incomplete elliptic integrals, cf. [73]. These cases, however, are iterated integrals. We
remark, that transformations like (13) also connect splitting functions with argument x ∈ [0, 1]
to fragmentation functions with x ∈ [1,∞), cf. [74]. In Sections 3 and 4 we will demonstrate
the present method for the different classes of functions mentioned above and illustrate it by a
series of examples.

In the next section we describe the separation of the different distribution–valued contribu-
tions in x–space directly from the t–space representation in Section 2.1, and the property of
conjugation, which relates different master integrals and can be used to decrease the number of
master integrals which have to be calculated, in Section 2.2.

2.1 Distributions in x space

In inclusive physical (single–scale) processes there occur two distribution–valued contributions,

δ(1− x),

(
lnk(1− x)

1− x

)

+

, k ∈ N, with ln(1− x) = −H1(x), (31)

where Ha(x) denotes a harmonic polylogarithm [38]. They describe the soft region x → 1 or
N → ∞. Both distributions emerge from the behaviour of the generating function at t = 1.
Ideally one would like to separate these contributions in t–space already, since their x–space
structure is known, such that finally only the regular part needs to be calculated in x space. The
Mellin transform of the distributions read

M[δ(1− x)](N) = 1, (32)

M

[(
fa(x)

1− x

)

+

]

(N) =

∫ 1

0

dx
xN−1 − 1

1− x
fa(x), (33)

which is the option PlusFunctionDefinition → 1 of the package HarmonicSums [38,41–43,58,
59, 70, 75–77]. For the separation of the distribution we will consider fa(x) = Hk

1(x), k ∈ N,
for definiteness. Details of the decomposition in the δ,+ and regular contribution are given in
Appendix A.

One expands the analytic solution G(t) around t = 1 as

G(t) ≃ 1

1− t
a0 +

∞∑

k=1

ak
Hk

1(t)

t− 1
+ Ĝreg(t), (34)

with Ĝreg(t) = O ((t− 1)0) and Ĝreg(t) does not result in a distribution in x–space. By this one
obtains the leading terms contributing to the distributions. To obtain the complete distribu-
tions in x–space one subtracts from G(t) the following distribution–generating terms, with the
coefficients ak (35–41), etc., leaving Greg(t), a modified form of Ĝreg(t).

In this way, one identifies the leading terms in the t–representation. The distribution–valued
contributions are obtained by the following replacements

δ(1− x) ← t

1− t
, (35)

[
1

1− x

]

+

← t

t− 1
H1(t), (36)
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[
H1(x)

1− x

]

+

← t

t− 1

[
1

2
H2

1(t) + H0,1(t)

]

, (37)

[
H2

1(x)

1− x

]

+

← t

t− 1

[
1

3
H3

1(t) + 2H1(t)H0,1(t) + 2H0,0,1(t)− 2H0,1,1(t)

]

, (38)

[
H3

1(x)

1− x

]

+

← t

t− 1

[

1

4
H4

1(t) + 3H2
1(t)H0,1(t) + 6H1(t)H0,0,1(t)− 6H1(t)H0,1,1(t)

+6H0,0,0,1(t)− 6H0,0,1,1(t) + 6H0,1,1,1(t)

]

(39)

[
H4

1(x)

1− x

]

+

← t

t− 1

[

1

5
H5

1(t) + 4H3
1(t)H0,1(t) + 12H2

1(t)H0,0,1(t)− 12H2
1(t)H0,1,1(t)

+24H1(t)H0,0,0,1(t)− 24H1(t)H0,0,1,1(t) + 24H1(t)H0,1,1,1(t) + 24H0,0,0,0,1(t)

−24H0,0,0,1,1(t) + 24H0,0,1,1,1(t)− 24H0,1,1,1,1(t)

]

(40)

[
H5

1(x)

1− x

]

+

← t

t− 1

[

1

6
H6

1(t) + 5H4
1(t)H0,1(t) + 20H3

1(t)H0,0,1(t)− 20H3
1(t)H0,1,1(t)

+60H2
1(t)H0,0,0,1(t)− 60H2

1(t)H0,0,1,1(t) + 60H2
1(t)H0,1,1,1(t)

+120H1(t)H0,0,0,0,1(t)− 120H1(t)H0,0,0,1,1(t) + 120H1(t)H0,0,1,1,1(t)

−120H1(t)H0,1,1,1,1(t) + 120H0,0,0,0,0,1(t)− 120H0,0,0,0,1,1(t)

+120H0,0,0,1,1,1(t)− 120H0,0,1,1,1,1(t) + 120H0,1,1,1,1,1(t)

]

, etc. (41)

In the substitution one shall start from the largest power k in Eq. (31). One notices that the
coefficients of the formal Taylor series of these expressions are the same as the values of the
Mellin moments of the distributions at the l.h.s.5

2.2 Conjugation

In the calculation of single–scale master integrals finally expressed in the variable x in momentum
fraction space, one observes, in quite a series of cases, the so-called conjugation relation. In Mellin
N–space it reads, cf. [58],

f̂2(N, ε) ≡ f̂C
1 (N, ε) = −

N∑

k=1

(−1)k
(
N

k

)

f̂1(k, ε), (42)

for the functions f̂1(N, ε) and f̂2(N, ε), at all orders in the dimensional parameter ε. One may
phrase this relation in x–space directly with

f̂(N, ε) = M[f(x, ε)](N) ≡
∫ 1

0

dx xN−1 f(x, ε), (43)

yielding

f2(x, ε) = −
x

1− x
f1(1− x, ε), for x ∈ [0, 1[. (44)

5We remark that Mathematica and HarmonicSums have partly different implementations of cuts.
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The conjugation relation obeys

[f̂C(N)]C = f̂(N), [fC(x)]C = f̃(x). (45)

The most simple example is

SC
1 (N) =

1

N
, (46)

reading in x–space

(

− x

1 − x

)C

= 1. (47)

Some of the master integrals are even self–conjugate. It is useful to study a large number of
moments of all master integrals first, to find those which are conjugate to others, since their
direct calculation can be avoided by using Eq. (44). This has been done also for the massive

OME A
(3)
Qg [13].

3 Iterated integrals

Iterated integrals G(a1, ..., ak; t) are defined over an alphabet A

A = {f1(t), ..., fm(t)} (48)

of letters fk(t) which are analytic functions of t. They are given by

G(b,~a; t) =

∫ t

0

dx1fb(x1)G(~a; x1). (49)

If one of the letters fk(t) behaves like ck/t, ck ∈ C\{0} the integral
∫ x

0
dt fk(t) needs a regular-

ization given by

G(k; x) :=

∫ x

ε

dt fk(t) + H0(ε), (50)

which leads to regulators ∝ lnl(ε) that have to cancel in the final expression. Examples are

G(0; x) :=

∫ x

ε

dt
1

t
+H0(ε) = H0(x), (51)

G

(√
1 + x

x
; x

)

:=

∫ x

ε

dy

y

√

1− y +H0(ε) = −2 + 2
√
1− x+ 2 ln(2)

+ ln(1−
√
1− x)− ln(1 +

√
1− x). (52)

These regularizations are necessary for the letter 1/t contributing to the harmonic polylogarithms
and to several other alphabets.

The iterated integrals obey the recurrent differential equation

1

fb(t)

d

dt
G(b,~a; t) = G(~a; t), (53)
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which can be iterated to yield a first–order–factorizing differential equation for G(b,~a; t) itself,
[
d

dt

1

fak−1
(t)

d

dt
...

1

fa1(t)

d

dt

]

G(~a; t) = fak(t). (54)

One may now perform the transformation t→ 1/x, which yields
[

−x2 d

dx

(−x2)

fak−1

(
1
x

)
d

dx
...

(−x2)

fa1
(
1
x

)
d

dx

]

G

(

~a;
1

x

)

= fak

(
1

x

)

. (55)

The boundary conditions for the solution of (55) are known by G(~a; t = 1). From F̃ (t) = G (~a; t)

one obtains from (55) ˜̃F (x) = G (~a; 1/x) and

F (x) =
1

π
Im ˜̃F (x), (56)

and similarly for t → −1/x. In this way, all the corresponding calculations for the iterated
integrals can be performed. In various applications we will derive also the differential equations
for the respective G–functions of the variable ±1/x, to extract the imaginary part.

3.1 Harmonic polylogarithms

Harmonic polylogarithms [38] are the simplest entities in single–scale higher–loop calculations
in QCD and QED. Advanced examples where they appear and are sufficient to express the final
results are the massless three-loop Wilson coefficients [20, 49]. The alphabet is given by

AHPL =

{

f0(x) =
1

x
, f1(x) =

1

1− x
, f−1(x) =

1

1 + x

}

. (57)

The HPLs are defined by6

Hb,~a(x) =

∫ x

0

dyfb(y)H~a(y), fc ∈ AHPL, H 0,...,0
︸︷︷︸

k

(x) :=
1

k!
lnk(x). (58)

in the H~b(x)–notation. We consider the functions7

F̃1(t) = H0,0,1(t), (59)

F̃2(t) = H0,1,−1,0,1(t). (60)

For the first function the transformations t→ ±1/x yields

F1

(

t =
1

x

)

= −2ζ2H0(x) +
1

6
H3

0(x) + H0,0,1(x) +
iπ

2
H2

0(x), (61)

F1

(

t = −1

x

)

= ζ2H0(x) +
1

6
H3

0(x)− H0,0,−1(x), (62)

and one obtains

F1(x) =
1

2
H2

0, (63)

6The summary–index notation used e.g. in [38], e.g. writing the index 2 for {0, 1}, is not used here.
7The labels 0, 1, and -1 refer to the usual HPL letters.
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Here, (62) does not contribute. The Mellin transform of F1(x) is

M[F1(x)](N) =
1

N3
, (64)

which describes the t–series expansion of F̃1(t),

F̃1(t) =
∞∑

N=1

tN

N3
. (65)

Similarly, one obtains F2(x)

F2(x) = F2a(x) + (−1)N−1F2b(x), (66)

with

F2a(x) = −4Li4
(
1

2

)

− 1

6
ln4(2) + ln2(2)ζ2 +

103

40
ζ22 +H0,−1,0,1 −

1

24
H4

0 −
1

2
H2

0H0,1 − H0,−1H0,1

+H0[2H0,0,1 +H0,0,−1 +H0,1,−1]− 3H0,0,0,1 − 3H0,0,0,−1 + 2H0,0,−1,1 +
1

2
ln(2)ζ2H0

+
1

4
ζ2H

2
0 +

1

2
ζ2H0,1 +

3

2
ζ3H0, (67)

F2b(x) = −
[

−1
2
ln(2)H0 −

1

4
H2

0 +
1

2
H0,−1 −

1

4
ζ2

]

ζ2, (68)

where we set H~a(x) ≡ H~a. The Mellin transform of F2(x) is given by

M[F2(x)](N) = − 1

N5
+

(
(−1)N
N3

− S−1

N2

)

S−2 +
S−2,−1

N2
, (69)

with the convention S~a(N) ≡ S~a. The first terms of the series of F̃2(t) read

F̃2(t) =
t3

18
+

t4

64
+

67t5

3600
+

11t6

1296
+

9619t7

1058400
+

7117t8

1382400
+O(t9), (70)

in accordance with (69). The constants are all multiple zeta values [78]. In this case the package
HarmonicSums provides the corresponding transformation.

