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Using conformal invariance of gravitational waves, we show that for a luminal modified gravity
theory, the gravitational-wave propagation and luminosity distance are the same as in general rel-
ativity. The relation between the gravitational-wave and electromagnetic-wave luminosity distance
gets however modified for electromagnetism minimally coupled to the Jordan frame metric. Using
effective field theory we show that the modified relation obtained for luminal theories is also valid
for non-luminal theories with Jordan frame matter-gravity coupling. We generalise our analysis to
a time-dependent speed of gravitational waves with matter minimally coupled to either the Jordan
or Einstein frame metrics.

PACS numbers: Valid PACS appear here

Introduction— With the detection of gravitational
waves (GWs) [1] by the Laser Interferometer Gravi-
tational Wave Observatory (LIGO) and Virgo, we en-
tered the era of gravitational multi-messenger astron-
omy. These observations are in good agreement with gen-
eral relativity (GR) predictions, constraining modified
gravity theories (MGTs) and dark energy (DE) models.
Bright sirens, namely GW events with an electromag-
netic counterpart [2], are used to test MGTs [3–7] which
predict a difference between the speed c of electromag-
netic waves (EMWs) and the speed cT of gravitational
waves. The event GW170817 led to tight constraints on
the difference between cT and c, motivating investigation
of MGTs with cT = c [8].
We show that for any MGT with cT = c, the GW

propagation is the same as in GR, threrefore any appar-
ent modification of the friction term of the GW propa-
gation equation can be removed by switching from the
Jordan frame, customary used to study MGTs, to the
Einstein frame. As a result, the choice cT = c implies
that the GW luminosity distance is the same as in GR,
and if matter is minimally coupled to the Einstein frame
metric, the GWs and EMWs luminosity distances are
the same. If however matter is non-minimally coupled
to the metric in the Einstein frame, the GW and EMW
luminosity distances can be different. In other words,
GW do not feel the effective Planck mass associated to
the conformal transformation between Jordan and Ein-
stein frames, while photons, and in general matter fields,
feel it. Using effective field theory we derive the general
model-independent relation between GW and EMW lu-
minosity distances for MGTs with a time-dependent cT,
for matter fields coupled to either the Einstein or the
Jordan frame metrics, generalising results obtained as-
suming cT = c.
Apparent modification of GW propagation

equation in GR— The Lagrangian of tensor modes
in GR in an expanding Universe is

LGR = a2E

[

h′2 − (∇h)2
]

, (1)

which gives the equation of motion

h′′ + 2HEh
′ −∇2h = 0 , (2)

where HE = a′E/aE.
The use of conformal time makes it transparent to un-

derstand the effects of a time-dependent conformal trans-
formation for a Friedmann–Lemâıtre–Robertson-Walker
(FLRW) metric, since it corresponds to a scale factor
redefinition from the Einstein to the Jordan frame:

gE = Ω2 gJ → aE = Ω aJ . (3)

Under the above conformal transformation the GR La-
grangian takes the form

LGR = Ω2a2J

[

h′2 − (∇h)2
]

, (4)

from which we get the “apparently” modified GW prop-
agation equation

h′′ + 2HJ

(

1 +
Ω′

HJΩ

)

h′ −∇2h = 0 , (5)

where HJ = a′J/aJ. Due to the conformal invariance of
tensor modes,

HJ

(

1 +
Ω′

HJΩ

)

= HE , (6)

in agreement with the definitions of HJ and HE. Hence,
the friction term as a function of space and conformal
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time, is the same one, just written in different frames
related by conformal transformation.
The above arguments are completely general, and ap-

ply to any theory for which the GW propagation equation
has luminal speed and a modified friction term, indepen-
dently of the tensorial type and number of additional
physical degrees of freedom.
GW propagation in MGTs— Consider MGTs with

a scalar degree of freedom. The corresponding effective
field theory (EFT) was formulated in the Jordan frame
[9, 10], showing the relation to the Einstein frame EFT,
known as effective field theory of inflation [11].
Such an approach can be applied to the Horndeski

theory, or other MGTs involving a scalar field. For the
specific case of Horndeski theory, the transformation be-
tween Einstein and Jordan frames can be derived using
the conformal invariance of tensor and curvature per-
turbations [12]. Alternatively, without using perturba-
tion theory, one can find the relation between frames by
studying the effects of conformal transformations on the
non-perturbed MGT field equation [13], or by writing
explicitly the Horndeski Lagrangian in the form of the
quadratic Lagrangian for an effective field theory of DE
in the Jordan frame [9]

