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Using conformal invariance of gravitational waves, we show that for a luminal modified gravity theory,
the gravitational-wave propagation and luminosity distance are the same as in general relativity. The
relation between the gravitational-wave and electromagnetic-wave luminosity distance gets modified,
however, for electromagnetism minimally coupled to the Jordan frame metric. Using effective field theory
we show that the modified relation obtained for luminal theories is also valid for nonluminal theories with
Jordan frame matter-gravity coupling. We generalize our analysis to a time-dependent speed of
gravitational waves with matter minimally coupled to either the Jordan or Einstein frame metrics.

DOI: 10.1103/PhysRevLett.130.231401

Introduction.—With the detection of gravitational waves
(GWs) [1] by the Laser Interferometer Gravitational Wave
Observatory (LIGO) and Virgo, we entered the era of
gravitational multimessenger astronomy. These observa-
tions are in good agreement with general relativity (GR)
predictions, constraining modified gravity theories (MGTs)
and dark energy (DE) models. Bright sirens, namely GW
events with an electromagnetic counterpart [2], are used to
test MGTs [3–7], which predict a difference between the
speed c of electromagnetic waves (EMWs) and the speed
cT of gravitational waves. The event GW170817 led to
tight constraints on the difference between cT and c,
motivating investigation of MGTs with cT ¼ c [8].
We show that for any MGT with cT ¼ c, the GW

propagation is the same as in GR; therefore any apparent
modification of the friction term of the GW propagation
equation can be removed by switching from the Jordan
frame, customarily used to study MGTs, to the Einstein
frame. As a result, the choice cT ¼ c implies that the GW
luminosity distance is the same as in GR, and if matter is
minimally coupled to the Einstein frame metric, the GW
and EMW luminosity distances are the same. If, however,
matter is nonminimally coupled to the metric in the
Einstein frame, the GW and EMW luminosity distances
can be different. In other words, GWs do not feel the
effective Planck mass associated to the conformal

transformation between Jordan and Einstein frames, while
photons, and in general matter fields, feel it. Using effective
field theory we derive the general model-independent
relation between GW and EMW luminosity distances for
MGTs with a time-dependent cT for matter fields coupled
to either the Einstein or the Jordan frame metrics, general-
izing results obtained assuming cT ¼ c.
Apparent modification of GW propagation equation in

GR.—The Lagrangian of tensor modes in GR in an
expanding Universe is

LGR ¼ a2E½h02 − ð∇hÞ2�; ð1Þ
which gives the equation of motion

h00 þ 2HEh0 −∇2h ¼ 0; ð2Þ
where HE ¼ a0E=aE.
The use of conformal time makes it transparent to

understand the effects of a time-dependent conformal
transformation for a Friedmann–Lemaître–Robertson-
Walker (FLRW) metric, since it corresponds to a scale
factor redefinition from the Einstein to the Jordan frame:

gE ¼ Ω2gJ → aE ¼ ΩaJ: ð3Þ
Under the above conformal transformation the GR
Lagrangian takes the form

LGR ¼ Ω2a2J½h02 − ð∇hÞ2�; ð4Þ
from which we get the “apparently” modified GW propa-
gation equation

h00 þ 2HJ

�
1þ Ω0

HJΩ

�
h0 −∇2h ¼ 0; ð5Þ
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whereHJ ¼ a0J=aJ. Because of the conformal invariance of
tensor modes,

HJ

�
1þ Ω0

HJΩ

�
¼ HE; ð6Þ

in agreement with the definitions ofHJ andHE. Hence, the
friction term as a function of space and conformal time is
the same one, just written in different frames related by
conformal transformation.
The above arguments are completely general, and apply

to any theory for which the GW propagation equation has
luminal speed and a modified friction term, independently
of the tensorial type and number of additional physical
degrees of freedom.
GW propagation in MGTs.—Consider MGTs with a

scalar degree of freedom. The corresponding effective field
theory (EFT) was formulated in the Jordan frame [9,10],
showing the relation to the Einstein frame EFT, known as
effective field theory of inflation [11].
Such an approach can be applied to the Horndeski

theory, or other MGTs involving a scalar field. For the
specific case of Horndeski theory, the transformation
between Einstein and Jordan frames can be derived using
the conformal invariance of tensor and curvature perturba-
tions [12]. Alternatively, without using perturbation theory,
one can find the relation between frames by studying the
effects of conformal transformations on the nonperturbed
MGT field equation [13], or by writing explicitly the
Horndeski Lagrangian in the form of the quadratic
Lagrangian for an effective field theory of DE in the
Jordan frame [9]

Leff
DE ¼ ffiffiffiffiffi

gJ
p ½Ω2RJ þ Lð2Þ

J �; ð7Þ

where Lð2Þ
J stands for all remaining terms. Note that the

Einstein frame is defined as the frame in which the
Lagrangian has the Hilbert form