3.2 Cyclotomic harmonic polylogarithms

The first letters of the cyclotomic alphabet read [42]

Acycl =

{
1

x

}

∪
{

1

1− x
,

1

1 + x
,

1

1 + x+ x2
,

x

1 + x+ x2

1

1 + x2
,

x

1 + x2
,

1

1− x+ x2
,

x

1− x+ x2
, ...

}

. (71)

Here the highest numerator power of x is given by Euler’s totient function of the polynomial
number, the denominators are formed by the cyclotomic polynomials8 and AHPL ⊂ Acycl holds.
The cyclotomic polylogarithms are defined by

H{c1,d1},{ai1 ,bi1},...,{aik ,bik}
(x) =

∫ x

0

dyf{c1,d1}(y)H{ai1 ,bi1},...{aik ,bik}
(y), (72)

8One may also study iterated integrals given by quadratic forms, cf. [77].
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where c1, ai,k label the cyclotomic polynomial and d1, bik denote the degree of the numerator
powers. Here and in the following we are referring to G–functions, always related to the alphabet
discussed in the respective section.

In physics applications cyclotomic polylogarithms were generated by the third, fourth, and
sixth cyclotomic polynomial, see e.g. [47, 60, 63, 79]. They also appear while calculating OMEs
and Wilson coefficients for even/odd moments separately [15, 16, 20].

We consider the following example

F̃3(t) =
1

3(1− t)t1/3
G

[
ξ1/3

1− ξ
; t

]

(73)

=
1

1− t

(

−1 + t−1/3

3

(
H1(t

1/3) + 2H{3,0}(t
1/3) + H{3,1}(t

1/3)
)
)

. (74)

The first terms of its series expansion around t = 0 read

F̃3(t) =
t

4
+

11t2

28
+

69t3

140
+

1037t4

1820
+

4603t5

7280
+

94737t6

138320
+

1111267t7

1521520
+

5860639t8

7607600
+O(t9). (75)

As the next step, one has to separate the distribution–valued terms first by expanding around
t = 1. One finds the distributions

a1

[
1

1− x

]

+

+ a0δ(1− x); a1 = −
1

3
, a0 =

1

18

[√
3π + 9(−2 + ln(3))

]

(76)

and has to subtract t/(t − 1)[−a0 + a1H1(t)], before converting to the regular term in x space.
Finally one obtains

F3(x) = −
1

3

[
1

1− x

]

+

+
1

18

[√
3π + 9(−2 + ln(3))

]

δ(1− x) +
1− x4/3

3(1− x)
(77)

and for the Mellin transform the following cyclotomic sum

M[F3(x)](N) =
N∑

k=1

1

1 + 3k
, (78)

describing the pattern in (75). The transformation implies the contribution of cyclotomic con-
stants, like π, ln(3) etc., cf. [42].

3.3 Generalized harmonic polylogarithms

The alphabet for this class of integrals is given by [41]

AgHPL =

{
1

x− a

}

, a ∈ C. (79)

For single–scale OMEs one has a ∈ Z or Q. Alternatively, for a, bi ∈ R we can also use the
notation

Ha,~b(x) =

∫ x

0

dy fa(y)H~b(y) , with fa =
1

|a| − sgn(a)x
(80)
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In this notation, for example, f−2 = 1/(2+x) and f2 = 1/(2−a). Note that for a > 0 this differs
from the notation in Eq. (80) by an overall sign. Obviously, this is a natural generalization
of the notation of HPLs. If general real–valued quantities like mass–ratios or other quantities
are present one extends to a ∈ C. Moreover, AHPL ⊂ AgHPL holds. In the massive OMEs they
appeared first in the pure singlet case [11] and they contribute also to higher topologies [47,63].

The letters which can imply imaginary parts under the transformation t → ±1/x are the
ones for a ∈ R, |a| ≥ 1. Here, the support of the imaginary part is usually not the interval [0, 1],
as one sees already in the following examples.9 By defining

γ1 =
1

1− 2x
(81)

we consider the following functions

F̃4(t) = G

(
1

2− y
; t

)

, (82)

F̃5(t) =
t

t− 1

[

H0,0,0,1 (t) + 2G (γ1, 1, 1, 2; t)

]

, (83)

F̃6(t) =
t

t− 1

[

H0,0,0,1 (t) + 2G (1, γ1, 1, 2; t) + 2G (γ1, 1, 1, 2; t) + 4G (γ1, γ1, 1, 2; t)

]

. (84)

Here the index–labels 1 and 2 refer to 1/x and 1/(1 − x), respectively. The first terms of their
series expansions read

F̃4(t) =
t

2
+

t2

8
+

t3

24
+

t4

64
+

t5

160
+

t6

384
+

t7

896
+

t8

2048
+O(t9), (85)

F̃5(t) = −t2 − 33t3

16
− 4525t4

1296
− 116929t5

20736
− 117630361t6

12960000
− 63963307t7

4320000
− 85154778809t8

3457440000
+O(t9), (86)

F̃6(t) = −t2 − 41t3

16
− 6685t4

1296
− 199729t5

20736
− 227246761t6

12960000
− 411349121t7

12960000
− 1792733759681t8

31116960000
+O(t9). (87)

In x–space one obtains

F4(x) = θ

(
1

2
− x

)

, (88)

F5(x) = − 1

1− x

{

θ(1 − x)

[

1

24

(
4 ln3(2)− 2 ln(2)π2 + 21ζ3

)
− H2,0,0(x)

]

−θ(2− x)
1

24

(
4 ln3(2)− 2 ln(2)π2 + 21ζ3

)

}

, (89)

F6(x) = − 1

1− x

{

θ(1 − x)

[

ln3(2)

6
+

1

12

(
− 6 ln2(2) + π2

)
H2(x)−

1

8
ζ3

+H2,2,0(x)

]

+ θ(2− x)

[

− ln
3(2)

6
+

1

12

(
6 ln2(2)− π2

)
H2(x) +

1

8
ζ3

]}

, (90)

9Integrals defining G–functions with singularities in x ∈ [0, 1] are dealt with applying Cauchy’s valeur principale
[57].
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with θ the Heaviside function. Here regularizations at x = 1 are necessary. The transformations
used for the functions F4,5,6 are not part of the package HarmonicSums.

If different letters of the kind 1/(x − a), a ∈]0, 1], contribute, there are several cuts con-
tributing to the G–functions, which need a closer consideration. The Mellin transform of the
functions F5(6)(x) have to be performed using the support x ∈ [0, 2],

M̃a[f(x)](N) =

∫ a

0

dxxN−1f(x), a ∈ R, (91)

where the +-prescription reads

M̃
+,b

a [g(x)](N) =

∫ a

0

dx(xN−1 − bN−1)f(x), a, b ∈ R, (92)

and applies to b = 1 here.
The following Mellin transforms are obtained,

M[F4(x)](N) =
2−N

N
, (93)

M̃
+,1

2 [F5(x)](N) = −S1,3

(

2,
1

2

)

(N − 1), (94)

M̃
+,1

2 [F6(x)](N) = −S1,1,2

(

2, 1,
1

2

)

(N − 1). (95)

They are in accordance with (85–87). The generalized harmonic sums are given by [41]

Sb,~a(c, ~d)(N) =

N∑

k=1

ck

kb
S~a(~d)(k), b, ai ∈ N\{0}, c, di ∈ C\{0}. (96)

Let us finally note that the generalized harmonic polylogarithms which occurred in this
section can be expressed in terms of harmonic polylogarithms if we allow for the arguments x/2
and 1− x,

H2(x) = −H−1(1− x) + ln(2), (97)

H2,0,0(x) =
1

2

[

[−H−1(1− x) + ln(2)]H2
0(x)− 2H0(x)H0,1

(x

2

)

+ 2H0,0,1

(x

2

)
]

, (98)

H2,2,0(x) =
1

2
ln2(2)H0(x) +

1

2
H2

−1(1− x)H0(x) +
[

− ln(2)H0(x) + H0,1

(x

2

)]

H−1(1− x)

− ln(2)H0,1

(x

2

)

+H0,1,1

(x

2

)

. (99)

3.4 Square root valued alphabets

Square–root valued alphabets extend those of the previous sections by

Asqrt =

{

h1, h2, h3, h4, h5, h6, . . .

}

=

{

1

x
,

1

1− x
,

1

1 + x
,

√
1− x

x
,
√

x(1− x),
1√
1− x

,
1√

x
√
1± x

,
1

x
√
1± x

,
1√

1± x
√
2± x

,
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1

x
√

1± x/4
, ...

}

, (100)

cf. [43]. For massive OMEs in the single–mass case theses structures appeared first in Agg,Q at
three–loop order [10, 26], see also [63].