L
eff
DE =

√
gJ

[

Ω2RJ + L
(2)
J

]

; (7)

L
(2)
J stands for all remaining terms. Note that the Ein-

stein frame is defined as the frame in which the La-
grangian has the Hilbert form

L
eff
DE =

√
gE

[

RE + L
(2)
E

]

. (8)

where gE = Ω2gJ.
Following the EFT for DE, the Lagrangian for tensor

perturbations in the Jordan frame is [10]

L
eff
h =

a2JΩ
2

c2T

[

h′2 − c2T(∇h)2
]

, (9)

and in the Einstein frame [14] is

L
eff
h =

a2E
c2T

[

h′2 − c2T(∇h)2
]

, (10)

where aE = Ω aJ, consistent with the general conformal
transformation gE = Ω2gJ defined for the full action.
A more general effective Lagrangian was derived in

[13], valid for an arbitrary number of fields, and including
the effects of higher order terms.
From Eq.(10), the GW propagation equation in the

Einstein frame reads

h′′ + 2
(a′E
aE

− c′T
cT

)

h′ − c2T∇2h = 0 . (11)

Clearly, for c′T = 0 the friction term cannot be modified.
In particular, if GWs propagate at the speed of light,
Eq.(11) reduces to the one of general relativity.

From the effective Lagrangian in Jordan frame, Eq.(9),
the GW propagation equation reads

h′′ + 2HJ

(

1− c′T
HJcT

+
Ω′

HJΩ

)

h′ − c2T∇2h = 0 , (12)

where HJ = a′J/aJ. For luminal gravitational waves, the
above equation simplifies to

h′′ + 2HJ

(

1 +
Ω′

HJΩ

)

h′ −∇2h = 0 , (13)

corresponding to the Lagrangian

LGR = a2JΩ
2
[

h′2 − (∇h)2
]

= a2E

[

h′2 − (∇h)2
]

. (14)

Hence the EFT approach confirms the result obtained
previously, namely that for GWs propagating at lumi-
nal speed, any phenomenological parametrisation of their
propagation equation involving a modification of the fric-
tion term should have no physical relevance. Such mod-
ification corresponds to GR written in a different frame.
In the following we will consider MGTs that can be de-
scribed by the EFT formulated in [10].
Luminosity distances— In Minkowski background,

the GW amplitude h is inversely proportional to the dis-
tance from the source r. To study the effects of cos-
mological expansion on h it is convenient to write the
Lagrangian for an expanding universe, Eq.(10), as

L
eff
h = α2

[

h′2 − c2T(∇h)2
]

, (15)

where

α =
aE
cT

=
ΩaJ
cT

, (16)

leading to the propagation equation

h′′ + 2
α′

α
h′ − c2T∇2h = 0 ; (17)

α plays the role of an effective scale factor for the GW
propagation.
Introducing a new parameter χ as h = χ/α, Eq.(17)

in Fourier space (denoted by a subscript k) reads1

χ′′

k +
(

cTk
2 − α′′

α

)

χk = 0 . (18)

On sub-horizon scales α′′/α can be neglected, implying

hk ∝ 1

α
. (19)

1 This is consistent with Eq.(15) in [8] for cT = 1. The defini-
tion is conformally invariant, since both r and α are conformally
invariant. This is expected, since h is conformally invariant.
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Hence, on sub-horizon scales GW amplitude in an ex-
panding Universe evolves as

hk ∝ 1

α r
∝ 1

dGW
L

, (20)

where

dGW
L (z) = r

α(0)

α(z)
, (21)

stands for the gravitational luminosity distance[15], a
quantity inferred from GW observations2. For a flat
FLRW background the comoving distance r(z) is

r(z) =

∫ z

0

dz′

H(z′)
. (22)

Note that Eq.(21) is valid in both the Einstein and the
Jordan frames.
Let us denote with ηs and ηo the conformal time at

the source and observer, respectively, and also denote
with dEM|E, dEM|J and dGW|E, dGW|J the EMW and GW
luminosity distance of theories with matter coupled re-
spectively to the Einstein and Jordan frame metrics.
At leading order in perturbations, the distinction is not
physically relevant for GWs, since independently of the
matter-gravity coupling,

dGW
L |E = dGW

L |J = r
α(ηo)

α(ηs)
=

cT(ηs)

cT(ηo)
dGR
L , (23)

where dGR
L corresponds to Eq.(21) with cT = c, as shown

in Table I. However, for EMWs it is important, since it
affects the definition of red-shift, and dEM

L |E 6= dEM
L |J.