Leff
DE ¼ ffiffiffiffiffi

gE
p ½RE þ Lð2Þ

E �; ð8Þ

where gE ¼ Ω2gJ.
Following the EFT for DE, the Lagrangian for tensor

perturbations in the Jordan frame is [10]

Leff
h ¼ a2JΩ2

c2T
½h02 − c2Tð∇hÞ2�; ð9Þ

and in the Einstein frame [14] is

Leff
h ¼ a2E

c2T
½h02 − c2Tð∇hÞ2�; ð10Þ

where aE ¼ ΩaJ, consistent with the general conformal
transformation gE ¼ Ω2gJ defined for the full action.
A more general effective Lagrangian was derived in [13],

valid for an arbitrary number of fields, and including the
effects of higher order terms.
From Eq. (10), the GW propagation equation in the

Einstein frame reads

h00 þ 2

�
a0E
aE

−
c0T
cT

�
h0 − c2T∇2h ¼ 0: ð11Þ

Clearly, for c0T ¼ 0 the friction term cannot be modified.
In particular, if GWs propagate at the speed of light,
Eq. (11) reduces to the one of general relativity.
From the effective Lagrangian in Jordan frame, Eq. (9),

the GW propagation equation reads

h00 þ 2HJ

�
1 −

c0T
HJcT

þ Ω0

HJΩ

�
h0 − c2T∇2h ¼ 0; ð12Þ

where HJ ¼ a0J=aJ. For luminal gravitational waves, the
above equation simplifies to

h00 þ 2HJ

�
1þ Ω0

HJΩ

�
h0 −∇2h ¼ 0; ð13Þ

corresponding to the Lagrangian

LGR ¼ a2JΩ2½h02 − ð∇hÞ2� ¼ a2E½h02 − ð∇hÞ2�: ð14Þ

Hence, the EFT approach confirms the result obtained
previously, namely that for GWs propagating at luminal
speed, any phenomenological parameterization of their
propagation equation involving a modification of the
friction term should have no physical relevance. Such
modification corresponds to GR written in a different
frame. In the following we will consider MGTs that can
be described by the EFT formulated in [10].
Luminosity distances.—In Minkowski background, the

GW amplitude h is inversely proportional to the distance
from the source r. To study the effects of cosmological
expansion on h it is convenient to write the Lagrangian for
an expanding universe, Eq. (10), as

Leff
h ¼ α2½h02 − c2Tð∇hÞ2�; ð15Þ

where

α ¼ aE
cT

¼ ΩaJ
cT

; ð16Þ

leading to the propagation equation

h00 þ 2
α0

α
h0 − c2T∇2h ¼ 0 ð17Þ
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in which α plays the role of an effective scale factor for the
GW propagation.
Introducing a new parameter χ as h ¼ χ=α, Eq. (17) in

Fourier space (denoted by a subscript k) reads [15]

χ00k þ
�
cTk2 −

α00

α

�
χk ¼ 0: ð18Þ

On subhorizon scales α00=α can be neglected, implying

hk ∝
1

α
: ð19Þ

Hence, on subhorizon scales GW amplitude in the expand-
ing Universe evolves as

hk ∝
1

αr
∝

1

dGWL
; ð20Þ

where

dGWL ðzÞ ¼ r
αð0Þ
αðzÞ ð21Þ

stands for the gravitational luminosity distance [16], a
quantity inferred from GW observations [17]. For a flat
FLRW background the comoving distance rðzÞ is

rðzÞ ¼
Z

z

0

dz0

Hðz0Þ : ð22Þ

Note that Eq. (21) is valid in both the Einstein and the
Jordan frames.
Let us denote with ηs and ηo the conformal time at the

source and observer, respectively, and also denote with
dEMjE, dEMjJ and dGWjE, dGWjJ the EMW and GW
luminosity distance of theories with matter coupled respec-
tively to the Einstein and Jordan frame metrics. At leading
order in perturbations, the distinction is not physically
relevant for GWs, since independently of the matter-gravity
coupling,

dGWL jE ¼ dGWL jJ ¼ r
αðηoÞ
αðηsÞ

¼ cTðηsÞ
cTðηoÞ

dGRL ; ð23Þ

where dGRL corresponds to Eq. (21) with cT ¼ c, as shown
in Table I. However, for EMWs it is important, since it
affects the definition of redshift, and dEML jE ≠ dEML jJ.
Conformal transformations and redshift-scale factor

relation.—The Lagrangian of electromagnetism is confor-
mally invariant [19], but the relation between redshift and
scale factor can change, depending on which metric Aμ is
coupled to. This can be understood using the geometric
optical approximation [20]. We give below a proof, using
the invariance of the norm of the photon four-momentum.
Consider a conformal transformation and its effect on the

scale factor of the FLRW metric

gE ¼ Ω2gJ; aE ¼ ΩaJ:

The norm of the four-momentum of a photon must be zero
in any frame, but if photons are minimally coupled with the
metric gJ, i.e., indices are contracting with gJ, we have

PμPμ ¼ PμPνgJμν

¼ E2 − δijpipja2J

¼ E2 − δijpipjΩ−2a2E

¼ 0;

where pj are the components of the comoving momentum.
Hence,

E ¼ paJ ¼ paEΩ−1;

with p2 ¼ δijpipj the norm of the comoving momentum.
We can then compute the redshift as

ð1þ zÞ ¼ EðzÞ
Eð0Þ ¼

�
að0Þ
aðzÞ

�
J
¼ ΩðzÞ

Ωð0Þ
�
að0Þ
aðzÞ

�
E
;

showing that the relation between redshift and scale factor
depends on which metric is minimally coupled to the matter
fields, namely with which metric tensor indices are raised
and lowered.

TABLE I. Redshift, gravitational, and electromagnetic luminosity distance relations for GR and MGTs with Einstein or Jordan frame
matter-gravity couplings.

GR MGT—Einstein frame MGT—Jordan frame

Scale factor aE aE aJ ¼ ðM�cTÞ−1aE
Coupling gE gE gJ
(1þ z) ½aEð0Þ=aEðzÞ� ½aEð0Þ=aEðzÞ� ½aJð0Þ=aJðzÞ� ¼ ½M�ðzÞcTðzÞaEð0Þ=M�ð0ÞcTð0ÞaEðzÞ�
dGWL dGWGR ¼ r½aEð0Þ=aEðzÞ� dGWMGT ¼ ½cTðzÞ=cTð0Þ�dGWGR dGWMGT ¼ ½cTðzÞ=cTð0Þ�dGWGR
dEML dEMGR ¼ r½aEð0Þ=aEðzÞ� dEMMGT ¼ dEMGR dEMMGT ¼ r½aJð0Þ=aJðzÞ� ¼ ½M�ðzÞcTðzÞ=M�ð0ÞcTð0Þ�dEMGR
ðdGWL =dEML Þ 1 ½cTðzÞ=cTð0Þ� ½M�ð0Þ=M�ðzÞ�
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Luminal modified gravity theories.—As shown previ-
ously, for cT ¼ 1, Eq. (12) implies that the only way to get
an apparent modification of the friction term is to write the
GR action in the Jordan frame. From the definition of
gravitational luminosity distance, Eq. (21),

dGWL jE ¼ r
αð0Þ
αðzÞ ¼ r

aEð0Þ
aEðzÞ

¼ rð1þ zÞ: ð24Þ

Using the definition

dEML ¼ rð1þ zÞ; ð25Þ

valid in either the Einstein or the Jordan frame, we get

dGWL jE ¼ dEML jE: ð26Þ

So far we have assumed

ð1þ zÞ ¼ aEð0Þ
aEðzÞ

; ð27Þ

namely that matter fields are minimally coupled to the
metric tensor in the Einstein frame gE.
If matter fields are minimally coupled to the metric

tensor in the Jordan frame gJ, we get the following redshift-
scale factor relation [20]:

ð1þ zÞ ¼ aJð0Þ
aJðzÞ

¼ aEð0Þ
aEðzÞ

ΩðzÞ
Ωð0Þ ; ð28Þ

and consequently

dEML jJ ¼ rð1þ zÞ ¼ r
aEð0Þ
aEðzÞ

ΩðzÞ
Ωð0Þ ¼

ΩðzÞ
Ωð0Þ d

GW
L jJ; ð29Þ

in agreement with [8,21].
Within the context of modified gravity theories, it is

customary to interpret Ω as an effective Planck constant
[22] M�. Hence,

dEML jJ ¼
M�ðzÞ
M�ð0Þ

dGWL jJ: ð30Þ

The relation between dEML jE in the Einstein frame and dEML jJ
in the Jordan frame is

dEML jJ ¼ r
aJð0Þ
aJðzÞ

¼ r
aEð0Þ
aEðzÞ

M�ðzÞ
M�ð0Þ

¼ M�ðzÞ
M�ð0Þ

dEML jE: ð31Þ

Regarding the GW luminosity distance, from Eq. (21)
with the definition Eq. (16), we get

dGWL jJ ¼ dGWL jE: ð32Þ

Hence, dGWL is not affected by M�, as expected from the
conformal invariance of h.
The relation between the GW and EMW luminosity

distances, Eq. (30), holds for matter fields minimally
coupled to the metric tensor in the Jordan frame. As a
result, a GW-EMW luminosity distance relation of the kind
obtained in [8] should be interpreted as the effect of the
propagation of EMWs within a theory of electromagnetism
where the Jordan frame gJ (and not gE) is the metric
coupled to the vector potential. In other words, if cT ¼ 1,
gravitons redshift in the sameway as in GR because they do
not feel the effective Planck mass, but if photons are
coupled to gJ they do feel it, leading to a difference between
the gravitational and electromagnetic luminosity distances.
Nonluminal modified gravity theories.—The effective