Let us consider the following G–functions,

F̃7(t) = G (4; t) (101)

F̃8(t) = G (4, 2; t) (102)

F̃9(t) = G (4, 1, 2, 2; t) , (103)

where the index–labels are those of (100). Note that G(4;t) has a trailing letter that is singular
in the limit t → 0. It therefore requires the regularization prescription described in Eq. (50).
The functions in Eqs. (101–103) have the following series expansions

F̃7(t) = − t

2
− t2

16
− t3

48
− 5t4

512
− 7t5

1280
− 7t6

2048
− 33t7

14336
− 429t8

262144
+O(t9), (104)

F̃8(t) = t− t3

72
− t4

96
− 71t5

9600
− 31t6

5760
− 3043t7

752640
− 2689t8

860160
+O(t9), (105)

F̃9(t) =
t2

8
+

t3

72
− t5

480
− 881t6

414720
− 1747t7

967680
− 4561t8

3096576
+O(t9). (106)

In x–space one obtains

F7(x) = 1− 2(1− x)(1 + 2x)

π

√

1− x

x
− 8

π
G
(
5; x
)
, (107)

F8(x) = −1

π

[

4
(1− x)3/2√

x
+ 2(1− x)(1 + 2x)

√

1− x

x
[H0 +H1]

+8[G
(
5, 2; x

)
+G

(
5, 1; x

)
]

]

, (108)

F9(x) = −1

π

{

−
[

16(1 + x) +

(

8(1 + x) + 4(1 + x)H1

+2(1 + 2x)H0,1

)

H0 + 2(1 + x)H2
0 +

1

3
(1 + 2x)H3

0 + 8(1 + x)H1

+2(1 + x)H2
1 − 2(1 + 2x)H0,0,1 + 2(1 + 2x)H0,1,1

]

(1− x)

√

1− x

x

+

(

12(1− x)(1 + x)

√

1− x

x
+ 6(1− x)(1 + 2x)

√

1− x

x
H0 + 36G

(
5; x
)

+24G
(
5, 1; x

)
)

ζ2 +

(

2(1− x)(1 + 2x)

√

1− x

x
+ 8G

(
5; x
)
)

ζ3 − 32G
(
5; x
)

−16G
(
5, 2; x

)
− 16G

(
5, 1; x

)
− 12G

(
5, 2, 2; x

)
− 12G

(
5, 2, 1; x

)

−12G
(
5, 1, 2; x

)
− 12G

(
5, 1, 1; x

)
− 8G

(
5, 1, 2, 1; x

)
− 8G

(
5, 1, 2, 2; x

)

−8G
(
5, 1, 1, 1; x

)
− 8G

(
5, 1, 1, 2; x

)

}

. (109)
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The Mellin transforms of the above examples for general values of N will also contain cyclotomic
harmonic sums [42] and central binomial terms [43]. The inversion to x–space has been performed
by solving differential equations. The corresponding Mellin transforms read

M[F7(x)](N) = −2
1−2N

N2

(
2N − 2

N − 1

)

, (110)

M[F8(x)](N) = −
(
2N
N

)

22N−1N(2N − 1)
S{2,−3,1}(N) (111)

M[F9(x)](N) =

(
2N
N

)

22N

[

16
(
− 1− 4N − 32N2 + 16N3 + 16N4

)

(−1 + 2N)4(1 + 2N)3
+

4S3
{2,1,1}(N)

3N(−1 + 2N)

+

(

−16
(
− 1− 8N + 4N2

)

(−1 + 2N)3(1 + 2N)2
− 4S{2,1,2}(N)

N(−1 + 2N)

)

S{2,1,1}(N)

−
16(2 +N)(−1 + 8N)S2

{2,1,1}(N)

15N(−1 + 2N)2(1 + 2N)
− 4S{1,0,1},{2,1,1},{2,1,1}(N)

N(−1 + 2N)

−16(−2 +N)(1 + 8N)S{2,1,2}(N)

15N(−1 + 2N)2(1 + 2N)
+

64S{2,1,1},{2,1,1}(N)

15N(−1 + 2N)

+
4S{1,0,1},{2,1,2}(N)

N(−1 + 2N)
+

8S{2,1,3}(N)

3N(−1 + 2N)

]

, (112)

and agree with the coefficients of the expansions (104–106). Here the cyclotomic sums are

S{a1,a2,a3},{~b1,~b3,~b3}
(N) =

N∑

k=1

1

(a1k + a2)a3
S{~b1,~b3,~b3}

(k). (113)

Note that for root–valued iterated integrals letters containing factors

(1± t)α, α ∈ R, (114)

may imply the occurrence of an imaginary part after transforming t→ ±1/x, which generalizes
the case of the letter 1/(1± t) in the previous classes of functions. Furthermore, for more general
root valued letters, cf. [43], also other cuts need to be considered.

In very simple cases the integrals defining G–functions lead to known functions, cf. [26] for a
series of examples. In particular at higher depth also special constants contribute, which can be
calculated using methods for infinite binomial sums [43, 80, 81].

4 Iterated non–iterative integrals

Beyond the purely iterated integrals, there are also integrals, which cannot be written in this
way. Instead of iterated integrals over alphabets of rational or irrational functions, the respective
letters are given by higher transcendental functions which are themselves defined by at least one
definite integral. Its x–dependence comes from an argument of the integrand and cannot be
transformed to only the boundary of the integral. The simplest cases of this kind found in
physics applications seem to be so-called 2F1–solutions. In the case we consider in the following
it turns out that the hierarchy of master integrals is such that the 2F1–solutions occur only in the
seeds and the other master integrals are given by first–order iterations over them. For this reason
we called these integrals iterated non–iterative integrals [25]. This class also covers a wide range
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of concrete cases which occur in Feynman diagram calculations such as Abel integrals [82], K3
surfaces [83], and Calabi–Yau motives [84], see also Ref. [85]. We will first consider the basic 2F1–
solutions emerging in the massive OME AQg, find solutions of the corresponding master integrals
in a Laurent expansion in ε, and derive the x–space representation for these non–iterative master
integrals in Section 4.1. In Section 4.2 we describe the principal method to iteratively determine
higher master integrals, which depend on 2F1–solutions in their inhomogeneous part.

4.1 2F1 solutions

We consider the six master integrals leading to 2F1–solutions and contributing to the massive
OME A

(3)
Qg, cf. [45]. They are given by

F1(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D1D4D6D7D10
, (115)

F2(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2
1D4D6D7D10

, (116)

F3(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D3
1D4D6D7D10

, (117)

F4(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2D3D6D7D10

, (118)

F5(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D2
2D3D6D7D10

, (119)

F6(t) =
1

(2π)3D

∫∫∫
dDk1 d

Dk2 d
Dk3

D3
2D3D6D7D10

, (120)

and the propagators read

D1 = k2
1 −m2 , D2 = (k1 − p)2 −m2 , (121)

D3 = k2
2 −m2 , D4 = (k2 − p)2 −m2 , (122)

D6 = (k1 − k3)
2 −m2 , D7 = (k2 − k3)

2 −m2 , (123)

D10 = 1− t(∆.k1) . (124)

with m a heavy quark mass. The three integrals F4,5,6(t) are related to F1,2,3(t), respectively, by
conjugation and, therefore, do not need to be calculated by solving the associated differential
equations. The remaining system of three first–order differential equations can be decoupled by
OreSys [86, 87] into one differential equation of order o = 3 and two differential relations for
the other functions Fk(t), k ∈ {1, 2, 3}. The original system of differential equations has the
following coefficient matrix

M1(t, ε) =







−1
t

− 1
1−t

0

0 − 1
t(1−t)

− 2
1−t

0 2
t(8+t)

1
8+t






+ ε







− 1
2t

0 0

0 − 1
2t

0

− (1−t)
2t(8+t)

[

1 + 7ε
4
+ 3ε2

8

]
2(13−4t)−ε(7+11t)

8t(8+t)
16+5t
2t(8+t)







(125)

and it is given by

d

dt







F1(t, ε)

F2(t, ε)

F3(t, ε)






= M1(t, ε)







F1(t, ε)

F2(t, ε)

F3(t, ε)






+







R1(t, ε)

R2(t, ε)

R3(t, ε)






+O(ε), (126)
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where the inhomogeneities are

R1(t, ε) =
1

t(1− t)ε3

[

16− 68

3
ε+

(
59

3
+ 6ζ2

)

ε2 +

(

−65
12
− 17

2
ζ2 + 2ζ3

)

ε3
]

+O(ε),

(127)

R2(t, ε) =
1

t(1− t)ε3

[

8− 16

3
ε+

(
4

3
+ 3ζ2

)

ε2 +

(
14

3
− 2ζ2 + ζ3

)

ε3
]

+O(ε), (128)

R3(t, ε) =
1

12t(8 + t)ε3
[
−192 + 8ε− 8

(
4 + 9ζ2

)
ε2 +

(
68 + 3ζ2 − 24ζ3

)
ε3
]
+O(ε). (129)

The functions Fi(t, ε) are expanded into a Laurent series in ε,

Fi(t, ε) =

∞∑

k=−3

Fi,k(t)ε
k. (130)

We first solve the homogeneous system after the decoupling for one of the functions Fi is per-
formed. Then the differential equations will be solved by using the method presented in Ref. [60]
looping up in the dimensional parameter ε. Here also decoupling is used, cf. Ref. [87].

Concerning the simplicity of the solution structure, it is important for which of the functions
one decouples first. If one chooses F1, see Appendix B, a more complicated structure is obtained
than starting with F3. The former case is structurally closer to the solution found in Ref. [44].
In Appendix B we show the lengthy expression of the solution F1(t) up to O(ε−1), which is given
by G–functions containing 2F1–letters in a spurious manner. Actually, a much more compact
solution, free of 2F1–letters, is obtained, as will be shown in Eq. (143). The reason for this is, that
the original 3 × 3 system has been transformed into a third–order differential equation without
factorizing into a first–order and a second–order system first and solving first the first–order
equation.

One is generally advised to solve first the differential equations of the first–order sub–
systems.10 If we decouple for the solution of F3(t) using OreSys first we obtain the homogeneous
differential equation

F′
1(t) +

1

t
F1(t) = 0. (131)

The other solutions appear only in the inhomogeneity. The particular solution of the homoge-
neous equation is

g̃0(t) =
1

t
. (132)

Further, the homogeneous differential equation of F3(t) is now given by

F′′
3(t) +

(2− t)

(1− t)t
F′
3(t) +

2 + t

(1− t)t(8 + t)
F3(t) = 0, (133)

while the solution F2(t) is a function of F3(t) and its derivatives. In this way, the 3 × 3 system
decouples into a first–order and a second–order system. In general, one is advised to find all
first–order solutions through decoupling of the complete system first.

10In Mellin space the package Sigma [22, 23] always factorizes first all first–order factors. This is generally not
the case for decoupling algorithms [86] implemented in OreSys [87]. However, one can investigate differential
equation decoupling using e.g. the algorithm [88] available in Maple.
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The Heun equation [89] (133) has singularities at t0 ∈ {−8, 0, 1,∞}. They will transform into
x0 ∈ {−1/8, 0, 1,∞} and one therefore expects that the series around x = 0 has a convergence
radius r < 1/8, which has consequences for the final numerical representation. Eq. (133) has
the advantage that there are no singularities in x ∈]0, 1[, unlike the case of the elliptic solutions
in [44], Eqs. (3.18, 3.19), or Eqs. (180, 181), providing an easier way to perform the analytic
continuation.