Conformal transformations and redshift-scale

factor relation— The Lagrangian of electromagnetism
is conformally invariant [17], but the relation between
redshift and scale factor can change, depending on which
metric Aµ is coupled to. This can be understood using
the geometric optical approximation [18]. We give below
a proof, using the invariance of the norm of the photon
four-momentum.
Consider a conformal transformation, and its effect on

the scale factor of the FLRW metric

gE = Ω2gJ , aE = Ω aJ .

The norm of the four-momentum of a photon must be
zero in any frame, but if photons are minimally coupled
with the metric gJ, i.e. indices are contracting with gJ,
we have

PµP
µ = PµP νgJµν

= E2 − δijp
ipja2J

= E2 − δijp
ipjΩ−2a2E

= 0 ;

2 The definition Eq.(21) is not equivalent to the one given in terms
of the flux of gravitational radiation [16].

pj are the components of the comoving momentum.
Hence,

E = p aJ = p aEΩ
−1 ,

with p2 = δijp
ipj the norm of the comoving momentum.

We can then compute the redshift as

(1 + z) =
E(z)

E(0)
=

[

a(0)

a(z)

]

J

=
Ω(z)

Ω(0)

[

a(0)

a(z)

]

E

,

showing that the relation between redshift and scale fac-
tor depends on which metric is minimally coupled to the
matter fields, namely with which metric tensor indices
are raised and lowered.
Luminal modified gravity theories— As shown

previously, for cT = 1, Eq.(12) implies that the only way
to get an apparent modification of the friction term is
to write the GR action in the Jordan frame. From the
definition of gravitational luminosity distance, Eq.(21),

dGW
L |E = r

α(0)

α(z)
= r

aE(0)

aE(z)
= r(1 + z) . (24)

Using the definition

dEM
L = r(1 + z) , (25)

valid in either the Einstein or the Jordan frame, we get

dGW
L |E = dEM

L |E . (26)

So far we have assumed

(1 + z) =
aE(0)

aE(z)
, (27)

namely that matter fields are minimally coupled to the
metric tensor in the Einstein frame gE.
If matter fields are minimally coupled to the metric

tensor in the Jordan frame gJ, we get the following red-
shift scale factor relation [18]:

(1 + z) =
aJ(0)

aJ(z)
=

aE(0)

aE(z)

Ω(z)

Ω(0)
, (28)

and consequently

dEM
L |J = r(1 + z) = r

aE(0)

aE(z)

Ω(z)

Ω(0)
=

Ω(z)

Ω(0)
dGW
L |J , (29)

in agreement with [8, 19].
Within the context of modified gravity theories, it is

customary to interpret Ω as an effective Planck constant3

M∗. Hence,

dEM
L |J =

M∗(z)

M∗(0)
dGW
L |J . (30)

3 Note that it is the quantity Ω = M∗cT that plays the role of an
effective Planck mass, since it is the coefficient of the Ricci scalar
in Eq.(7). In the case of cT = c, then Ω = M∗.
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GR MGT - Einstein frame MGT - Jordan frame

Scale factor aE aE aJ = (M∗cT)
−1

aE

Coupling gE gE gJ

(1 + z) aE(0)
aE(z)

aE(0)
aE(z)

aJ(0)
aJ(z)

= M∗(z)cT(z)aE(0)
M∗(0)cT(0)aE(z)

dGW
L dGW

GR = r
aE(0)
aE(z)

dGW
MGT = cT(z)

cT(0)
dGW
GR dGW

MGT = cT(z)
cT(0)

dGW
GR

dEM
L dEM

GR = r
aE(0)
aE(z)

dEM
MGT = dEM

GR dEM
MGT = r

aJ(0)
aJ(z)

= M∗(z)cT(z)
M∗(0)cT(0)

dEM
GR

d
GW

L

dEM

L

1 cT(z)
cT(0)

M∗(0)
M∗(z)

TABLE I. Redshift, gravitational and electromagnetic luminosity distance relations for GR and MGTs with Einstein or Jordan
frame matter-gravity couplings.