Jordan frame Lagrangian reads [23]

Leff
h ¼ M2�a2J½h02 − c2Tð∇hÞ2�; ð33Þ

which, compared to the Lagrangians Eqs. (10) and (9),
implies the frame transformation

aE ¼ M�cT aJ ¼ Ω aJ; ð34Þ

from which we get

α ¼ aE
cT

¼ M�aJ: ð35Þ

From the relation between frames we can derive the model-
independent relations for the nonluminal modified gravity
theories, summarized in Table I.
For Einstein frame photon-graviton coupling, using

Eqs. (25) and (27),

dEML jE ¼ rð1þ zÞ ¼ r
aEð0Þ
aEðzÞ

; ð36Þ

dGWL jE ¼ r
αð0Þ
αðzÞ ¼ r

aEð0Þ
aEðzÞ

cTðzÞ
cTð0Þ

¼ cTðzÞ
cTð0Þ

dEML jE: ð37Þ

Setting cTðzÞ ¼ 1, we get dGWL jE ¼ dEML jE, in agreement
with our previous result.
For Jordan frame photon-graviton coupling, we obtain

dEML jJ ¼ rð1þ zÞ ¼ r
aJð0Þ
aJðzÞ

¼ r
aEð0Þ
aEðzÞ

M�ðzÞ
M�ð0Þ

cTðzÞ
cTð0Þ

¼ M�ðzÞ
M�ð0Þ

cTðzÞ
cTð0Þ

dEML jE; ð38Þ

and

dGWL jJ ¼ r
αð0Þ
αðzÞ ¼ r

M�ð0Þ
M�ðzÞ

aJð0Þ
aJðzÞ

¼ M�ð0Þ
M�ðzÞ

dEML jJ: ð39Þ
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Hence, Eq. (30) is also valid for nonluminal modified
gravity theories.
Observational implications.—To understand the obser-

vational implications of the results presented above, it is
important to distinguish between the frame one uses to
perform calculations and the matter-gravity coupling frame.
Observational quantities do not depend on the choice of the
frame one uses to perform their calculations. On the
contrary, the choice of the frame for the coupling between
matter and gravity may lead to observational implications,
since this choice corresponds to the selection of a different
Lagrangian.
The results summarized in Table I do not depend on the

frame one uses to perform calculations; however, the
difference between the third and fourth columns corre-
sponds to two different families of theories, and is indeed
observable.
For luminal MGTs the gravitational luminosity distance

is the same as in GR for any matter-gravity coupling, while
the electromagnetic luminosity distance is modified only
for Jordan frame coupling. For nonluminal MGTs the
gravitational luminosity distance is modified with respect
to GR, and is the same for any matter-gravity coupling,
while the electromagnetic luminosity distance is modified
only for Jordan frame coupling. Independent GW and
EMW observations are necessary to constrain the effects
on the GW and EMW luminosity distances.
Conclusions.—A modification of the friction term of the

GW propagation equation, in the context of a modified
gravity theory, leads to a (real) physical effect only if
gravitational waves do not propagate at luminal speed.
Otherwise, the propagation of GWs and the gravitational
luminosity distance are the same as within GR.
Studying modified gravity theories in the Jordan frame,

as is customary, one observes an apparent modification in
the GW propagation equation, even for GWs propagating at
luminal speed. This, however, has no physical effect due to
conformal invariance.
The GW luminosity distance differs from the EMW

luminosity distance even for modified gravity theories with
GWs propagating at luminal speed, if photons are coupled
to the Jordan frame metric, instead of the Einstein frame
metric. In this case, the EMW luminosity distance is
different from the corresponding expression in GR, despite
that the GW propagation remains unaffected.
Hence, the obtained GW-EMW luminosity distance

relation modification obtained when gravitational waves
propagate at the speed of light may be regarded in the
Einstein frame as the manifestation of the modification of
electromagnetism rather than a modification of gravity in
the Jordan frame.
The model-independent GW-EMW luminosity distance

relation obtained for Einstein frame coupling can be used to
analyze GWs and EMWs emitted by bright sirens, since it

allows one to reconstruct cTðzÞ from the GW and EMW
luminosity distances.
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