The pair of particular solutions of the homogeneous equation Eq. (133) is given by

g̃1(t) =
2

(1− t)2/3(8 + t)1/3
2F1

[
1
3

4
3

2
;− 27t

(1− t)2(8 + t)

]

, (134)

g̃2(t) =
9
√
3Γ2(1/3)

8π

1

(1− t)2/3(8 + t)1/3
2F1

[ 1
3

4
3

2
3

; 1 +
27t

(1− t)2(8 + t)

]

, (135)

with the Wronskian

W (t) =
1− t

t2
. (136)

The normalization of g̃2(t) has been chosen in such a way that the Wronskian is free of transcen-
dental constants. Note that the parameters of the 2F1–functions are not the same as in Eqs. (180,
181). In the solutions also the functions g̃′1(2)(t) are contributing, while higher derivatives are

expressed using Eq. (133). The functions g̃1(2)(t) are discontinuous at t = 1,

lim
t→1−

Re[g̃1(t)] =
3
√
3

2π
, lim

t→1−
Re[g̃2(t)] =

9

8
, (137)

lim
t→1+

Re[g̃1(t)] = −
3
√
3

4π
, lim

t→1+
Re[g̃2(t)] = −

9

4
, (138)

lim
t→1−

Im[g̃1(t)] = 0, lim
t→1−

Im[g̃2(t)] = −
9
√
3

8
, (139)

lim
t→1+

Im[g̃1(t)] = −
9

4π
, lim

t→1+
Im[g̃2(t)] = 0. (140)

This requires to consider the cases t < 1 and t > 1 separately.
The solutions Fi(t) of the 3 × 3 system up to O(ε0) can be expressed as iterated integrals

over the alphabet

A2 =

{

1

t
,

1

1− t
,

1

8 + t
, g̃1, g̃2,

g̃1
t
,

g̃1
1− t

,
g̃1

8 + t
,
g̃′1
t
,

g̃′1
1− t

,
g̃′1

8 + t
,
g̃2
t
,

g̃2
1− t

,
g̃2

8 + t
,
g̃′2
t
,

g̃′2
1− t

,

g̃′2
8 + t

, tg̃1, tg̃2

}

(141)

of length 19. Later we will refer to G–functions also for x ∈ [0, 1]. The corresponding alpha-
bet is obtained by setting t → 1/x and partial fractioning. For technical reasons additional
regularization may become necessary later because of the small–t behaviour of these letters.

In the G–functions below the respective letter is denoted by its position in A2. One might
express g̃′2 by

g̃′2 =
1

g̃1

[

g̃2g̃
′
1 +

1

t2
− 1

t

]

, (142)
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which we will not apply, however, since g̃1 would appear in the denominator, which is technically
more difficult in some representations.

The system relates to all solutions Fi(t) through the inhomogeneities. At higher order in ε all
solutions obtain G–functions containing 2F1–dependent letters. We first compute the functions
Fi(t) in the region t ∈ [0, 1−]. The initial conditions are set at t = 0. From these solutions one
can calculate the associated analytic expansion around x = 1.

To O(ε0) the solutions read

F1(t) =
8

ε3

[

1 +
1

t
H1(t)

]

− 1

ε2

[

1

6
(106 + t) +

(9 + 2t)

t
H1(t) +

4

t
H0,1(t)

]

+
1

ε

{

1

12
(271 + 9t) +

[

71 + 32t+ 2t2

12t
+

3ζ2
t

]

H1(t) +
(9 + 2t)

2t
H0,1(t) +

2

t
H0,0,1(t)

+3ζ2

}

+
1

t

{

6696− 22680t− 16278t2 − 255t3 − 62t4

864t
+
(
9 + 9t+ t2

)
g̃1(t)

[

31 ln(2)

16

+
1

144

(
265 + 31π(−3i+

√
3)
)
+

3

8
ln(2)ζ2 +

1

24

(
10 + π(−3i+

√
3)
)
ζ2 −

7

4
ζ3

]

+G(18, t)

[

−93 ln(2)
16

+
1

48

(
− 265− 31π(−3i+

√
3)
)
+

(

−9 ln(2)
8

+
1

8

(
− 10− π

(
− 3i+

√
3
))

)

ζ2 +
21

4
ζ3

]

+G(16; t)

[

31

4
+

3

2
ζ2 +

(
9 + 9t+ t2

)

(

31

36
+

ζ2
6

)

g̃1(t)

]

+G(13; t)

[

−31
36
− 1

6
ζ2 +

(
9 + 9t+ t2

)

(

655

648
+

25ζ2
108

)

g̃1(t)

]

+G(4; t)

[

−155 ln(2)
8

− 5

72

(
265 + 31π(−3i+

√
3)
)
+

(

−15 ln(2)
4

− 5

12

(
10 + π

(
− 3i+

√
3
))

)

ζ2 +
35

2
ζ3 −

7

24

(
9 + 9t+ t2

)
g̃2(t)

]

+G(7; t)

[

31 ln(2)

16

+
1

144

(
265 + 31π(−3i+

√
3)
)
+

(

3 ln(2)

8
+

1

24

(
10 + π

(
− 3i+

√
3
))

)

ζ2 −
7

4
ζ3

−
(
9 + 9t+ t2

)

(

655

648
+

25ζ2
108

)

g̃2(t)

]

+G(10; t)

[

−279 ln(2)
16

+
1

16

(
− 265

−31π(−3i+
√
3)
)
+

(

−27 ln(2)
8

− 3

8

(
10 + π

(
− 3i+

√
3
))

)

ζ2 +
63

4
ζ3

−31
36

(
9 + 9t+ t2

)
g̃2(t)−

1

6

(
9 + 9t + t2

)
ζ2g̃2(t)

]

−
(

31

4
+

3ζ2
2

)

H0(t)

−
(

1

144

(
809 + 564t+ 75t2 + 4t3

)
+

1

4
(23 + 3t)ζ2 − ζ3

)

H1(t)−
(

1

24

(
71

+24t− 3t2
)
+

3ζ2
2

)

H0,1(t)−
1

4
(9 + 2t)H0,0,1(t)−H0,0,0,1(t) +

1

4
(63 + 4t)ζ3

21



+

(
12− 45t− 46t2 + 3t3

)
ζ2

8t
−
(

31

36
+

ζ2
6

)

(
9 + 9t+ t2

)
g̃2(t)

+

(

155

18
+

7

24

(
9 + 9t+ t2

)
g̃1(t) +

5ζ2
3

)

G(5; t) +
(
9 + 9t+ t2

)

(

259

81
+

14ζ2
27

)

g̃2(t)

×G(8; t)−
(
9 + 9t+ t2

)

(

259

81
+

14ζ2
27

)

g̃1(t)G(14; t) +

(

31

12
+

ζ2
2

)

G(19; t)

−1
6

(
9 + 9t+ t2

)
g̃2(t)G(4, 2; t)− 35

12
G(4, 5; t)−

(

3275

324
+

125ζ2
54

)

G(4, 13; t)

+

(

2590

81
+

140ζ2
27

)

G(4, 14; t)−
(

155

18
+

5ζ2
3

)

G(4, 16; t) +
1

6

(
9 + 9t+ t2

)
g̃1(t)

×G(5, 2; t) +
35

12
G(5, 4; t) +

(

3275

324
+

125ζ2
54

)

G(5, 7; t)−
(

2590

81
+

140ζ2
27

)

G(5, 8; t)

+

(

155

18
+

5ζ2
3

)

G(5, 10; t) +
1

24

(
9 + 9t + t2

)
g̃2(t)G(6, 2; t) +

7

24
G(7, 5; t)

+

(

655

648
+

25ζ2
108

)

G(7, 13; t)−
(

259

81
+

14ζ2
27

)

G(7, 14; t) +

(

31

36
+

ζ2
6

)

G(7, 16; t)

+
7

8

(
9 + 9t+ t2

)
g̃2(t)G(8, 2; t)− 21

8
G(10, 5; t)−

(

655

72
+

25ζ2
12

)

G(10, 13; t)

+

(

259

9
+

14ζ2
3

)

G(10, 14; t)−
(

31

4
+

3ζ2
2

)

G(10, 16; t)− 1

24

(
9 + 9t+ t2

)
g̃1(t)

×G(12, 2; t)− 7

24
G(13, 4; t)−

(

655

648
+

25ζ2
108

)

G(13, 7; t) +

(

259

81
+

14ζ2
27

)

G(13, 8; t)

−
(

31

36
+

ζ2
6

)

G(13, 10; t)− 7

8

(
9 + 9t+ t2

)
g̃1(t)G(14, 2; t) +

21

8
G(16, 4; t)

+

(

655

72
+

25ζ2
12

)

G(16, 7; t)−
(

259

9
+

14ζ2
3

)

G(16, 8; t) +

(

31

4
+

3ζ2
2

)

G(16, 10; t)

−7
8
G(18, 5; t)−

(

655

216
+

25ζ2
36

)

G(18, 13; t) +

(

259

27
+

14ζ2
9

)

G(18, 14; t)

−
(

31

12
+

ζ2
2

)

G(18, 16; t) +
7

8
G(19, 4; t) +

(

655

216
+

25ζ2
36

)

G(19, 7; t)−
(

259

27

+
14ζ2
9

)

G(19, 8; t) +

(

31

12
+

ζ2
2

)

G(19, 10; t) +
5

3
[G(5, 4, 2; t)−G(4, 5, 2; t)]

+
5

12
[G(4, 12, 2; t)−G(5, 6, 2; t)] +

35

4
[G(4, 14, 2; t)−G(5, 8, 2; t)]

+
1

6
[G(7, 5, 2; t)−G(13, 4, 2; t)] +

1

24
[G(13, 6, 2; t)−G(7, 12, 2; t)]
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+
1

4

(
9 + 9t+ t2

)
[g̃2(t)G(8, 1, 2; t)− g̃1(t)G(14, 1, 2; t)] +

3

2
[G(16, 4, 2; t)−G(10, 5, 2; t)]

+
7

8
[G(13, 8, 2; t)−G(7, 14, 2; t)] +

3

8
[G(10, 12, 2; t)−G(16, 6, 2; t)]

+
63

8
[G(10, 14, 2; t)−G(16, 8, 2; t)] +

1

2
[G(19, 4, 2; t)−G(18, 5, 2; t)]