The relation between dEM
L |E in the Einstein frame and

dEM
L |J in the Jordan frame is

dEM
L |J = r

aJ(0)

aJ(z)
= r

aE(0)

aE(z)

M∗(z)

M∗(0)
=

M∗(z)

M∗(0)
dEM
L |E . (31)

Regarding the GW luminosity distance, from Eq.(21)
with the definition Eq.(16), we get

dGW
L |J = dGW

L |E . (32)

Hence, dGW
L is not affected by M∗, as expected from the

conformal invariance of h.
The relation between the GW and EMW luminosity

distances, Eq.(30), holds for matter fields minimally cou-
pled to the metric tensor in the Jordan frame. As a
result, a GW-EMW luminosity distance relation of the
kind obtained in [8], should be interpreted as the effect
of the propagation of EMWs within a theory of electro-
magnetism where the Jordan frame gJ (and not gE) is the
metric coupled to the vector potential. In other words,
if cT = 1, gravitons redshift in the same way as in GR,
because they do not feel the effective Planck mass, but
if photons are coupled to gJ they do feel it, leading to a
difference between the gravitational and electromagnetic
luminosity distances.
Non-luminal modified gravity theories— The ef-

fective Jordan frame Lagrangian reads [20]

L
eff
h = M2

∗
a2J

[

h′2 − c2T(∇h)2
]

. (33)

which compared to the Lagrangians Eq.(10) and (9) im-
plies the frame transformation

aE = M∗cT aJ = Ω aJ , (34)

from which we get

α =
aE
cT

= M∗aJ . (35)

From the relation between frames we can derive the
model-independent relations for the non-luminal modi-
fied gravity theories, summarised in Table I.
For Einstein frame photon-graviton coupling, using

Eqs.(25), (27),

dEM
L |E = r(1 + z) = r

aE(0)

aE(z)
, (36)

dGW
L |E = r

α(0)

α(z)
= r

aE(0)

aE(z)

cT(z)

cT(0)
=

cT(z)

cT(0)
dEM
L |E .(37)

Setting cT(z) = 1, we get dGW
L |E = dEM

L |E, in agreement
with our previous result.
For Jordan frame photon-graviton coupling, we obtain

dEM
L |J = r(1 + z) = r

aJ(0)

aJ(z)
= r

aE(0)

aE(z)

M∗(z)

M∗(0)

cT(z)

cT(0)

=
M∗(z)

M∗(0)

cT(z)

cT(0)
dEM
L |E , (38)

and

dGW
L |J = r

α(0)

α(z)
= r

M∗(0)

M∗(z)

aJ(0)

aJ(z)

=
M∗(0)

M∗(z)
dEM
L |J , (39)

hence Eq.(30) is also valid for non-luminal modified grav-
ity theories.
Observational implications— To understand the

observational implications of the results presented above,
it is important to distinguish between the frame one uses
to perform calculations and the matter-gravity coupling
frame. Observational quantities do not depend on the
choice of the frame one uses to perform their calcula-
tions. On the contrary, the choice of the frame for the
coupling between matter and gravity may lead to obser-
vational implications, since this choice corresponds to the
selection of a different Lagrangian.
The results summarized in Table I do not depend on

the frame one uses to perform calculations, however the
difference between the third and fourth columns corre-
sponds to two different families of theories, and is indeed
observable.
For luminal MGTs the gravitational luminosity dis-

tance is the same as in GR for any matter-gravity cou-
pling, while the electromagnetic luminosity distance is
modified only for Jordan frame coupling. For non-
luminal MGTs the gravitational luminosity distance is
modified with respect to GR, and is the same for any
matter-gravity coupling, while the electromagnetic lumi-
nosity distance is modified only for Jordan frame cou-
pling. Independent GW and EMW observations are nec-
essary to constrain the effects on the GW and EMW
luminosity distances.
Conclusions— A modification of the friction term of

the GW propagation equation, in the context of a mod-
ified gravity theory, leads to a (real) physical effect only
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if gravitational waves do not propagate at luminal speed.
Otherwise, the propagation of GWs and the gravitational
luminosity distance are the same as within GR.

Studying modified gravity theories in the Jordan
frame, as it is customary, one observes an apparent mod-
ification in the GW propagation equation, even for GWs
propagating at luminal speed. This however has no phys-
ical effect due to conformal invariance.

The GW luminosity distance differs from the EMW lu-
minosity distance even for modified gravity theories with
GWs propagating at luminal speed, if photons are cou-
pled to the Jordan frame metric, instead of the Einstein
frame metric. In this case, the EMW luminosity distance
is different from the corresponding expression in GR, de-
spite that the GW propagation remains unaffected.

Hence, the obtained GW-EMW luminosity distance
relation modification obtained when gravitational waves

propagate at the speed of light, may be regarded in the
Einstein frame as the manifestation of the modification of
electromagnetism, rather than a modification of gravity
in the Jordan frame.
The model independent GW-EMW luminosity dis-

tance relation obtained for Einstein frame coupling, can
be useed to analyse GWs and EMWs emitted by bright
sirens, since it allows to reconstruct cT(z) from the GW
and EMW luminosity distances.
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