+
1

8
[G(18, 12, 2; t)−G(19, 6, 2; t)] +

21

8
[G(18, 14, 2; t)−G(19, 8, 2; t)]

+
5

2
[G(4, 14, 1, 2; t)−G(5, 8, 1, 2; t)] +

1

4
[G(13, 8, 1, 2; t)−G(7, 14, 1, 2; t)]

+
9

4
[G(10, 14, 1, 2; t)−G(16, 8, 1, 2; t)] +

3

4
[G(18, 14, 1, 2; t)−G(19, 8, 1, 2; t)]

}

+O(ε), (143)

F2(t) =
8

ε3
+

1

ε2

[

−1
3
(34 + t) +

2(1− t)

t
H1(t)

]

+
1

ε

[

116 + 15t

12
+ 3ζ2 −

(1− t)(8 + t)

3t
H1(t)

−1− t

t
H0,1(t)

]

+
992− 368t+ 75t2 − 27t3

144t
+ (1− t)

((
43 + 10t+ t2

)

12t
H1(t) +

(4− t)

4t

×H0,1(t) +
3ζ2
4t

H1(t)

)

+ t

[

31 ln(2)

16
+

1

144

(
265

+31π
(
− 3i+

√
3
))

+

(

3 ln(2)

8
+

1

24

(
10 + π

(
− 3i+

√
3
)

))

ζ2 −
7

4
ζ3 +

7

24
G(5; t)

+

(

655

648
+

25ζ2
108

)

G(13; t)−
(

259

81
+

14ζ2
27

)

G(14; t) +

(

31

36
+

ζ2
6

)

G(16; t)

+
1

6
G(5, 2; t)− 1

24
G(12, 2; t)− 7

8
G(14, 2; t)− 1

4
G(14, 1, 2; t)

]

[−g̃1(t)

+(8 + t)g̃′1(t)] + t

[

−31
36
− 1

6
ζ2 −

7

24
G(4; t)−

(

655

648
+

25ζ2
108

)

G(7; t) +

(

259

81

+
14ζ2
27

)

G(8; t)−
(

31

36
+

ζ2
6

)

G(10; t)− 1

6
G(4, 2; t) +

1

24
G(6, 2; t) +

7

8
G(8, 2; t)

+
1

4
G(8, 1, 2; t)

]

[−g̃2(t) + (8 + t)g̃′2(t)] +
(1− t)

2t
H0,0,1(t) +

(
16− 49t+ 9t2

)
ζ2

12t

+ζ3 +O(ε), (144)

F3(t) =
1

ε2

[
10

3
− t

6

]

+
1

ε

[

−31
6

+
3t

8
−
(
1

3
− 1

6t
− t

6

)

H1(t)

]

+

[

3

4
ln(2)g̃1(t)

+
1

12

(
10 + π(−3i+

√
3)
)
g̃1(t)−

g̃2(t)

3
+

25

54
[g̃1(t)G(13; t)− g̃2(t)G(7; t)]

+
28

27
[g̃2(t)G(8; t)− g̃1(t)G(14; t)] +

1

3
[g̃1(t)G(16; t)− g̃2(t)G(10; t)]

]

ζ2 +
31

8
ln(2)g̃1(t)

+
1

72

(
265 + 31π(−3i+

√
3)
)
g̃1(t)−

7

2
ζ3g̃1(t)−

31g̃2(t)

18
+

31

18
[g̃1(t)G(16; t)
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−g̃2(t)G(10; t)] +
7

12
[g̃1(t)G(5; t)− g̃2(t)G(4; t)] +

655

324
[g̃1(t)G(13; t)− g̃2(t)G(7; t)]

+
518

81
[g̃2(t)G(8; t)− g̃1(t)G(14; t)] +

1

3
[g̃1(t)G(5, 2; t)− g̃2(t)G(4, 2; t)]

+
1

12
[g̃2(t)G(6, 2; t)− g̃1(t)G(12, 2; t)] +

7

4
[g̃2(t)G(8, 2; t)− g̃1(t)G(14, 2; t)]

+
1

2
[g̃2(t)G(8, 1, 2; t)− g̃1(t)G(14, 1, 2; t)] +O(ε). (145)

The pole terms of the solutions are free of 2F1–dependent letters both in t and in x–space. We
checked numerically that the imaginary parts of F1(t), F2(t) and F3(t) vanish for t ∈ [0, 1].

We now transform to x–space via (12) and obtain integral representations in the physical
region x ∈ [0, 1]. The corresponding alphabet is obtained as a transformation of A2. In these
master integrals only the cut in t ∈ [1,∞) contributes. Furthermore, regularizations at x = 0, 1
are necessary in some cases. We first end up with a representation in terms of G–functions
of x and a number of special constants. At the point x = 1 the x– and t–expressions agree.
Since the expressions are rather voluminous, we will not show these expressions here but derive
analytic expansions around x = 0, 1/2 and x = 1, which have a more uniform structure. The
corresponding series can be extended to very high orders.

Both the functions g̃1,(2)(t) are complex for t > 1. We replace t = 1+y and take the imaginary
part. The transformation (1) introduces new constants given by G–functions at main argument
one. They can be calculated as described in Section 4.2. By expanding around y = 0 one can
obtain the series expansion of the master integrals in the variable 1− x = y/(1 + y). In general
one expects the structure11

∞∑

k=−1

L∑

l=0

âk,l(1− x)k lnl(1− x). (146)

In the present examples the logarithmic contributions do not contribute, cf. (152–154). One
retains a number of terms by which a given precision in the region x ∈ [1/2, 1] is obtained.

In a similar way one proceeds to obtain an expansion around x = 0 and x = 1/2, respectively.
For the associated differential equations the boundary conditions now known at x = 1 are used
to obtain the solutions around x = 0 and x = 1/2. In both cases new constants are contributing.
They are at most two–fold integrals, cf. Sect. 4.2, and are calculated numerically to high precision,
in the cases they are no known numbers.

The series expansion around x = 0 is given by

1

x

∞∑

k=0

S∑

l=0

b̂k,lx
k lnl(x). (147)

Here also G-constants at x = 1 contribute. Furthermore, we will need expansions around x = 1/2,

∞∑

k=0

ĉk,l

(
1

2
− x

)k

(148)

and further G-constants at x = 1/2 contribute. The expansion coefficients are given in Ap-
pendix C.

11In the numerical representations we normally use 20 digits.
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One obtains

F1(x) =
8x

ε3
− 1

ε2
(2 + 9x− 4xH0) +

1

ε

[
1

12x
[2 + 32x+ (71 + 36ζ2)x

2]− 1

2
(2 + 9x)H0 + xH2

0

]

+F
(0)
1 (x) +O(ε), (149)

F2(x) = − 1

ε2
2(1− x) +

1

ε
(1− x)

[
(1 + 8x)

3x
− H0(x)

]

+ F
(0)
2 (x) +O(ε), (150)

F3(x) =
1

ε

(1− x)2

6x
+ F

(0)
3 (x) +O(ε). (151)

For the expansion around x = 1 one obtains

F
(0),1
1 (x) =

∞∑

k=0

c11,k(1− x)k. (152)

F
(0),1
2 (x) =

∞∑

k=1

c12,k(1− x)k. (153)

F
(0),1
3 (x) =

∞∑

k=2

c13,k(1− x)k. (154)

Correspondingly one obtains for the expansions around x = 0 and x = 1/2

F
(0),0
1 (x) = c01,−1,1

ln x

x
+ c01,−1,0

1

x
+

∞∑

k=0

[c01,k,0 + c01,k,1 ln(x) + c01,k,2 ln
2(x) + c01,k,3 ln

3(x)]xk,

(155)

F
(0),0
2 (x) = c02,−1,1

ln x

x
+ c02,−1,0

1

x
+

∞∑

k=0

[c02,k,0 + c02,k,1 ln(x) + c02,k,2 ln
2(x)]xk, (156)

F
(0),0
3 (x) = c03,−1,1

ln x

x
+ c03,−1,0

1

x
+

∞∑

k=0

[c03,k,0 + c03,k,1 ln(x) + c03,k,2 ln
2(x)]xk, (157)

and

F
(0),1/2
1 (x) =

∞∑

k=0

c
1/2
1,k

(
1

2
− x

)k

, (158)

F
(0),1/2
2 (x) =

∞∑

k=0

c
1/2
2,k

(
1

2
− x

)k

, (159)

F
(0),1/2
3 (x) =

∞∑

k=0

c
1/2
3,k

(
1

2
− x

)k

. (160)

After the transformation (1) is performed, the expressions for the master integrals contain a
series of constants. They can be calculated as G–functions numerically. The Mellin moments of
the master integrals are given as ζ–values, which have been calculated by different methods [13]
up to N = 2000. These provide further numerical precision tests. We computed from the
obtained x–space representations the first 10 Mellin moments, of the master integrals, and agree.
Furthermore, we have compared the analytic results to numerical results in x–space which we
obtained by solving the associated first–order system of differential equations numerically with
the method applied in Ref. [90] and found agreement.
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4.2 Iterating on the 2F1–solutions at first order

After having solved all non–first–order–factorizing cases in analytic form, the other master inte-
grals contributing to the system spanning a physical problem are of first order and can now be
integrated, since the respective inhomogeneities are successively obtained. At every order one
has to solve an equation of the following form

y(1)(t) + r(t)y(t) = h(t), (161)

yielding [91]

y(t) = exp

(

−
∫

dtr(t)

)[

C +

∫

h(t) exp

(∫

dtr(t)

)

dt

]

. (162)

The constant C is fixed inserting a special value for t. Since the rational functions can be partial
fractioned allowing for complex constants the exponential factors in (162) will become rational
functions again. In the case of Kummer–Poincaré iterated letters [92–96] for r(x) one obtains

y(t) =
1

t− a

[

C +

∫

dth(t)(t− a)

]

. (163)

In the massive OME A
(3)
Qg the master integrals outside of the two sectors that are related to 2F1

solutions all fulfill first-order-factorizing differential equations of the form

y′(x) +
A

x− b
y(x) = h(x), (164)

which have the solution

y(x) = (b− x)−A

[

CbA +

∫ x

0

dy(a− y)Ah(y)

]

. (165)

For half–integer constants A one obtains root–valued letters, correspondingly. The inohomogene-
ity h(t) has itself an (iterated) integral representation down to the 2F1–solutions. The further
iteration adds one more iterated letter to the G–function from the left.

As we saw above, in the present case the 2F1–type letters appear in the G index words next to
each other, while, otherwise, letters are contributing forming iterated integrals. E.g. in the case
of Kummer–Poincaré letters one may write their iterated integral from the right. Accordingly,
one may partially integrate from the left. The result is then a linear combination of two–fold
integrals. As an example, let us consider the integral

Φ(x) = G({2,Φ1,Φ2, 1, 2}; x)

=

∫ x

0

dx1

1− x1

∫ x1

0

dx2Φ1(x2)

∫ x2

0

dx3Φ2(x3)

∫ x3

0

dx4

x4

∫ x4

0

dx5

1− x5

=

∫ x

0

dx1

1− x1

∫ x1

0

dx2Φ1(x2)

∫ x2

0

dx3Φ2(x3)Li2(x3)

= − ln(1− x)

∫ x

0

dx1Φ(x1)

∫ x1

0

dx2Φ(x2)Li2(x2)

+

∫ x

0

dx1 ln(1− x1)Φ(x1)

∫ x1

0

dx2Φ(x2)Li2(x2). (166)
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Here the functions Φ1(2)(x) denote the respective 2F1–letters. The transformation t → 1/x
and the series expansion around x = 1 will introduce a series of constants G(a1, ..., ak; 1). To
compute them, the previously discussed integral representations can be used for the numerical
integration, provided the numerical representations of the respective iterated integrals are known,
cf. e.g. [97–99]. This representation holds up to the terms O(ε0). More involved structures will
appear in higher–order terms in ε for the master integrals.

5 Numerical Representations

In the following we would like to make some brief remarks on possible numerical representations
of the different functions we discussed. For harmonic polylogarithms there are efficient numerical
programs to high weight, cf. [97–99]. Generalized harmonic polylogarithms can be calculated
using the Hölder convolution [39], cf. [98]. In some applications, cf. [9, 11], the generalized
harmonic polylogarithms can be grouped to HPLs H~a(1 − 2x) in the final result.12 As we have
seen in Section 3.3, for individual integrals Heaviside functions occur in x–space. They relate
different +–functions to their Mellin transform. In Ref. [11] the respective contributions canceled
in the final (physical) expression, such that the Mellin transform is the usual one on support
x ∈ [0, 1].

There are also codes for cyclotomic harmonic polylogarithms [99]. They can also be trans-
formed into generalized harmonic polylogarithms using complex representations. In the case
of the emergence of root–valued letters one will first try to rationalize as much as possi-
ble [73, 100, 101]. This can also be done using procedures of HarmonicSums. However, normally
some of the root–valued structures will remain. Moreover, the contributing iterated integrals
may be numerous over longer alphabets, cf. e.g. [26]. In this case one may first separate even-
tual distribution–valued terms. The remaining regular term, to be calculated for the interval
x ∈ [0, 1], can be analytically expanded into Taylor series expansions modulated by logarithmic
terms around x = 0 and x = 1, to high precision. This also requires the power series expansion
of the analytic continuation of the letters depending on g̃1,(2)(t) around x = 0 and 1. In general,
depending on the convergence radius of these series, further series expansions inside the interval
[0, 1] may become necessary.

6 Conclusions

We have devised an algorithm to compute the inverse Mellin transform to Bjorken x–space
directly from the resummation of the local operators from even or odd values of Mellin N , re-
spectively, into propagators containing a continuous auxiliary variable t ∈ R. The differential
equations for the master integrals in this variable are either solved in terms of iterated or iterated
non–iterative integrals. The results in Bjorken x–space are obtained by taking the imaginary
part of the function after its analytic continuation t→ ±1/x. The latter operation can be per-
formed by solving the differential equations for the iterated non–iterative integrals. In the case of
only iterated integrals, general analytic implementations exist for different classes of functions.
At higher order in ε additional 2F1 letters will appear in the G–functions. The constants con-
tributing in the final x–space expressions are G–functions at x = 1, by expanding around x = 0
and G–functions at x = ξ by expanding around x = ξ, ξ ∈ [0, 1]. The expressions in Mellin
space for fixed values of N are obtained by formal Taylor expansions of the analytic results in

12In other applications, e.g. in massive QED, different but similar objects contribute, cf. [102].
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the parameter t. We also discussed numerical representations in x–space. Our calculations were
checked against a series of Mellin moments of the master integrals, which were computed using
different methods. The present method allows to calculate the small–x behaviour of the consid-
ered quantities directly, which is not easily possible from the N–space expressions. On the other
hand, N–space expressions allow to extract the large–x behaviour, provided the corresponding
difference equations can be solved analytically in the limit N →∞.

A Details of the analytic continuation

In the following we derive (19, 20) by using the residue theorem and discuss the separation of
the distribution–valued contributions in x–space.

By using the representation of the Mellin transform (2) one obtains the following relation
between f̃(t) and f(x),

f̃(t) =

1∫

0

dx′ t

1− tx′
f(x′) . (167)

Here we consider for f(x) a regular function. Upon inserting the relation t = 1/x, we get

f̃

(
1

x

)

=

1∫

0

dx′ f(x′)

x− x′
. (168)

x′

0 1

x+ iδ

x− iδ

(a)

x′

0 1x

(b)

x′

0 1x

(c)

Figure 1: Illustration of the integration contours involved in extracting f(x) from f̃(t): (a) integration
contour for f̃(1/x) (blue) and the position of the poles in the discontinuity; (b) equivalent deformed
contours to compute the discontinuity of f̃(1/x) (in blue for the first term and in red for the second
term); (c) effective integration contour for the discontinuity of f̃(1/x).

In order to extract f(x) from f̃(t = 1/x), we can localize the integration around the pole at
x′ = x by calculating the discontinuity of f̃ across the branch cut induced by this pole,

Disc
x

f̃

(
1

x

)

= lim
δ→0+

[

f̃

(
1

x+ iδ

)

− f̃

(
1

x− iδ

)]

= lim
δ→0+





1∫

0

dx′ f(x′)

x+ iδ − x′
−

1∫

0

dx′ f(x′)

x− iδ − x′



 . (169)

The position of the poles in the first and second term is shown in Fig. 1a. Equivalently, we can
deform the integration contours in the first and second term. The contour for the first term

28



is shown in blue and for the second term in red in Fig. 1b. Since the straight sections of the
contours cancel out, only the circular contour shown in Fig. 1c remains to be evaluated. Thus,
we find with the help of the residue theorem

Disc
x

f̃

(
1

x

)

= lim
δ→0

∮

|x′−x|=δ

dx′ f(x′)

x− x′
= −2πi f(x) . (170)

Note that the sign arises due to the form of the denominator. Therefore, we can obtain f(x)
from f̃(t) via

f(x) =
−1
2πi

Disc
x

f̃

(
1

x

)

, (171)

which leads to the relations (19, 20).
We turn now to the separation of the distribution–valued contributions. We first consider

the Mellin–transform of a typical distribution in x–space, f(x), x ∈ [0, 1], occurring in QCD
calculations,

M[f(x)](N) =

∫ 1

0

dxxN−1f(x)

=

∫ 1

0

dxxN−1

[

fδδ(1− x) + [f+(x)]+ + freg,1(x) + (−1)N−1freg,2(x)

]

. (172)

Here f+(x) is a linear combination of the functions Hk
1(x)/(1 − x), k ∈ N. The generating

function in t–space is then obtained by

F̃ (t) =

∫ 1

0

dx′

{

t

1− t
δ(1− x′)fδ +

[
t

1− tx′
− t

1− t

]

f+(x
′)

+
t

1− tx′
freg,1(x

′) +
t

1 + tx′
freg,2(x

′)

}

. (173)

The distribution–valued parts can be integrated directly, cf. (35–41), with the first contributing
x–space distributions and their t–space representation are given in Section 2.1. These contribu-
tions are subtracted from F̃ (t). One then obtains

F̃reg(t) =

∫ 1

0

dx′

[

t

1− tx′
freg,1(x

′) +
t

1 + tx′
freg,2(x

′)

]

. (174)

freg,1(x) and freg,2(x) are reconstructed by forming

1

π
ImF̃reg,1

(

t =
1

x− i0

)

=
1

π
Im

∫ 1

0

dx′ 1

x− x′ − i0
freg,1(x

′) = freg,1(x), (175)

−1

π
ImF̃reg,2

(

t = − 1

x− i0

)

=
1

π
Im

∫ 1

0

dx′ 1

x− x′ − i0
freg,2(x

′) = freg,2(x), (176)

with x ∈ [0, 1].
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B The solution after first decoupling for F1(t)

If one decouples the system of differential equations (126) for F1(t) the solution of Eq. (177) up
to O(1/ε) is obtained as follows. For the homogeneous differential equation in the limit ε → 0
one obtains after the substitution F1(t) = f1(t)/t

f
(3)
1 (t)− 2(4 + 5t)

t(1− t)(8 + t)
f
(2)
1 (t) +

4

t(1− t)(8 + t)
f
(1)
1 (t) = 0 (177)

and

F2(t) =
342− 105t− t2

12t
+

(1− t)(9 + 2t)H1(t)

2t2
+

2(1− t)H0,1(t)

t2
+

6ζ2
t
− (1− t)F1(t)

t
−(1− t)F′

1(t) , (178)

F3(t) = −54 + 111t+ 52t2 + 3t3

24t2
− (1− t)2(−5 + 2t)H1(t)

4t3
+

(1− t)2H0,1(t)

t3
− 3ζ2

2t

+
(1− t)2F′

1(t)

t
+

1

2
(1− t)2F′′

1(t) , (179)

if one decouples for F1(t) first.
We consider the homogeneous solution of the second–order differential equation in g(t) =

f (1)(t) in the limit ε→ 0. The initial conditions are provided by the moments of the correspond-
ing master integral, to which the Taylor expansions around t = 0 have to match.

Eq. (177) is a Heun differential equation [89], which has the following 2F1–solutions

g1(t) = i2

√√
3π

t2(8 + t)2

(4− t)4
2F1

[ 4
3

5
3

2
; z(t)

]

, (180)

g2(t) = i2

√√
3π

t2(8 + t)2

(4− t)4
2F1

[
4
3

5
3

2
; 1− z(t)

]

, (181)

with

z(t) =
27t2

(4− t)3
, (182)

cf. Ref. [44].13 For the analytic continuations to be carried out in the following it is very important
to have closed form solutions, such as the above 2F1–solutions at hand.

The Wronski determinant [103] to a differential equation

y(n)(t) + p1(t)y
(n−1)(t) + p2(t)y

(n−2)(t) . . .+ pn(t)y(t) = 0 (183)

is given by

W (t) = W (0) exp

[

−
∫ t

0

p1(t)

]

=

∣
∣
∣
∣
∣
∣
∣

y1(t) . . . yn(t)
...

...

y
(n−1)
1 (t) . . . y

(n−1)
n (t)

∣
∣
∣
∣
∣
∣
∣

, (184)

where yi(t) are the n independent solutions of (183). The Wronskian of the solutions (180, 181)
reads

W (t) =
t(8 + t)

(1− t)2
. (185)

13The structure of (180, 181) follows due to the relation α + β + 1 = 2γ;α, β > 0 for the corresponding 2F1

function (191). We thank C.G. Raab for this remark.
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One may reduce higher–order derivatives of g1,(2)(t) by using their differential equations. One
thus obtains combinations of g1,(2) and g′1,(2)(t). Furthermore, one has

g′1(t) = i31/4
√
π

[

64
t(2 + t)(8 + t)

(4− t)5
2F1

[
4
3

5
3

2
; z(t)

]

+ 60
t3(8 + t)3

(4− t)8
2F1

[
7
3

8
3

3
; z(t)

]]

, (186)

g′2(t) = i31/4
√
π

[

64
t(2 + t)(8 + t)

(4− t)5
2F1

[
4
3

5
3

2
; 1− z(t)

]

+ 60
t3(8 + t)3

(4− t)8
2F1

[
7
3

8
3

3
; 1− z(t)

]]

.

(187)

The above solutions have already been calculated in Ref. [44], up to a factor ix2/
√
2, by changing

variables to

t→ 1− 9

x2
. (188)

One may relate the latter functions further to complete elliptic integrals of the first and second
kind, K(z1(x)),K(1 − z1(x)),E(z1(x)) and E(1 − z1(x)), with z1(x) = −16z3/[(x+ 1)(x− 3)3],
as has been outlined in Ref. [44] in detail, by transforming the hypergeometric functions and
using triangle relations [104,105]. Here the particular structure of the function z(t) has a deeper
meaning in the modular structure of these solutions, cf. [44]. The solutions in terms of complete
elliptic integrals have been applied in the first analytic calculation of the three–loop ρ–parameter
of the Standard Model [106], which had been calculated semi–analytically in [107] before.14 The
emergence of the 2F1–solutions in the present context is related to contributions of the so–called
two–loop massive sun–rise integral, related also to the kite–integral, on which a very extensive
literature exists. It dates back to [109], cf. also Refs. [110].15

In the present calculation we will use the 2F1–representation (180, 181) but not the represen-
tation due to complete elliptic integrals, since the number of higher transcendental functions is
smaller and we would not really benefit from particular properties of the elliptic integrals. We
now transform the solutions (180, 181) by t→ 1/x for complex variables. One obtains

G1(x) = g1

(
1

t

)

=
i2
√√

3π(1 + 8x)2

(1− 4x)4
2F1

[
4
3

5
3

2
;− 27x

(1− 4x)3

]

, (189)

G2(x) = g2

(
1

t

)

=
i2
√√

3π(1 + 8x)2

(1− 4x)4
2F1

[
4
3

5
3

2
;
(1− x)(1 + 8x)2

(1− 4x)3

]

. (190)

The integral representation of the hypergeometric function

2F1

[
α β

γ
; z

]

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dttβ−1(1− t)γ−β−1(1− zt)−α, Re(γ) > Re(β) > 0 (191)

shows that G1(x) is purely imaginary for x ∈
[
0, 1

4

]
, while this is the case for G2(x) for x ∈

[
1
4
, 1
]
.

At the boundaries one obtains

ReG2(0) = ReG1(1) = −33/4
√
π, (192)

ImG1(0) = ImG2(1) = 2

√√
3π, (193)

14Later in [108], the results of [44, 106] have been confirmed.
15For further references see the extensive surveys given in Refs. [85, 111].
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lim
x→(1/4)−

ReG1 (x) = lim
x→(1/4)+

ReG2 (x) = 0, (194)

lim
x→(1/4)+

ReG1 (x) = lim
x→(1/4)−

ReG2 (x) = −
33/4

21/3π3/2
Γ3

(
1

3

)

, (195)

lim
x→(1/4)−

ImG1 (x) = lim
x→(1/4)+

ImG2 (x) =
22/331/4

π3/2
Γ3

(
1

3

)

, (196)

lim
x→(1/4)+

ImG1 (x) = lim
x→(1/4)−

ImG2 (x) = −
31/4

21/3π3/2
Γ3

(
1

3

)

, (197)

with the new constant Γ(1/3). The functions G1(2)(x) are discontinuous at x = 1/4 and have
the following behaviour around x = 1 and x = 0, respectively,

ImG1(x) =
33/4√
π

[

−3
2

1

1− x
+ ln(1− x)

]

− 33/4

2π
[−3 + 4 ln(3)] +O((1− x)1), (198)

ImG2(x) =
33/4√
π

[

− 1

6x
+ ln(x)

]

+
1

31/4 2
√
π
+O(x1). (199)

The discontinuities disappear again in the inhomogeneous solutions, cf. also Ref. [44].
Let us now go back to the t–space representation and solve the three inhomogeneous differ-

ential equations for Fk(t). The following alphabet contributes

A1 = {1, 2, a1, ..., a16} =
{

1

t
,

1

1− t
, g1(t),

g1(t)

t
,
g1(t)

1− t
,
g1(t)

8 + t
,
g′1(t)

t
,
g′1(t)

1− t
,
g′1(t)

8 + t
,
g′′1(t)

t
, g2(t),

g2(t)

t
,
g2(t)

1− t
,
g2(t)

8 + t
,
g′2(t)

t
,
g′2(t)

1− t
,
g′2(t)

8 + t
,
g′′2(t)

t

}

. (200)

We obtain for F1(t) up to O(ε−1)

F1(t) =

8

ε3

[

1 +
1

t
H1(t)

]

+
1

ε2

[

−1
6
(106 + t)− 9 + 2t

t
H1(t)−

4

t
H0,1(t)

]

+
1

ε t

{

1

128(1− t)

[

−2654t+
(

2302− 44t− 224(−1 + t)H0,1(t)

)

H1(t)− 95(1− t)H1(t)
2

+16(36 + t)H0,1(t) + 256H0,0,1(t)− 256tH0,0,1(t)− 448H0,1,1(t) + 448tH0,1,1(t)

]

+i

[

− 1

96 4
√
3
√
π

(
1109 + 27 ln(2)

(
125 + 24ζ2

)
+ 144ζ2

)
G(a1; t)−

1

32

(
125

+24ζ2
)

4
√
3
√
πG(a9; t)

]

+
1

64

(

161 + 18ζ2

)

G(a1, a10; t) +
11539G(a1, a11; t)

20736

−
(
33713

20736
+

9ζ2
32

)

G(a1, a12; t)−
269

128
G(a1, a13; t)−

733

576
G(a1, a14; t)

−
(
23939

1152
+

9ζ2
4

)

G(a1, a15; t)−
1

64

(
161 + 18ζ2

)
G(a9, a2; t)−

11539G(a9, a3; t)

20736
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+

(
33713

20736
+

9ζ2
32

)

G(a9, a4; t) +
269

128
G(a9, a5; t) +

733

576
G(a9, a6; t) +

(
23939

1152

+
9ζ2
4

)

G(a9, a7; t) +
12845G(a1, a10, 2; t)

18432
+

371

648
G(a1, a11, 2; t)−

20629G(a1, a12, 2; t)

165888

−283
128

G(a1, a13, 2; t)−
371

144
G(a1, a14, 2; t)−

4315G(a1, a15, 2; t)

2304
− 43

64
G(a1, a16, 2; t)

−12845G(a9, a2, 2; t)

18432
− 371

648
G(a9, a3, 2; t) +

20629G(a9, a4, 2; t)

165888
+

283

128
G(a9, a5, 2; t)

+
371

144
G(a9, a6, 2; t) +

4315G(a9, a7, 2; t)

2304
+

43

64
G(a9, a8, 2; t) +

137

512
G(a1, a10, 1, 2; t)

+
37

162
G(a1, a11, 1, 2; t)−

1625G(a1, a12, 1, 2; t)

41472
− 133

128
G(a1, a13, 1, 2; t)−

37

36
G(a1, a14, 1, 2; t)

−85G(a1, a15, 1, 2; t)

1152
− 137

512
G(a9, a2, 1, 2; t)−

37

162
G(a9, a3, 1, 2; t) +

1625G(a9, a4, 1, 2; t)

41472

+
133

128
G(a9, a5, 1, 2; t) +

37

36
G(a9, a6, 1, 2; t) +

85G(a9, a7, 1, 2; t)

1152

}

+O(ε0). (201)

It is the first order in which the homogeneous 2F1–solutions seems to contribute. Here we refer
to the letters of alphabet A1, Eq. (141), and up to depth four G–functions, containing 2F1–letters
contribute. The expression reduces, however, to (143) for the pole terms, if one first decouples
for F3(t), which is difficult to see a posteriori. We have compared the first ten Taylor coefficients
of both representations and they agree. In (201) even some HPLs emerge, which are not present
in (143).

C The expansion coefficients of series representations

The first expansion coefficients in Eqs. (152–154) are given by

c11,0 = −11.16958740964 , c11,1 = 2.109346617266 ,

c11,2 = 0.936851756584 , c11,3 = 0.286064880707 ,

c11,4 = 0.127032314586 , c11,5 = 0.063499317190 ,

c11,6 = 0.034750073376 , c11,7 = 0.021455163556 ,

c11,8 = 0.015822146627 , c11,9 = 0.014262405540 ,

c11,10 = 0.014967991102 , (202)

c12,1 = −2.217839692102 , c12,2 = −0.718697587104 ,
c12,3 = −0.370323781129 , c12,4 = −0.189000503072 ,
c12,5 = −0.084433691142 , c12,6 = −0.016330161839 ,
c12,7 = 0.031991333568 , c12,8 = 0.068481112319 ,

c12,9 = 0.097368528228 , c12,10 = 0.121096539717 , (203)

c13,2 = 0.390651206448 , c13,3 = 0.322358345756 ,

c13,4 = 0.295156359854 , c13,5 = 0.281300038991 ,
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c13,6 = 0.273875311020 , c13,7 = 0.270132738635 ,

c13,8 = 0.268709892411 , c13,9 = 0.268837838844 ,

c13,10 = 0.270043649148 . (204)

The coefficients of Eqs. (155–157) read

c01,−1,1 = −
1

6
, c01,−1,0 = −

3

4
, c01,0,0 =

11

4
− 3

4
ζ2 ,

c01,0,1 =
29

6
, c01,0,2 =

5

4
, c01,1,0 = −

113

16
− 27

8
ζ2 + 5ζ3 ,

c01,1,1 =
83

24
+

3

2
ζ2 , c01,1,2 = −

3

8
, c01,1,3 = −

5

6
,

c01,2,0 = −
79

12
, c01,2,1 = 3 , c01,3,0 =

19

4
,

c01,3,1 = −
9

4
, c01,3,2 = −3 , c01,4,0 = −

7613

720
,

c01,4,1 =
143

12
, c01,4,2 = 5 , c01,5,0 =

64103

2400
,

c01,5,1 = −
891

20
, c01,5,2 = −18 , (205)

c02,−1,1 = −
1

3
, c02,−1,0 = −

5

4
, c02,0,0 =

1

2
− 3

4
ζ2 ,

c02,0,1 =
13

6
, c02,0,2 =

5

4
, c02,1,0 =

1

4
+

3

4
ζ2 ,

c02,1,1 = −
10

3
, c02,1,2 =

7

4
, c02,2,0 =

49

12
,

c02,2,1 = −
3

2
, c02,2,2 = −3 , c02,3,0 = −

65

6
,

c02,3,1 =
27

2
, c02,3,2 = 6 , c02,4,0 =

6493

240
,

c02,4,1 = −
225

4
, c02,4,2 = −21 , c02,5,0 = −

32837

400
,

c02,5,1 =
5199

20
, c02,5,2 = 87 , (206)

c03,−1,1 = −
1

6
, c03,−1,0 = −

3

8
, c03,0,0 =

1

2
,

c03,0,1 = −
7

6
, c03,1,0 =

9

8
, c03,1,1 =

7

12
,

c03,1,2 = −
3

2
, c03,2,0 = −

13

3
, c03,2,1 = 6 ,

c03,2,2 = 3 , c03,3,0 =
259

24
, c03,3,1 = −30 ,

c03,3,2 = −
21

2
, c03,4,0 = −

451

15
, c03,4,1 = 153 ,

c03,4,2 = 48 , c03,5,0 =
7017

80
, c03,5,1 = −

3369

4
,

c03,5,2 = −249 . (207)
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The above rational constants have been determined using PSLQ [112]. They do structurally

agree with those of a
PS,(3)
Qq of Ref. [9], which is related to a

(3)
Qg by color rescaling with CA/CF

in the leading term [113], where CF = (N2
C − 1)/(2NC), CA = NC and NC = 3 for Quantum

Chromodynamics.16 In the expansion of F3(x) no ζ-terms seem to contribute for the first 100
terms in x, while F2(x) depends on ζ2 and F1(x) also on ζ3. The master integrals contributing

to a
(3)
Qg may in principle also depend on ζ4 and B4, cf. [45], Eq. (4.10).
Finally, one obtains for the coefficients of Eqs. (158–160)

c
1/2
1,0 = −9.834184787511 , c

1/2
1,1 = 3.355232766926 ,

c
1/2
1,2 = 1.701654239373 , c

1/2
1,3 = 0.933416116957 ,

c
1/2
1,4 = 0.891822658934 , c

1/2
1,5 = 1.440452967512 ,

c
1/2
1,6 = 3.207281678902 , c

1/2
1,7 = 7.783359303513 ,

c
1/2
1,8 = 18.79614079037 , c

1/2
1,9 = 44.28851410206 ,

c
1/2
1,10 = 101.8245323374 , (208)

c
1/2
2,0 = −1.348611882678 , c

1/2
2,1 = −3.320927437135 ,

c
1/2
2,2 = −1.536412632474 , c

1/2
2,3 = −0.267319762707 ,

c
1/2
2,4 = 2.269831457716 , c

1/2
2,5 = 7.982990699375 ,

c
1/2
2,6 = 20.82740039869 , c

1/2
2,7 = 49.17055989829 ,

c
1/2
2,8 = 110.6955042191 , c

1/2
2,9 = 242.5826709616 ,

c
1/2
2,10 = 522.6300919150 , (209)

c
1/2
3,0 = 0.173692073146 , c

1/2
3,1 = 0.986776221633 ,

c
1/2
3,2 = 2.415478375577 , c

1/2
3,3 = 4.469951985772 ,

c
1/2
3,4 = 8.772564418720 , c

1/2
3,5 = 17.62005543760 ,

c
1/2
3,6 = 35.78474174591 , c

1/2
3,7 = 73.07722039062 ,

c
1/2
3,8 = 149.6247109869 , c

1/2
3,9 = 306.6679998469 ,

c
1/2
3,10 = 628.6136390924 . (210)
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[11] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure

singlet heavy flavor contributions to the structure function F2(x,Q
2) and the anomalous dimension, Nucl.

Phys. B 890 (2014) 48–151 [arXiv:1409.1135 [hep-ph]].
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[14] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The three-loop

splitting functions P
(2)
qg and P

(2,NF )
gg , Nucl. Phys. B 922 (2017) 1–40 [arXiv:1705.01508 [hep-ph]];
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[26] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Goedicke, A. von Manteuffel, C. Schneider and
K. Schönwald, The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements

Agg,Q and ∆Agg,Q, JHEP 12 (2022) 134 [arXiv:2211.05462 [hep-ph]].

[27] K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 1499–1512;
R.A. Brandt and G. Preparata, Operator product expansions near the light cone, Nucl. Phys. B 27 (1971)
541–567;
W. Zimmermann, Local Operator Products and Renormalization in Quantum Field Theory, Lectures on
Elementary Particle Physics and Quantum Field Theory, Brandeis Summer Institute, 1 (MIT Press, Cambridge,
1970), pp. 395 and Composite operators in the perturbation theory of renormalizable interactions, Ann. Phys.
(NY) 77 (1973) 536–569;
Y. Frishman, Operator products at almost light like distances, Ann. Phys. (NY) 66 (1971) 373–389;
R.A. Brandt and G. Preparata, The light cone and photon-hadron interactions, Fortsch. Phys. 20 (1972)
571–594;
N.H. Christ, B. Hasslacher and A.H. Mueller, Light cone behavior of perturbation theory, Phys. Rev. D 6

(1972) 3543–3562.

[28] D.J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys. Rev. D 8 (1973) 3633–3652.

[29] E. Fermi, On the Theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924)
315–327;
E.J. Williams, Applications of the method of impact parameter in collisions, Proc. Roy. Soc. London (A)
139 (1933) 163–186; Nature of the high-energy particles of penetrating radiation and status of ionization and

radiation formulae, Phys. Rev. 45 (1934) 729–730; Correlation of certain collision problems with radiation

theory, Kong. Dan. Vid. Sel. Mat. Fys. Med. 13, (4) (1935) 1–50;
C.F. von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612–625.

37

http://arxiv.org/abs/1804.02226
http://arxiv.org/abs/1711.06717
http://arxiv.org/abs/1911.11630
http://arxiv.org/abs/2208.14325
http://arxiv.org/abs/0902.4091
http://arxiv.org/abs/1306.4263
http://arxiv.org/abs/1304.4134
http://arxiv.org/abs/2211.05462


[30] L.D. Landau and E.M. Lifshiz, Lehrbuch der Theoretischen Physik, IV, Relativistische Quantentheorie,
(Akademie Verlag, Berlin, 1980) 4th ed., A. Kühnel, ed., §96, pp. 399.

[31] S. Bethke et al., Workshop on Precision Measurements of αs, arXiv:1110.0016 [hep-ph];
S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [hep-ph];
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R. Plačakytė and E. Reya, et al. A Critical Appraisal and Evaluation of Modern PDFs, Eur. Phys. J. C 76

(2016) no.8, 471 [arXiv:1603.08906 [hep-ph]].
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J. Blümlein, Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Commun.
159 (2004) 19–54 [arXiv:hep-ph/0311046 [hep-ph]].

[71] F.G. Tricomi, Elliptische Funktionen, (Geest & Portig, Leipzig, 1948); übersetzt und bearbeitet von M. Krafft;
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[75] J. Blümlein, Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5, Comput.
Phys. Commun. 180 (2009) 2218–2249 [arXiv:0901.3106 [hep-ph]].

[76] J. Ablinger, J. Blümlein and C. Schneider, Generalized Harmonic, Cyclotomic, and Binomial Sums, their

Polylogarithms and Special Numbers, J. Phys. Conf. Ser. 523 (2014) 012060 [arXiv:1310.5645 [math-ph]];
J. Ablinger, The package HarmonicSums: Computer Algebra and Analytic aspects of Nested Sums, PoS
(LL2014) 019 [arXiv:1407.6180 [cs.SC]]; A Computer Algebra Toolbox for Harmonic Sums Related to Par-

ticle Physics, Diploma Thesis, JKU Linz, 2009, arXiv:1011.1176 [math-ph]; Computer Algebra Algorithms

for Special Functions in Particle Physics, Ph.D. Thesis, Linz U. (2012) arXiv:1305.0687 [math-ph]; Inverse
Mellin Transform of Holonomic Sequences, PoS (LL2016) 067; Discovering and Proving Infinite Binomial

Sums Identities, Experimental Mathematics 26 (2017) 62–71 [arXiv:1507.01703 [math.CO]]; Computing the

Inverse Mellin Transform of Holonomic Sequences using Kovacic’s Algorithm, PoS (RADCOR2017) 001
[arXiv:1801.01039 [cs.SC]]; Discovering and Proving Infinite Pochhammer Sum Identities, Experimental

40

http://arxiv.org/abs/1509.08324
http://arxiv.org/abs/0912.2546
http://arxiv.org/abs/1201.4330
http://arxiv.org/abs/hep-ph/0311046
http://arxiv.org/abs/2003.14289
http://arxiv.org/abs/hep-ph/0004172
http://arxiv.org/abs/0901.3106
http://arxiv.org/abs/1310.5645
http://arxiv.org/abs/1407.6180
http://arxiv.org/abs/1011.1176
http://arxiv.org/abs/1305.0687
http://arxiv.org/abs/1507.01703
http://arxiv.org/abs/1801.01039


Mathematics 31 (2022) 309–323 arXiv:1902.11001 [math.CO]; An Improved Method to Compute the Inverse

Mellin Transform of Holonomic Sequences, PoS (LL2018) 063.
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